mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
147 lines
5.7 KiB
Python
147 lines
5.7 KiB
Python
|
import os, sys
|
||
|
import numpy as np
|
||
|
import scann
|
||
|
import argparse
|
||
|
import glob
|
||
|
from multiprocessing import cpu_count
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from ldm.util import parallel_data_prefetch
|
||
|
|
||
|
|
||
|
def search_bruteforce(searcher):
|
||
|
return searcher.score_brute_force().build()
|
||
|
|
||
|
|
||
|
def search_partioned_ah(searcher, dims_per_block, aiq_threshold, reorder_k,
|
||
|
partioning_trainsize, num_leaves, num_leaves_to_search):
|
||
|
return searcher.tree(num_leaves=num_leaves,
|
||
|
num_leaves_to_search=num_leaves_to_search,
|
||
|
training_sample_size=partioning_trainsize). \
|
||
|
score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(reorder_k).build()
|
||
|
|
||
|
|
||
|
def search_ah(searcher, dims_per_block, aiq_threshold, reorder_k):
|
||
|
return searcher.score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(
|
||
|
reorder_k).build()
|
||
|
|
||
|
def load_datapool(dpath):
|
||
|
|
||
|
|
||
|
def load_single_file(saved_embeddings):
|
||
|
compressed = np.load(saved_embeddings)
|
||
|
database = {key: compressed[key] for key in compressed.files}
|
||
|
return database
|
||
|
|
||
|
def load_multi_files(data_archive):
|
||
|
database = {key: [] for key in data_archive[0].files}
|
||
|
for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'):
|
||
|
for key in d.files:
|
||
|
database[key].append(d[key])
|
||
|
|
||
|
return database
|
||
|
|
||
|
print(f'Load saved patch embedding from "{dpath}"')
|
||
|
file_content = glob.glob(os.path.join(dpath, '*.npz'))
|
||
|
|
||
|
if len(file_content) == 1:
|
||
|
data_pool = load_single_file(file_content[0])
|
||
|
elif len(file_content) > 1:
|
||
|
data = [np.load(f) for f in file_content]
|
||
|
prefetched_data = parallel_data_prefetch(load_multi_files, data,
|
||
|
n_proc=min(len(data), cpu_count()), target_data_type='dict')
|
||
|
|
||
|
data_pool = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in prefetched_data[0].keys()}
|
||
|
else:
|
||
|
raise ValueError(f'No npz-files in specified path "{dpath}" is this directory existing?')
|
||
|
|
||
|
print(f'Finished loading of retrieval database of length {data_pool["embedding"].shape[0]}.')
|
||
|
return data_pool
|
||
|
|
||
|
|
||
|
def train_searcher(opt,
|
||
|
metric='dot_product',
|
||
|
partioning_trainsize=None,
|
||
|
reorder_k=None,
|
||
|
# todo tune
|
||
|
aiq_thld=0.2,
|
||
|
dims_per_block=2,
|
||
|
num_leaves=None,
|
||
|
num_leaves_to_search=None,):
|
||
|
|
||
|
data_pool = load_datapool(opt.database)
|
||
|
k = opt.knn
|
||
|
|
||
|
if not reorder_k:
|
||
|
reorder_k = 2 * k
|
||
|
|
||
|
# normalize
|
||
|
# embeddings =
|
||
|
searcher = scann.scann_ops_pybind.builder(data_pool['embedding'] / np.linalg.norm(data_pool['embedding'], axis=1)[:, np.newaxis], k, metric)
|
||
|
pool_size = data_pool['embedding'].shape[0]
|
||
|
|
||
|
print(*(['#'] * 100))
|
||
|
print('Initializing scaNN searcher with the following values:')
|
||
|
print(f'k: {k}')
|
||
|
print(f'metric: {metric}')
|
||
|
print(f'reorder_k: {reorder_k}')
|
||
|
print(f'anisotropic_quantization_threshold: {aiq_thld}')
|
||
|
print(f'dims_per_block: {dims_per_block}')
|
||
|
print(*(['#'] * 100))
|
||
|
print('Start training searcher....')
|
||
|
print(f'N samples in pool is {pool_size}')
|
||
|
|
||
|
# this reflects the recommended design choices proposed at
|
||
|
# https://github.com/google-research/google-research/blob/aca5f2e44e301af172590bb8e65711f0c9ee0cfd/scann/docs/algorithms.md
|
||
|
if pool_size < 2e4:
|
||
|
print('Using brute force search.')
|
||
|
searcher = search_bruteforce(searcher)
|
||
|
elif 2e4 <= pool_size and pool_size < 1e5:
|
||
|
print('Using asymmetric hashing search and reordering.')
|
||
|
searcher = search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
|
||
|
else:
|
||
|
print('Using using partioning, asymmetric hashing search and reordering.')
|
||
|
|
||
|
if not partioning_trainsize:
|
||
|
partioning_trainsize = data_pool['embedding'].shape[0] // 10
|
||
|
if not num_leaves:
|
||
|
num_leaves = int(np.sqrt(pool_size))
|
||
|
|
||
|
if not num_leaves_to_search:
|
||
|
num_leaves_to_search = max(num_leaves // 20, 1)
|
||
|
|
||
|
print('Partitioning params:')
|
||
|
print(f'num_leaves: {num_leaves}')
|
||
|
print(f'num_leaves_to_search: {num_leaves_to_search}')
|
||
|
# self.searcher = self.search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
|
||
|
searcher = search_partioned_ah(searcher, dims_per_block, aiq_thld, reorder_k,
|
||
|
partioning_trainsize, num_leaves, num_leaves_to_search)
|
||
|
|
||
|
print('Finish training searcher')
|
||
|
searcher_savedir = opt.target_path
|
||
|
os.makedirs(searcher_savedir, exist_ok=True)
|
||
|
searcher.serialize(searcher_savedir)
|
||
|
print(f'Saved trained searcher under "{searcher_savedir}"')
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
sys.path.append(os.getcwd())
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--database',
|
||
|
'-d',
|
||
|
default='data/rdm/retrieval_databases/openimages',
|
||
|
type=str,
|
||
|
help='path to folder containing the clip feature of the database')
|
||
|
parser.add_argument('--target_path',
|
||
|
'-t',
|
||
|
default='data/rdm/searchers/openimages',
|
||
|
type=str,
|
||
|
help='path to the target folder where the searcher shall be stored.')
|
||
|
parser.add_argument('--knn',
|
||
|
'-k',
|
||
|
default=20,
|
||
|
type=int,
|
||
|
help='number of nearest neighbors, for which the searcher shall be optimized')
|
||
|
|
||
|
opt, _ = parser.parse_known_args()
|
||
|
|
||
|
train_searcher(opt,)
|