InvokeAI/invokeai/app/invocations/conditioning.py

42 lines
1.6 KiB
Python
Raw Normal View History

import numpy as np
import torch
from PIL.Image import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField
@invocation(
"add_conditioning_mask",
title="Add Conditioning Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class AddConditioningMaskInvocation(BaseInvocation):
"""Add a mask to an existing conditioning tensor."""
conditioning: ConditioningField = InputField(description="The conditioning tensor to add a mask to.")
image: ImageField = InputField(
description="A mask image to add to the conditioning tensor. Only the first channel of the image is used. "
"Pixels <128 are excluded from the mask, pixels >=128 are included in the mask."
)
@staticmethod
def convert_image_to_mask(image: Image) -> torch.Tensor:
"""Convert a PIL image to a uint8 mask tensor."""
np_image = np.array(image)
torch_image = torch.from_numpy(np_image[0, :, :])
mask = torch_image >= 128
return mask.to(dtype=torch.uint8)
def invoke(self, context: InvocationContext) -> ConditioningOutput:
image = context.services.images.get_pil_image(self.image.image_name)
mask = self.convert_image_to_mask(image)
mask_name = f"{context.graph_execution_state_id}__{self.id}_conditioning_mask"
context.services.latents.save(mask_name, mask)
self.conditioning.mask_name = mask_name
return ConditioningOutput(conditioning=self.conditioning)