InvokeAI/invokeai/backend/quantization/bnb_llm_int8.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

103 lines
4.5 KiB
Python
Raw Normal View History

import bitsandbytes as bnb
import torch
# This file contains utils for working with models that use bitsandbytes LLM.int8() quantization.
# The utils in this file are partially inspired by:
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
# NOTE(ryand): All of the custom state_dict manipulation logic in this file is pretty hacky. This could be made much
# cleaner by re-implementing bnb.nn.Linear8bitLt with proper use of buffers and less magic. But, for now, we try to
# stick close to the bitsandbytes classes to make interoperability easier with other models that might use bitsandbytes.
class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
def _load_from_state_dict(
self,
state_dict: dict[str, torch.Tensor],
prefix: str,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
weight = state_dict.pop(prefix + "weight")
bias = state_dict.pop(prefix + "bias", None)
# See `bnb.nn.Linear8bitLt._save_to_state_dict()` for the serialization logic of SCB and weight_format.
scb = state_dict.pop(prefix + "SCB", None)
# weight_format is unused, but we pop it so we can validate that there are no unexpected keys.
_weight_format = state_dict.pop(prefix + "weight_format", None)
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
# rather than raising an exception to correctly implement this API.
assert len(state_dict) == 0
if scb is not None:
# We are loading a pre-quantized state dict.
self.weight = bnb.nn.Int8Params(
data=weight,
requires_grad=self.weight.requires_grad,
has_fp16_weights=False,
# Note: After quantization, CB is the same as weight.
CB=weight,
SCB=scb,
)
self.bias = bias if bias is None else torch.nn.Parameter(bias)
else:
# We are loading a non-quantized state dict.
# We could simply call the `super()._load_from_state_dict()` method here, but then we wouldn't be able to
# load from a state_dict into a model on the "meta" device. Attempting to load into a model on the "meta"
# device requires setting `assign=True`, doing this with the default `super()._load_from_state_dict()`
# implementation causes `Params4Bit` to be replaced by a `torch.nn.Parameter`. By initializing a new
# `Params4bit` object, we work around this issue. It's a bit hacky, but it gets the job done.
self.weight = bnb.nn.Int8Params(
data=weight,
requires_grad=self.weight.requires_grad,
has_fp16_weights=False,
CB=None,
SCB=None,
)
self.bias = bias if bias is None else torch.nn.Parameter(bias)
def _convert_linear_layers_to_llm_8bit(
module: torch.nn.Module, ignore_modules: set[str], outlier_threshold: float, prefix: str = ""
) -> None:
"""Convert all linear layers in the module to bnb.nn.Linear8bitLt layers."""
for name, child in module.named_children():
fullname = f"{prefix}.{name}" if prefix else name
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
has_bias = child.bias is not None
replacement = InvokeLinear8bitLt(
child.in_features,
child.out_features,
bias=has_bias,
has_fp16_weights=False,
threshold=outlier_threshold,
)
replacement.weight.data = child.weight.data
if has_bias:
replacement.bias.data = child.bias.data
replacement.requires_grad_(False)
module.__setattr__(name, replacement)
else:
_convert_linear_layers_to_llm_8bit(
child, ignore_modules, outlier_threshold=outlier_threshold, prefix=fullname
)
def get_parameter_device(parameter: torch.nn.Module):
return next(parameter.parameters()).device
def quantize_model_llm_int8(model: torch.nn.Module, modules_to_not_convert: set[str], outlier_threshold: float = 6.0):
"""Apply bitsandbytes LLM.8bit() quantization to the model."""
_convert_linear_layers_to_llm_8bit(
module=model, ignore_modules=modules_to_not_convert, outlier_threshold=outlier_threshold
)
return model