2023-06-11 16:51:50 +00:00
|
|
|
"""
|
|
|
|
Routines for downloading and installing models.
|
|
|
|
"""
|
|
|
|
import json
|
|
|
|
import safetensors
|
|
|
|
import safetensors.torch
|
2023-06-11 23:51:53 +00:00
|
|
|
import shutil
|
|
|
|
import tempfile
|
2023-06-11 16:51:50 +00:00
|
|
|
import torch
|
|
|
|
import traceback
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from diffusers import ModelMixin
|
|
|
|
from enum import Enum
|
|
|
|
from typing import Callable
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import invokeai.backend.util.logging as logger
|
2023-06-11 20:10:15 +00:00
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
2023-06-11 23:51:53 +00:00
|
|
|
from . import ModelManager
|
|
|
|
from .models import BaseModelType, ModelType, VariantType
|
2023-06-11 20:10:15 +00:00
|
|
|
from .model_probe import ModelProbe, ModelVariantInfo
|
2023-06-11 23:51:53 +00:00
|
|
|
from .model_cache import SilenceWarnings
|
2023-06-11 16:51:50 +00:00
|
|
|
|
2023-06-11 20:10:15 +00:00
|
|
|
class ModelInstall(object):
|
|
|
|
'''
|
|
|
|
This class is able to download and install several different kinds of
|
|
|
|
InvokeAI models. The helper function, if provided, is called on to distinguish
|
|
|
|
between v2-base and v2-768 stable diffusion pipelines. This usually involves
|
|
|
|
asking the user to select the proper type, as there is no way of distinguishing
|
|
|
|
the two type of v2 file programmatically (as far as I know).
|
|
|
|
'''
|
2023-06-11 16:51:50 +00:00
|
|
|
def __init__(self,
|
2023-06-11 20:10:15 +00:00
|
|
|
config: InvokeAIAppConfig,
|
|
|
|
model_base_helper: Callable[[Path],BaseModelType]=None,
|
|
|
|
clobber:bool = False
|
2023-06-11 16:51:50 +00:00
|
|
|
):
|
|
|
|
'''
|
2023-06-11 20:10:15 +00:00
|
|
|
:param config: InvokeAI configuration object
|
|
|
|
:param model_base_helper: A function call that accepts the Path to a checkpoint model and returns a ModelType enum
|
|
|
|
:param clobber: If true, models with colliding names will be overwritten
|
2023-06-11 16:51:50 +00:00
|
|
|
'''
|
2023-06-11 20:10:15 +00:00
|
|
|
self.config = config
|
|
|
|
self.clogger = clobber
|
|
|
|
self.helper = model_base_helper
|
|
|
|
self.prober = ModelProbe()
|
2023-06-11 16:51:50 +00:00
|
|
|
|
2023-06-11 20:10:15 +00:00
|
|
|
def install_checkpoint_file(self, checkpoint: Path)->dict:
|
|
|
|
'''
|
|
|
|
Install the checkpoint file at path and return a
|
|
|
|
configuration entry that can be added to `models.yaml`.
|
|
|
|
Model checkpoints and VAEs will be converted into
|
|
|
|
diffusers before installation. Note that the model manager
|
|
|
|
does not hold entries for anything but diffusers pipelines,
|
|
|
|
and the configuration file stanzas returned from such models
|
|
|
|
can be safely ignored.
|
|
|
|
'''
|
|
|
|
model_info = self.prober.probe(checkpoint, self.helper)
|
|
|
|
if not model_info:
|
|
|
|
raise ValueError(f"Unable to determine type of checkpoint file {checkpoint}")
|
2023-06-11 23:51:53 +00:00
|
|
|
|
|
|
|
key = ModelManager.create_key(
|
|
|
|
model_name = checkpoint.stem,
|
|
|
|
base_model = model_info.base_type,
|
|
|
|
model_type = model_info.model_type,
|
|
|
|
)
|
|
|
|
destination_path = self._dest_path(model_info) / checkpoint
|
|
|
|
destination_path.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
self._check_for_collision(destination_path)
|
|
|
|
stanza = {
|
|
|
|
key: dict(
|
|
|
|
name = checkpoint.stem,
|
|
|
|
description = f'{model_info.model_type} model {checkpoint.stem}',
|
|
|
|
base = model_info.base_model.value,
|
|
|
|
type = model_info.model_type.value,
|
|
|
|
variant = model_info.variant_type.value,
|
|
|
|
path = str(destination_path),
|
|
|
|
)
|
|
|
|
}
|
2023-06-11 16:51:50 +00:00
|
|
|
|
2023-06-11 20:10:15 +00:00
|
|
|
# non-pipeline; no conversion needed, just copy into right place
|
|
|
|
if model_info.model_type != ModelType.Pipeline:
|
|
|
|
shutil.copyfile(checkpoint, destination_path)
|
2023-06-11 23:51:53 +00:00
|
|
|
stanza[key].update({'format': 'checkpoint'})
|
2023-06-11 20:10:15 +00:00
|
|
|
|
2023-06-11 23:51:53 +00:00
|
|
|
# pipeline - conversion needed here
|
|
|
|
else:
|
|
|
|
destination_path = self._dest_path(model_info) / checkpoint.stem
|
|
|
|
config_file = self._pipeline_type_to_config_file(model_info.model_type)
|
2023-06-11 16:51:50 +00:00
|
|
|
|
2023-06-11 23:51:53 +00:00
|
|
|
from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
|
|
|
with SilenceWarnings:
|
|
|
|
convert_ckpt_to_diffusers(
|
|
|
|
checkpoint,
|
|
|
|
destination_path,
|
|
|
|
extract_ema=True,
|
|
|
|
original_config_file=config_file,
|
|
|
|
scan_needed=False,
|
|
|
|
)
|
|
|
|
stanza[key].update({'format': 'folder',
|
|
|
|
'path': destination_path, # no suffix on this
|
|
|
|
})
|
|
|
|
|
|
|
|
return stanza
|
2023-06-11 16:51:50 +00:00
|
|
|
|
|
|
|
|
2023-06-11 20:10:15 +00:00
|
|
|
def _check_for_collision(self, path: Path):
|
|
|
|
if not path.exists():
|
|
|
|
return
|
|
|
|
if self.clobber:
|
|
|
|
shutil.rmtree(path)
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Destination {path} already exists. Won't overwrite unless clobber=True.")
|
2023-06-11 16:51:50 +00:00
|
|
|
|
2023-06-11 20:10:15 +00:00
|
|
|
def _staging_directory(self)->tempfile.TemporaryDirectory:
|
|
|
|
return tempfile.TemporaryDirectory(dir=self.config.root_path)
|
2023-06-11 16:51:50 +00:00
|
|
|
|
2023-06-11 20:10:15 +00:00
|
|
|
|
|
|
|
|