InvokeAI/invokeai/backend/model_management/models/stable_diffusion.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

315 lines
10 KiB
Python
Raw Normal View History

2023-06-11 01:49:09 +00:00
import os
2023-06-12 02:52:30 +00:00
import json
2023-06-11 01:49:09 +00:00
from pydantic import Field
from pathlib import Path
from typing import Literal, Optional, Union
2023-06-11 01:49:09 +00:00
from .base import (
ModelBase,
ModelConfigBase,
BaseModelType,
ModelType,
SubModelType,
ModelVariantType,
2023-06-11 01:49:09 +00:00
DiffusersModel,
SchedulerPredictionType,
SilenceWarnings,
read_checkpoint_meta,
classproperty,
2023-06-11 01:49:09 +00:00
)
from invokeai.app.services.config import InvokeAIAppConfig
from omegaconf import OmegaConf
2023-06-11 01:49:09 +00:00
class StableDiffusion1Model(DiffusersModel):
2023-06-11 01:49:09 +00:00
class DiffusersConfig(ModelConfigBase):
format: Literal["diffusers"]
vae: Optional[str] = Field(None)
2023-06-12 02:52:30 +00:00
variant: ModelVariantType
2023-06-11 01:49:09 +00:00
class CheckpointConfig(ModelConfigBase):
format: Literal["checkpoint"]
vae: Optional[str] = Field(None)
config: Optional[str] = Field(None)
2023-06-12 02:52:30 +00:00
variant: ModelVariantType
2023-06-11 01:49:09 +00:00
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion1
2023-06-11 01:49:09 +00:00
assert model_type == ModelType.Pipeline
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusion1,
2023-06-11 01:49:09 +00:00
model_type=ModelType.Pipeline,
)
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
ckpt_config_path = kwargs.get("config", None)
if model_format == "checkpoint":
if ckpt_config_path:
ckpt_config = OmegaConf.load(ckpt_config_path)
ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
2023-06-12 02:52:30 +00:00
else:
checkpoint = read_checkpoint_meta(path)
checkpoint = checkpoint.get('state_dict', checkpoint)
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
2023-06-12 02:52:30 +00:00
elif model_format == "diffusers":
unet_config_path = os.path.join(path, "unet", "config.json")
if os.path.exists(unet_config_path):
with open(unet_config_path, "r") as f:
unet_config = json.loads(f.read())
in_channels = unet_config['in_channels']
2023-06-12 02:52:30 +00:00
else:
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
2023-06-12 02:52:30 +00:00
else:
raise NotImplementedError(f"Unknown stable diffusion 1.* format: {model_format}")
2023-06-12 02:52:30 +00:00
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 1.* model format")
2023-06-12 02:52:30 +00:00
return cls.create_config(
path=path,
format=model_format,
2023-06-12 02:52:30 +00:00
config=ckpt_config_path,
variant=variant,
)
2023-06-12 02:52:30 +00:00
@classproperty
2023-06-11 01:49:09 +00:00
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
if os.path.isdir(model_path):
return "diffusers"
else:
return "checkpoint"
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
assert model_path == config.path
2023-06-11 01:49:09 +00:00
2023-06-12 13:14:09 +00:00
if isinstance(config, cls.CheckpointConfig):
return _convert_ckpt_and_cache(
version=BaseModelType.StableDiffusion1,
model_config=config,
output_path=output_path,
2023-06-12 13:14:09 +00:00
) # TODO: args
else:
return model_path
2023-06-11 01:49:09 +00:00
class StableDiffusion2Model(DiffusersModel):
# TODO: check that configs overwriten properly
2023-06-11 01:49:09 +00:00
class DiffusersConfig(ModelConfigBase):
format: Literal["diffusers"]
vae: Optional[str] = Field(None)
variant: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
2023-06-11 01:49:09 +00:00
class CheckpointConfig(ModelConfigBase):
format: Literal["checkpoint"]
vae: Optional[str] = Field(None)
config: Optional[str] = Field(None)
variant: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
2023-06-11 01:49:09 +00:00
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion2
assert model_type == ModelType.Pipeline
super().__init__(
2023-06-11 01:49:09 +00:00
model_path=model_path,
base_model=BaseModelType.StableDiffusion2,
model_type=ModelType.Pipeline,
)
2023-06-12 13:14:09 +00:00
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
ckpt_config_path = kwargs.get("config", None)
if model_format == "checkpoint":
if ckpt_config_path:
ckpt_config = OmegaConf.load(ckpt_config_path)
ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
else:
checkpoint = read_checkpoint_meta(path)
checkpoint = checkpoint.get('state_dict', checkpoint)
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
elif model_format == "diffusers":
unet_config_path = os.path.join(path, "unet", "config.json")
if os.path.exists(unet_config_path):
with open(unet_config_path, "r") as f:
unet_config = json.loads(f.read())
in_channels = unet_config['in_channels']
else:
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
else:
raise NotImplementedError(f"Unknown stable diffusion 2.* format: {model_format}")
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 5:
variant = ModelVariantType.Depth
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 2.* model format")
if variant == ModelVariantType.Normal:
prediction_type = SchedulerPredictionType.VPrediction
upcast_attention = True
else:
prediction_type = SchedulerPredictionType.Epsilon
upcast_attention = False
return cls.create_config(
path=path,
format=model_format,
config=ckpt_config_path,
variant=variant,
prediction_type=prediction_type,
upcast_attention=upcast_attention,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
if os.path.isdir(model_path):
return "diffusers"
else:
return "checkpoint"
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
assert model_path == config.path
2023-06-12 13:14:09 +00:00
if isinstance(config, cls.CheckpointConfig):
return _convert_ckpt_and_cache(
version=BaseModelType.StableDiffusion2,
model_config=config,
output_path=output_path,
2023-06-12 13:14:09 +00:00
) # TODO: args
else:
return model_path
def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
ckpt_configs = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
},
BaseModelType.StableDiffusion2: {
# code further will manually set upcast_attention and v_prediction
ModelVariantType.Normal: "v2-inference.yaml",
ModelVariantType.Inpaint: "v2-inpainting-inference.yaml",
ModelVariantType.Depth: "v2-midas-inference.yaml",
}
}
try:
# TODO: path
#model_config.config = app_config.config_dir / "stable-diffusion" / ckpt_configs[version][model_config.variant]
#return InvokeAIAppConfig.get_config().legacy_conf_dir / ckpt_configs[version][variant]
return InvokeAIAppConfig.get_config().root_dir / "configs" / "stable-diffusion" / ckpt_configs[version][variant]
except:
return None
2023-06-11 01:49:09 +00:00
# TODO: rework
2023-06-12 13:14:09 +00:00
def _convert_ckpt_and_cache(
version: BaseModelType,
model_config: Union[StableDiffusion1Model.CheckpointConfig, StableDiffusion2Model.CheckpointConfig],
output_path: str,
2023-06-12 13:14:09 +00:00
) -> str:
2023-06-11 01:49:09 +00:00
"""
Convert the checkpoint model indicated in mconfig into a
diffusers, cache it to disk, and return Path to converted
file. If already on disk then just returns Path.
"""
app_config = InvokeAIAppConfig.get_config()
2023-06-12 13:14:09 +00:00
if model_config.config is None:
model_config.config = _select_ckpt_config(version, model_config.variant)
if model_config.config is None:
raise Exception(f"Model variant {model_config.variant} not supported for {version}")
weights = app_config.root_dir / model_config.path
config_file = app_config.root_dir / model_config.config
output_path = Path(output_path)
if version == BaseModelType.StableDiffusion1:
upcast_attention = False
prediction_type = SchedulerPredictionType.Epsilon
2023-06-12 13:14:09 +00:00
elif version == BaseModelType.StableDiffusion2:
upcast_attention = config.upcast_attention
prediction_type = config.prediction_type
else:
raise Exception(f"Unknown model provided: {version}")
2023-06-12 13:14:09 +00:00
2023-06-11 01:49:09 +00:00
# return cached version if it exists
if output_path.exists():
return output_path
2023-06-11 01:49:09 +00:00
# TODO: I think that it more correctly to convert with embedded vae
# as if user will delete custom vae he will got not embedded but also custom vae
#vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig)
# to avoid circular import errors
from ..convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
with SilenceWarnings():
convert_ckpt_to_diffusers(
weights,
output_path,
model_version=version,
model_variant=model_config.variant,
2023-06-11 01:49:09 +00:00
original_config_file=config_file,
extract_ema=True,
upcast_attention=upcast_attention,
prediction_type=prediction_type,
2023-06-11 01:49:09 +00:00
scan_needed=True,
model_root=app_config.models_path,
2023-06-11 01:49:09 +00:00
)
return output_path