2023-08-14 03:23:09 +00:00
|
|
|
from typing import Literal, Optional
|
2023-07-12 15:14:22 +00:00
|
|
|
|
2023-07-31 08:16:52 +00:00
|
|
|
from pydantic import Field
|
2023-07-12 15:14:22 +00:00
|
|
|
|
2023-07-25 14:22:47 +00:00
|
|
|
from invokeai.app.invocations.baseinvocation import (
|
|
|
|
BaseInvocation,
|
|
|
|
BaseInvocationOutput,
|
2023-08-14 03:23:09 +00:00
|
|
|
InputField,
|
2023-07-25 14:22:47 +00:00
|
|
|
InvocationContext,
|
2023-08-14 03:23:09 +00:00
|
|
|
tags,
|
|
|
|
title,
|
2023-07-25 14:22:47 +00:00
|
|
|
)
|
2023-07-12 15:14:22 +00:00
|
|
|
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
2023-07-25 14:22:47 +00:00
|
|
|
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
|
2023-07-31 08:16:52 +00:00
|
|
|
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
|
2023-07-12 15:14:22 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
from ...version import __version__
|
|
|
|
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-07-31 08:16:52 +00:00
|
|
|
class LoRAMetadataField(BaseModelExcludeNull):
|
2023-07-12 15:14:22 +00:00
|
|
|
"""LoRA metadata for an image generated in InvokeAI."""
|
2023-07-25 14:22:47 +00:00
|
|
|
|
2023-07-12 15:14:22 +00:00
|
|
|
lora: LoRAModelField = Field(description="The LoRA model")
|
|
|
|
weight: float = Field(description="The weight of the LoRA model")
|
|
|
|
|
|
|
|
|
2023-07-31 08:16:52 +00:00
|
|
|
class CoreMetadata(BaseModelExcludeNull):
|
2023-07-12 15:14:22 +00:00
|
|
|
"""Core generation metadata for an image generated in InvokeAI."""
|
|
|
|
|
2023-08-08 14:13:59 +00:00
|
|
|
app_version: str = Field(default=__version__, description="The version of InvokeAI used to generate this image")
|
2023-07-25 14:22:47 +00:00
|
|
|
generation_mode: str = Field(
|
|
|
|
description="The generation mode that output this image",
|
|
|
|
)
|
2023-07-12 15:14:22 +00:00
|
|
|
positive_prompt: str = Field(description="The positive prompt parameter")
|
|
|
|
negative_prompt: str = Field(description="The negative prompt parameter")
|
|
|
|
width: int = Field(description="The width parameter")
|
|
|
|
height: int = Field(description="The height parameter")
|
|
|
|
seed: int = Field(description="The seed used for noise generation")
|
|
|
|
rand_device: str = Field(description="The device used for random number generation")
|
|
|
|
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
|
|
|
steps: int = Field(description="The number of steps used for inference")
|
|
|
|
scheduler: str = Field(description="The scheduler used for inference")
|
2023-07-25 14:22:47 +00:00
|
|
|
clip_skip: int = Field(
|
|
|
|
description="The number of skipped CLIP layers",
|
|
|
|
)
|
2023-07-12 15:14:22 +00:00
|
|
|
model: MainModelField = Field(description="The main model used for inference")
|
2023-07-25 14:22:47 +00:00
|
|
|
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
|
2023-07-12 15:14:22 +00:00
|
|
|
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
2023-08-14 03:23:09 +00:00
|
|
|
vae: Optional[VAEModelField] = Field(
|
2023-07-25 14:22:47 +00:00
|
|
|
default=None,
|
|
|
|
description="The VAE used for decoding, if the main model's default was not used",
|
|
|
|
)
|
|
|
|
|
|
|
|
# Latents-to-Latents
|
2023-08-14 03:23:09 +00:00
|
|
|
strength: Optional[float] = Field(
|
2023-07-12 15:14:22 +00:00
|
|
|
default=None,
|
|
|
|
description="The strength used for latents-to-latents",
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
init_image: Optional[str] = Field(default=None, description="The name of the initial image")
|
2023-07-25 14:22:47 +00:00
|
|
|
|
|
|
|
# SDXL
|
2023-08-14 03:23:09 +00:00
|
|
|
positive_style_prompt: Optional[str] = Field(default=None, description="The positive style prompt parameter")
|
|
|
|
negative_style_prompt: Optional[str] = Field(default=None, description="The negative style prompt parameter")
|
2023-07-25 14:22:47 +00:00
|
|
|
|
|
|
|
# SDXL Refiner
|
2023-08-14 03:23:09 +00:00
|
|
|
refiner_model: Optional[MainModelField] = Field(default=None, description="The SDXL Refiner model used")
|
|
|
|
refiner_cfg_scale: Optional[float] = Field(
|
2023-07-12 15:14:22 +00:00
|
|
|
default=None,
|
2023-07-25 14:22:47 +00:00
|
|
|
description="The classifier-free guidance scale parameter used for the refiner",
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
refiner_steps: Optional[int] = Field(default=None, description="The number of steps used for the refiner")
|
|
|
|
refiner_scheduler: Optional[str] = Field(default=None, description="The scheduler used for the refiner")
|
|
|
|
refiner_positive_aesthetic_store: Optional[float] = Field(
|
2023-08-13 16:02:36 +00:00
|
|
|
default=None, description="The aesthetic score used for the refiner"
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
refiner_negative_aesthetic_store: Optional[float] = Field(
|
2023-07-25 14:22:47 +00:00
|
|
|
default=None, description="The aesthetic score used for the refiner"
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
refiner_start: Optional[float] = Field(default=None, description="The start value used for refiner denoising")
|
2023-07-12 15:14:22 +00:00
|
|
|
|
|
|
|
|
2023-07-31 08:16:52 +00:00
|
|
|
class ImageMetadata(BaseModelExcludeNull):
|
2023-07-12 15:14:22 +00:00
|
|
|
"""An image's generation metadata"""
|
|
|
|
|
|
|
|
metadata: Optional[dict] = Field(
|
|
|
|
default=None,
|
|
|
|
description="The image's core metadata, if it was created in the Linear or Canvas UI",
|
|
|
|
)
|
|
|
|
graph: Optional[dict] = Field(default=None, description="The graph that created the image")
|
|
|
|
|
|
|
|
|
|
|
|
class MetadataAccumulatorOutput(BaseInvocationOutput):
|
|
|
|
"""The output of the MetadataAccumulator node"""
|
|
|
|
|
|
|
|
type: Literal["metadata_accumulator_output"] = "metadata_accumulator_output"
|
|
|
|
|
|
|
|
metadata: CoreMetadata = Field(description="The core metadata for the image")
|
|
|
|
|
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
@title("Metadata Accumulator")
|
|
|
|
@tags("metadata")
|
2023-07-12 15:14:22 +00:00
|
|
|
class MetadataAccumulatorInvocation(BaseInvocation):
|
|
|
|
"""Outputs a Core Metadata Object"""
|
|
|
|
|
|
|
|
type: Literal["metadata_accumulator"] = "metadata_accumulator"
|
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
generation_mode: str = InputField(
|
2023-07-25 14:22:47 +00:00
|
|
|
description="The generation mode that output this image",
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
positive_prompt: str = InputField(description="The positive prompt parameter")
|
|
|
|
negative_prompt: str = InputField(description="The negative prompt parameter")
|
|
|
|
width: int = InputField(description="The width parameter")
|
|
|
|
height: int = InputField(description="The height parameter")
|
|
|
|
seed: int = InputField(description="The seed used for noise generation")
|
|
|
|
rand_device: str = InputField(description="The device used for random number generation")
|
|
|
|
cfg_scale: float = InputField(description="The classifier-free guidance scale parameter")
|
|
|
|
steps: int = InputField(description="The number of steps used for inference")
|
|
|
|
scheduler: str = InputField(description="The scheduler used for inference")
|
|
|
|
clip_skip: int = InputField(
|
2023-07-25 14:22:47 +00:00
|
|
|
description="The number of skipped CLIP layers",
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
model: MainModelField = InputField(description="The main model used for inference")
|
|
|
|
controlnets: list[ControlField] = InputField(description="The ControlNets used for inference")
|
|
|
|
loras: list[LoRAMetadataField] = InputField(description="The LoRAs used for inference")
|
|
|
|
strength: Optional[float] = InputField(
|
2023-07-12 15:14:22 +00:00
|
|
|
default=None,
|
|
|
|
description="The strength used for latents-to-latents",
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
init_image: Optional[str] = InputField(
|
|
|
|
default=None,
|
|
|
|
description="The name of the initial image",
|
|
|
|
)
|
|
|
|
vae: Optional[VAEModelField] = InputField(
|
2023-07-12 15:14:22 +00:00
|
|
|
default=None,
|
|
|
|
description="The VAE used for decoding, if the main model's default was not used",
|
|
|
|
)
|
|
|
|
|
2023-07-25 14:22:47 +00:00
|
|
|
# SDXL
|
2023-08-14 03:23:09 +00:00
|
|
|
positive_style_prompt: Optional[str] = InputField(
|
|
|
|
default=None,
|
|
|
|
description="The positive style prompt parameter",
|
|
|
|
)
|
|
|
|
negative_style_prompt: Optional[str] = InputField(
|
|
|
|
default=None,
|
|
|
|
description="The negative style prompt parameter",
|
|
|
|
)
|
2023-07-25 14:22:47 +00:00
|
|
|
|
|
|
|
# SDXL Refiner
|
2023-08-14 03:23:09 +00:00
|
|
|
refiner_model: Optional[MainModelField] = InputField(
|
|
|
|
default=None,
|
|
|
|
description="The SDXL Refiner model used",
|
|
|
|
)
|
|
|
|
refiner_cfg_scale: Optional[float] = InputField(
|
2023-07-25 14:22:47 +00:00
|
|
|
default=None,
|
|
|
|
description="The classifier-free guidance scale parameter used for the refiner",
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
refiner_steps: Optional[int] = InputField(
|
|
|
|
default=None,
|
|
|
|
description="The number of steps used for the refiner",
|
2023-08-13 16:02:36 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
refiner_scheduler: Optional[str] = InputField(
|
|
|
|
default=None,
|
|
|
|
description="The scheduler used for the refiner",
|
|
|
|
)
|
|
|
|
refiner_positive_aesthetic_store: Optional[float] = InputField(
|
|
|
|
default=None,
|
|
|
|
description="The aesthetic score used for the refiner",
|
|
|
|
)
|
|
|
|
refiner_negative_aesthetic_store: Optional[float] = InputField(
|
|
|
|
default=None,
|
|
|
|
description="The aesthetic score used for the refiner",
|
|
|
|
)
|
|
|
|
refiner_start: Optional[float] = InputField(
|
|
|
|
default=None,
|
|
|
|
description="The start value used for refiner denoising",
|
2023-07-25 14:22:47 +00:00
|
|
|
)
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-07-12 15:14:22 +00:00
|
|
|
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
|
|
|
|
"""Collects and outputs a CoreMetadata object"""
|
|
|
|
|
2023-07-25 14:22:47 +00:00
|
|
|
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))
|