InvokeAI/invokeai/app/invocations/prompt.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

106 lines
3.9 KiB
Python
Raw Normal View History

from os.path import exists
from typing import Literal, Optional
2023-03-03 06:02:00 +00:00
import numpy as np
from pydantic import validator
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InputField,
InvocationContext,
OutputField,
UIComponent,
UITypeHint,
title,
tags,
)
2023-06-13 12:02:01 +00:00
from dynamicprompts.generators import RandomPromptGenerator, CombinatorialPromptGenerator
2023-03-03 06:02:00 +00:00
2023-07-27 14:54:01 +00:00
class PromptOutput(BaseInvocationOutput):
"""Base class for invocations that output a prompt"""
2023-07-27 14:54:01 +00:00
2023-03-03 06:02:00 +00:00
type: Literal["prompt"] = "prompt"
prompt: str = OutputField(description="The output prompt")
2023-06-13 10:50:55 +00:00
2023-06-13 12:02:01 +00:00
class PromptCollectionOutput(BaseInvocationOutput):
"""Base class for invocations that output a collection of prompts"""
2023-06-13 10:50:55 +00:00
2023-06-13 12:02:01 +00:00
type: Literal["prompt_collection_output"] = "prompt_collection_output"
2023-06-13 10:50:55 +00:00
prompt_collection: list[str] = OutputField(
description="The output prompt collection", ui_type_hint=UITypeHint.StringCollection
)
count: int = OutputField(description="The size of the prompt collection")
2023-06-13 10:50:55 +00:00
@title("Dynamic Prompt")
@tags("prompt", "collection")
2023-06-13 10:50:55 +00:00
class DynamicPromptInvocation(BaseInvocation):
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
type: Literal["dynamic_prompt"] = "dynamic_prompt"
# Inputs
prompt: str = InputField(description="The prompt to parse with dynamicprompts", ui_component=UIComponent.Textarea)
max_prompts: int = InputField(default=1, description="The number of prompts to generate")
combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator")
2023-07-18 14:26:45 +00:00
2023-06-13 12:02:01 +00:00
def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
if self.combinatorial:
generator = CombinatorialPromptGenerator()
prompts = generator.generate(self.prompt, max_prompts=self.max_prompts)
else:
generator = RandomPromptGenerator()
prompts = generator.generate(self.prompt, num_images=self.max_prompts)
2023-06-13 10:50:55 +00:00
2023-06-13 12:02:01 +00:00
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))
2023-07-27 14:54:01 +00:00
@title("Prompts from File")
@tags("prompt", "file")
class PromptsFromFileInvocation(BaseInvocation):
"""Loads prompts from a text file"""
2023-07-27 14:54:01 +00:00
type: Literal["prompt_from_file"] = "prompt_from_file"
# Inputs
file_path: str = InputField(description="Path to prompt text file", ui_type_hint=UITypeHint.FilePath)
pre_prompt: Optional[str] = InputField(
description="String to prepend to each prompt", ui_component=UIComponent.Textarea
)
post_prompt: Optional[str] = InputField(
description="String to append to each prompt", ui_component=UIComponent.Textarea
)
start_line: int = InputField(default=1, ge=1, description="Line in the file to start start from")
max_prompts: int = InputField(default=1, ge=0, description="Max lines to read from file (0=all)")
2023-07-18 14:26:45 +00:00
@validator("file_path")
def file_path_exists(cls, v):
if not exists(v):
raise ValueError(FileNotFoundError)
return v
def promptsFromFile(self, file_path: str, pre_prompt: str, post_prompt: str, start_line: int, max_prompts: int):
prompts = []
start_line -= 1
end_line = start_line + max_prompts
if max_prompts <= 0:
end_line = np.iinfo(np.int32).max
with open(file_path) as f:
for i, line in enumerate(f):
if i >= start_line and i < end_line:
prompts.append((pre_prompt or "") + line.strip() + (post_prompt or ""))
if i >= end_line:
break
return prompts
def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
prompts = self.promptsFromFile(
self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts
)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))