InvokeAI/invokeai/app/invocations/baseinvocation.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

522 lines
19 KiB
Python
Raw Normal View History

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from __future__ import annotations
from abc import ABC, abstractmethod
from enum import Enum
from inspect import signature
from typing import (
TYPE_CHECKING,
AbstractSet,
Any,
Callable,
ClassVar,
Mapping,
Optional,
Type,
TypeVar,
Union,
get_args,
get_type_hints,
)
2023-03-03 06:02:00 +00:00
from pydantic import BaseModel, Field
from pydantic.fields import Undefined
from pydantic.typing import NoArgAnyCallable
2023-03-03 06:02:00 +00:00
if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices
class FieldDescriptions:
denoising_start = "When to start denoising, expressed a percentage of total steps"
denoising_end = "When to stop denoising, expressed a percentage of total steps"
cfg_scale = "Classifier-Free Guidance scale"
scheduler = "Scheduler to use during inference"
positive_cond = "Positive conditioning tensor"
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
unet = "UNet (scheduler, LoRAs)"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
skipped_layers = "Number of layers to skip in text encoder"
seed = "Seed for random number generation"
steps = "Number of steps to run"
width = "Width of output (px)"
height = "Height of output (px)"
control = "ControlNet(s) to apply"
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
core_metadata = "Optional core metadata to be written to image"
interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"
scribble_mode = "Whether or not to use scribble mode"
scale_factor = "The factor by which to scale"
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
class Input(str, Enum):
"""
The type of input a field accepts.
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
are instantiated.
- `Input.Connection`: The field must have its value provided by a connection.
- `Input.Any`: The field may have its value provided either directly or by a connection.
"""
Connection = "connection"
Direct = "direct"
Any = "any"
class UIType(str, Enum):
"""
Type hints for the UI.
If a field should be provided a data type that does not exactly match the python type of the field, \
use this to provide the type that should be used instead. See the node development docs for detail \
on adding a new field type, which involves client-side changes.
"""
# region Primitives
Integer = "integer"
Float = "float"
Boolean = "boolean"
String = "string"
Array = "array"
Image = "ImageField"
Latents = "LatentsField"
Conditioning = "ConditioningField"
Control = "ControlField"
Color = "ColorField"
ImageCollection = "ImageCollection"
ConditioningCollection = "ConditioningCollection"
ColorCollection = "ColorCollection"
LatentsCollection = "LatentsCollection"
IntegerCollection = "IntegerCollection"
FloatCollection = "FloatCollection"
StringCollection = "StringCollection"
BooleanCollection = "BooleanCollection"
# endregion
# region Models
MainModel = "MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VaeModel = "VaeModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
UNet = "UNetField"
Vae = "VaeField"
CLIP = "ClipField"
# endregion
# region Iterate/Collect
Collection = "Collection"
CollectionItem = "CollectionItem"
# endregion
# region Misc
FilePath = "FilePath"
Enum = "enum"
# endregion
class UIComponent(str, Enum):
"""
The type of UI component to use for a field, used to override the default components, which are \
inferred from the field type.
"""
None_ = "none"
Textarea = "textarea"
Slider = "slider"
class _InputField(BaseModel):
"""
*DO NOT USE*
This helper class is used to tell the client about our custom field attributes via OpenAPI
schema generation, and Typescript type generation from that schema. It serves no functional
purpose in the backend.
"""
input: Input
ui_hidden: bool
ui_type: Optional[UIType]
ui_component: Optional[UIComponent]
class _OutputField(BaseModel):
"""
*DO NOT USE*
This helper class is used to tell the client about our custom field attributes via OpenAPI
schema generation, and Typescript type generation from that schema. It serves no functional
purpose in the backend.
"""
ui_hidden: bool
ui_type: Optional[UIType]
def InputField(
*args: Any,
default: Any = Undefined,
default_factory: Optional[NoArgAnyCallable] = None,
alias: Optional[str] = None,
title: Optional[str] = None,
description: Optional[str] = None,
exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
const: Optional[bool] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
multiple_of: Optional[float] = None,
allow_inf_nan: Optional[bool] = None,
max_digits: Optional[int] = None,
decimal_places: Optional[int] = None,
min_items: Optional[int] = None,
max_items: Optional[int] = None,
unique_items: Optional[bool] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
allow_mutation: bool = True,
regex: Optional[str] = None,
discriminator: Optional[str] = None,
repr: bool = True,
input: Input = Input.Any,
ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None,
ui_hidden: bool = False,
**kwargs: Any,
) -> Any:
"""
Creates an input field for an invocation.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param Input input: [Input.Any] The kind of input this field requires. \
`Input.Direct` means a value must be provided on instantiation. \
`Input.Connection` means the value must be provided by a connection. \
`Input.Any` means either will do.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
The UI will always render a suitable component, but sometimes you want something different than the default. \
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
For this case, you could provide `UIComponent.Textarea`.
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
"""
return Field(
*args,
default=default,
default_factory=default_factory,
alias=alias,
title=title,
description=description,
exclude=exclude,
include=include,
const=const,
gt=gt,
ge=ge,
lt=lt,
le=le,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
min_items=min_items,
max_items=max_items,
unique_items=unique_items,
min_length=min_length,
max_length=max_length,
allow_mutation=allow_mutation,
regex=regex,
discriminator=discriminator,
repr=repr,
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
**kwargs,
)
def OutputField(
*args: Any,
default: Any = Undefined,
default_factory: Optional[NoArgAnyCallable] = None,
alias: Optional[str] = None,
title: Optional[str] = None,
description: Optional[str] = None,
exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
const: Optional[bool] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
multiple_of: Optional[float] = None,
allow_inf_nan: Optional[bool] = None,
max_digits: Optional[int] = None,
decimal_places: Optional[int] = None,
min_items: Optional[int] = None,
max_items: Optional[int] = None,
unique_items: Optional[bool] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
allow_mutation: bool = True,
regex: Optional[str] = None,
discriminator: Optional[str] = None,
repr: bool = True,
ui_type: Optional[UIType] = None,
ui_hidden: bool = False,
**kwargs: Any,
) -> Any:
"""
Creates an output field for an invocation output.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
"""
return Field(
*args,
default=default,
default_factory=default_factory,
alias=alias,
title=title,
description=description,
exclude=exclude,
include=include,
const=const,
gt=gt,
ge=ge,
lt=lt,
le=le,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
min_items=min_items,
max_items=max_items,
unique_items=unique_items,
min_length=min_length,
max_length=max_length,
allow_mutation=allow_mutation,
regex=regex,
discriminator=discriminator,
repr=repr,
ui_type=ui_type,
ui_hidden=ui_hidden,
**kwargs,
)
class UIConfigBase(BaseModel):
"""
Provides additional node configuration to the UI.
This is used internally by the @tags and @title decorator logic. You probably want to use those
decorators, though you may add this class to a node definition to specify the title and tags.
"""
tags: Optional[list[str]] = Field(default_factory=None, description="The tags to display in the UI")
title: Optional[str] = Field(default=None, description="The display name of the node")
class InvocationContext:
services: InvocationServices
graph_execution_state_id: str
def __init__(self, services: InvocationServices, graph_execution_state_id: str):
self.services = services
self.graph_execution_state_id = graph_execution_state_id
class BaseInvocationOutput(BaseModel):
"""Base class for all invocation outputs"""
# All outputs must include a type name like this:
# type: Literal['your_output_name']
@classmethod
def get_all_subclasses_tuple(cls):
subclasses = []
toprocess = [cls]
while len(toprocess) > 0:
next = toprocess.pop(0)
next_subclasses = next.__subclasses__()
subclasses.extend(next_subclasses)
toprocess.extend(next_subclasses)
return tuple(subclasses)
class RequiredConnectionException(Exception):
"""Raised when an field which requires a connection did not receive a value."""
def __init__(self, node_id: str, field_name: str):
super().__init__(f"Node {node_id} missing connections for field {field_name}")
class MissingInputException(Exception):
"""Raised when an field which requires some input, but did not receive a value."""
def __init__(self, node_id: str, field_name: str):
super().__init__(f"Node {node_id} missing value or connection for field {field_name}")
class BaseInvocation(ABC, BaseModel):
"""A node to process inputs and produce outputs.
May use dependency injection in __init__ to receive providers.
"""
# All invocations must include a type name like this:
# type: Literal['your_output_name']
@classmethod
def get_all_subclasses(cls):
subclasses = []
toprocess = [cls]
while len(toprocess) > 0:
next = toprocess.pop(0)
next_subclasses = next.__subclasses__()
subclasses.extend(next_subclasses)
toprocess.extend(next_subclasses)
return subclasses
@classmethod
def get_invocations(cls):
return tuple(BaseInvocation.get_all_subclasses())
@classmethod
def get_invocations_map(cls):
# Get the type strings out of the literals and into a dictionary
return dict(
map(
lambda t: (get_args(get_type_hints(t)["type"])[0], t),
BaseInvocation.get_all_subclasses(),
)
)
@classmethod
def get_output_type(cls):
return signature(cls.invoke).return_annotation
class Config:
@staticmethod
def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
uiconfig = getattr(model_class, "UIConfig", None)
if uiconfig and hasattr(uiconfig, "title"):
schema["title"] = uiconfig.title
if uiconfig and hasattr(uiconfig, "tags"):
schema["tags"] = uiconfig.tags
@abstractmethod
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
"""Invoke with provided context and return outputs."""
pass
def __init__(self, **data):
# nodes may have required fields, that can accept input from connections
# on instantiation of the model, we need to exclude these from validation
restore = dict()
try:
field_names = list(self.__fields__.keys())
for field_name in field_names:
# if the field is required and may get its value from a connection, exclude it from validation
field = self.__fields__[field_name]
_input = field.field_info.extra.get("input", None)
if _input in [Input.Connection, Input.Any] and field.required:
if field_name not in data:
restore[field_name] = self.__fields__.pop(field_name)
# instantiate the node, which will validate the data
super().__init__(**data)
finally:
# restore the removed fields
for field_name, field in restore.items():
self.__fields__[field_name] = field
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
for field_name, field in self.__fields__.items():
_input = field.field_info.extra.get("input", None)
if field.required and not hasattr(self, field_name):
if _input == Input.Connection:
raise RequiredConnectionException(self.__fields__["type"].default, field_name)
elif _input == Input.Any:
raise MissingInputException(self.__fields__["type"].default, field_name)
return self.invoke(context)
id: str = InputField(description="The id of this node. Must be unique among all nodes.")
is_intermediate: bool = InputField(
default=False, description="Whether or not this node is an intermediate node.", input=Input.Direct
)
UIConfig: ClassVar[Type[UIConfigBase]]
T = TypeVar("T", bound=BaseInvocation)
def title(title: str) -> Callable[[Type[T]], Type[T]]:
"""Adds a title to the invocation. Use this to override the default title generation, which is based on the class name."""
def wrapper(cls: Type[T]) -> Type[T]:
uiconf_name = cls.__qualname__ + ".UIConfig"
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
cls.UIConfig = type(uiconf_name, (UIConfigBase,), dict())
cls.UIConfig.title = title
return cls
return wrapper
def tags(*tags: str) -> Callable[[Type[T]], Type[T]]:
"""Adds tags to the invocation. Use this to improve the streamline finding the invocation in the UI."""
def wrapper(cls: Type[T]) -> Type[T]:
uiconf_name = cls.__qualname__ + ".UIConfig"
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
cls.UIConfig = type(uiconf_name, (UIConfigBase,), dict())
cls.UIConfig.tags = list(tags)
return cls
return wrapper