InvokeAI/invokeai/app/util/controlnet_utils.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

325 lines
13 KiB
Python
Raw Normal View History

2023-08-17 22:45:25 +00:00
from typing import Union
2023-08-18 14:57:18 +00:00
import cv2
2023-08-18 14:57:18 +00:00
import numpy as np
import torch
from controlnet_aux.util import HWC3
from diffusers.utils import PIL_INTERPOLATION
from einops import rearrange
2023-08-18 14:57:18 +00:00
from PIL import Image
###################################################################
# Copy of scripts/lvminthin.py from Mikubill/sd-webui-controlnet
###################################################################
# High Quality Edge Thinning using Pure Python
# Written by Lvmin Zhangu
# 2023 April
# Stanford University
# If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet.
lvmin_kernels_raw = [
np.array([[-1, -1, -1], [0, 1, 0], [1, 1, 1]], dtype=np.int32),
np.array([[0, -1, -1], [1, 1, -1], [0, 1, 0]], dtype=np.int32),
]
lvmin_kernels = []
lvmin_kernels += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_prunings_raw = [
np.array([[-1, -1, -1], [-1, 1, -1], [0, 0, -1]], dtype=np.int32),
np.array([[-1, -1, -1], [-1, 1, -1], [-1, 0, 0]], dtype=np.int32),
]
lvmin_prunings = []
lvmin_prunings += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_prunings_raw]
lvmin_prunings += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_prunings_raw]
lvmin_prunings += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_prunings_raw]
lvmin_prunings += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_prunings_raw]
def remove_pattern(x, kernel):
objects = cv2.morphologyEx(x, cv2.MORPH_HITMISS, kernel)
objects = np.where(objects > 127)
x[objects] = 0
return x, objects[0].shape[0] > 0
def thin_one_time(x, kernels):
y = x
is_done = True
for k in kernels:
y, has_update = remove_pattern(y, k)
if has_update:
is_done = False
return y, is_done
def lvmin_thin(x, prunings=True):
y = x
for i in range(32):
y, is_done = thin_one_time(y, lvmin_kernels)
if is_done:
break
if prunings:
y, _ = thin_one_time(y, lvmin_prunings)
return y
def nake_nms(x):
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
return y
################################################################################
# copied from Mikubill/sd-webui-controlnet external_code.py and modified for InvokeAI
################################################################################
# FIXME: not using yet, if used in the future will most likely require modification of preprocessors
def pixel_perfect_resolution(
image: np.ndarray,
target_H: int,
target_W: int,
resize_mode: str,
) -> int:
"""
Calculate the estimated resolution for resizing an image while preserving aspect ratio.
The function first calculates scaling factors for height and width of the image based on the target
height and width. Then, based on the chosen resize mode, it either takes the smaller or the larger
scaling factor to estimate the new resolution.
If the resize mode is OUTER_FIT, the function uses the smaller scaling factor, ensuring the whole image
fits within the target dimensions, potentially leaving some empty space.
If the resize mode is not OUTER_FIT, the function uses the larger scaling factor, ensuring the target
dimensions are fully filled, potentially cropping the image.
After calculating the estimated resolution, the function prints some debugging information.
Args:
image (np.ndarray): A 3D numpy array representing an image. The dimensions represent [height, width, channels].
target_H (int): The target height for the image.
target_W (int): The target width for the image.
resize_mode (ResizeMode): The mode for resizing.
Returns:
int: The estimated resolution after resizing.
"""
raw_H, raw_W, _ = image.shape
k0 = float(target_H) / float(raw_H)
k1 = float(target_W) / float(raw_W)
if resize_mode == "fill_resize":
estimation = min(k0, k1) * float(min(raw_H, raw_W))
else: # "crop_resize" or "just_resize" (or possibly "just_resize_simple"?)
estimation = max(k0, k1) * float(min(raw_H, raw_W))
# print(f"Pixel Perfect Computation:")
# print(f"resize_mode = {resize_mode}")
# print(f"raw_H = {raw_H}")
# print(f"raw_W = {raw_W}")
# print(f"target_H = {target_H}")
# print(f"target_W = {target_W}")
# print(f"estimation = {estimation}")
return int(np.round(estimation))
###########################################################################
# Copied from detectmap_proc method in scripts/detectmap_proc.py in Mikubill/sd-webui-controlnet
# modified for InvokeAI
###########################################################################
# def detectmap_proc(detected_map, module, resize_mode, h, w):
def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device: torch.device = torch.device("cpu")):
# if 'inpaint' in module:
# np_img = np_img.astype(np.float32)
# else:
# np_img = HWC3(np_img)
np_img = HWC3(np_img)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def get_pytorch_control(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, "h w c -> 1 c h w")
y = y.clone()
# y = y.to(devices.get_device_for("controlnet"))
y = y.to(device)
y = y.clone()
return y
def high_quality_resize(x: np.ndarray, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = np.unique(x.reshape(-1, x.shape[2]), axis=0).shape[0]
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
# if resize_mode == external_code.ResizeMode.RESIZE:
if resize_mode == "just_resize": # RESIZE
np_img = high_quality_resize(np_img, (w, h))
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
old_h, old_w, _ = np_img.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
2023-08-17 22:45:25 +00:00
def safeint(x: Union[int, float]) -> int:
return int(np.round(x))
# if resize_mode == external_code.ResizeMode.OUTER_FIT:
if resize_mode == "fill_resize": # OUTER_FIT
k = min(k0, k1)
borders = np.concatenate([np_img[0, :, :], np_img[-1, :, :], np_img[:, 0, :], np_img[:, -1, :]], axis=0)
high_quality_border_color = np.median(borders, axis=0).astype(np_img.dtype)
if len(high_quality_border_color) == 4:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = np_img
np_img = high_quality_background
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
else: # resize_mode == "crop_resize" (INNER_FIT)
k = max(k0, k1)
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
np_img = np_img[pad_h : pad_h + h, pad_w : pad_w + w]
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
2023-07-27 14:54:01 +00:00
def prepare_control_image(
# image used to be Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor, List[torch.Tensor]]
# but now should be able to assume that image is a single PIL.Image, which simplifies things
image: Image,
# FIXME: need to fix hardwiring of width and height, change to basing on latents dimensions?
# latents_to_match_resolution, # TorchTensor of shape (batch_size, 3, height, width)
width=512, # should be 8 * latent.shape[3]
height=512, # should be 8 * latent height[2]
# batch_size=1, # currently no batching
# num_images_per_prompt=1, # currently only single image
device="cuda",
dtype=torch.float16,
do_classifier_free_guidance=True,
control_mode="balanced",
resize_mode="just_resize_simple",
):
# FIXME: implement "crop_resize_simple" and "fill_resize_simple", or pull them out
if (
resize_mode == "just_resize_simple"
or resize_mode == "crop_resize_simple"
or resize_mode == "fill_resize_simple"
):
image = image.convert("RGB")
if resize_mode == "just_resize_simple":
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
elif resize_mode == "crop_resize_simple": # not yet implemented
pass
elif resize_mode == "fill_resize_simple": # not yet implemented
pass
nimage = np.array(image)
nimage = nimage[None, :]
nimage = np.concatenate([nimage], axis=0)
# normalizing RGB values to [0,1] range (in PIL.Image they are [0-255])
nimage = np.array(nimage).astype(np.float32) / 255.0
nimage = nimage.transpose(0, 3, 1, 2)
timage = torch.from_numpy(nimage)
# use fancy lvmin controlnet resizing
elif resize_mode == "just_resize" or resize_mode == "crop_resize" or resize_mode == "fill_resize":
nimage = np.array(image)
timage, nimage = np_img_resize(
np_img=nimage,
resize_mode=resize_mode,
h=height,
w=width,
# device=torch.device('cpu')
device=device,
)
else:
pass
print("ERROR: invalid resize_mode ==> ", resize_mode)
exit(1)
timage = timage.to(device=device, dtype=dtype)
cfg_injection = control_mode == "more_control" or control_mode == "unbalanced"
if do_classifier_free_guidance and not cfg_injection:
timage = torch.cat([timage] * 2)
return timage