mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into feat/nodes/freeu
This commit is contained in:
@ -19,7 +19,7 @@ from diffusers.models.attention_processor import (
|
||||
)
|
||||
from diffusers.schedulers import DPMSolverSDEScheduler
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
from pydantic import validator
|
||||
from pydantic import field_validator
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.ip_adapter import IPAdapterField
|
||||
@ -34,6 +34,7 @@ from invokeai.app.invocations.primitives import (
|
||||
build_latents_output,
|
||||
)
|
||||
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||
@ -54,7 +55,6 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from ...backend.util.devices import choose_precision, choose_torch_device
|
||||
from ..models.image import ImageCategory, ResourceOrigin
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
@ -84,12 +84,20 @@ class SchedulerOutput(BaseInvocationOutput):
|
||||
scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
|
||||
|
||||
|
||||
@invocation("scheduler", title="Scheduler", tags=["scheduler"], category="latents", version="1.0.0")
|
||||
@invocation(
|
||||
"scheduler",
|
||||
title="Scheduler",
|
||||
tags=["scheduler"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class SchedulerInvocation(BaseInvocation):
|
||||
"""Selects a scheduler."""
|
||||
|
||||
scheduler: SAMPLER_NAME_VALUES = InputField(
|
||||
default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SchedulerOutput:
|
||||
@ -97,7 +105,11 @@ class SchedulerInvocation(BaseInvocation):
|
||||
|
||||
|
||||
@invocation(
|
||||
"create_denoise_mask", title="Create Denoise Mask", tags=["mask", "denoise"], category="latents", version="1.0.0"
|
||||
"create_denoise_mask",
|
||||
title="Create Denoise Mask",
|
||||
tags=["mask", "denoise"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class CreateDenoiseMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
@ -106,7 +118,11 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
|
||||
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
|
||||
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32, ui_order=4)
|
||||
fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == "float32",
|
||||
description=FieldDescriptions.fp32,
|
||||
ui_order=4,
|
||||
)
|
||||
|
||||
def prep_mask_tensor(self, mask_image):
|
||||
if mask_image.mode != "L":
|
||||
@ -134,7 +150,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
|
||||
|
||||
if image is not None:
|
||||
vae_info = context.services.model_manager.get_model(
|
||||
**self.vae.vae.dict(),
|
||||
**self.vae.vae.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
@ -167,7 +183,7 @@ def get_scheduler(
|
||||
) -> Scheduler:
|
||||
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
|
||||
orig_scheduler_info = context.services.model_manager.get_model(
|
||||
**scheduler_info.dict(),
|
||||
**scheduler_info.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
with orig_scheduler_info as orig_scheduler:
|
||||
@ -209,34 +225,64 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
negative_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
|
||||
)
|
||||
noise: Optional[LatentsField] = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=3)
|
||||
noise: Optional[LatentsField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.noise,
|
||||
input=Input.Connection,
|
||||
ui_order=3,
|
||||
)
|
||||
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
|
||||
cfg_scale: Union[float, List[float]] = InputField(
|
||||
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale"
|
||||
)
|
||||
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
|
||||
denoising_start: float = InputField(
|
||||
default=0.0,
|
||||
ge=0,
|
||||
le=1,
|
||||
description=FieldDescriptions.denoising_start,
|
||||
)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
scheduler: SAMPLER_NAME_VALUES = InputField(
|
||||
default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet", ui_order=2)
|
||||
control: Union[ControlField, list[ControlField]] = InputField(
|
||||
unet: UNetField = InputField(
|
||||
description=FieldDescriptions.unet,
|
||||
input=Input.Connection,
|
||||
title="UNet",
|
||||
ui_order=2,
|
||||
)
|
||||
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
ui_order=5,
|
||||
)
|
||||
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField(
|
||||
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection, ui_order=6
|
||||
description=FieldDescriptions.ip_adapter,
|
||||
title="IP-Adapter",
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
ui_order=6,
|
||||
)
|
||||
t2i_adapter: Union[T2IAdapterField, list[T2IAdapterField]] = InputField(
|
||||
description=FieldDescriptions.t2i_adapter, title="T2I-Adapter", default=None, input=Input.Connection, ui_order=7
|
||||
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]] = InputField(
|
||||
description=FieldDescriptions.t2i_adapter,
|
||||
title="T2I-Adapter",
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
ui_order=7,
|
||||
)
|
||||
latents: Optional[LatentsField] = InputField(
|
||||
default=None, description=FieldDescriptions.latents, input=Input.Connection
|
||||
)
|
||||
latents: Optional[LatentsField] = InputField(description=FieldDescriptions.latents, input=Input.Connection)
|
||||
denoise_mask: Optional[DenoiseMaskField] = InputField(
|
||||
default=None, description=FieldDescriptions.mask, input=Input.Connection, ui_order=8
|
||||
default=None,
|
||||
description=FieldDescriptions.mask,
|
||||
input=Input.Connection,
|
||||
ui_order=8,
|
||||
)
|
||||
|
||||
@validator("cfg_scale")
|
||||
@field_validator("cfg_scale")
|
||||
def ge_one(cls, v):
|
||||
"""validate that all cfg_scale values are >= 1"""
|
||||
if isinstance(v, list):
|
||||
@ -259,7 +305,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
stable_diffusion_step_callback(
|
||||
context=context,
|
||||
intermediate_state=intermediate_state,
|
||||
node=self.dict(),
|
||||
node=self.model_dump(),
|
||||
source_node_id=source_node_id,
|
||||
base_model=base_model,
|
||||
)
|
||||
@ -451,9 +497,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
|
||||
with image_encoder_model_info as image_encoder_model:
|
||||
# Get image embeddings from CLIP and ImageProjModel.
|
||||
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
|
||||
input_image, image_encoder_model
|
||||
)
|
||||
(
|
||||
image_prompt_embeds,
|
||||
uncond_image_prompt_embeds,
|
||||
) = ip_adapter_model.get_image_embeds(input_image, image_encoder_model)
|
||||
conditioning_data.ip_adapter_conditioning.append(
|
||||
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds)
|
||||
)
|
||||
@ -628,7 +675,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
|
||||
# below. Investigate whether this is appropriate.
|
||||
t2i_adapter_data = self.run_t2i_adapters(
|
||||
context, self.t2i_adapter, latents.shape, do_classifier_free_guidance=True
|
||||
context,
|
||||
self.t2i_adapter,
|
||||
latents.shape,
|
||||
do_classifier_free_guidance=True,
|
||||
)
|
||||
|
||||
# Get the source node id (we are invoking the prepared node)
|
||||
@ -641,7 +691,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
def _lora_loader():
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.dict(exclude={"weight"}),
|
||||
**lora.model_dump(exclude={"weight"}),
|
||||
context=context,
|
||||
)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
@ -649,7 +699,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
return
|
||||
|
||||
unet_info = context.services.model_manager.get_model(
|
||||
**self.unet.unet.dict(),
|
||||
**self.unet.unet.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
with (
|
||||
@ -701,7 +751,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
denoising_end=self.denoising_end,
|
||||
)
|
||||
|
||||
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
|
||||
(
|
||||
result_latents,
|
||||
result_attention_map_saver,
|
||||
) = pipeline.latents_from_embeddings(
|
||||
latents=latents,
|
||||
timesteps=timesteps,
|
||||
init_timestep=init_timestep,
|
||||
@ -729,7 +782,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
|
||||
@invocation(
|
||||
"l2i", title="Latents to Image", tags=["latents", "image", "vae", "l2i"], category="latents", version="1.0.0"
|
||||
"l2i",
|
||||
title="Latents to Image",
|
||||
tags=["latents", "image", "vae", "l2i"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class LatentsToImageInvocation(BaseInvocation):
|
||||
"""Generates an image from latents."""
|
||||
@ -744,7 +801,7 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
|
||||
metadata: CoreMetadata = InputField(
|
||||
metadata: Optional[CoreMetadata] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.core_metadata,
|
||||
ui_hidden=True,
|
||||
@ -755,7 +812,7 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
|
||||
vae_info = context.services.model_manager.get_model(
|
||||
**self.vae.vae.dict(),
|
||||
**self.vae.vae.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
@ -817,7 +874,7 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
metadata=self.metadata.model_dump() if self.metadata else None,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
@ -831,7 +888,13 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
|
||||
|
||||
|
||||
@invocation("lresize", title="Resize Latents", tags=["latents", "resize"], category="latents", version="1.0.0")
|
||||
@invocation(
|
||||
"lresize",
|
||||
title="Resize Latents",
|
||||
tags=["latents", "resize"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class ResizeLatentsInvocation(BaseInvocation):
|
||||
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
|
||||
|
||||
@ -877,7 +940,13 @@ class ResizeLatentsInvocation(BaseInvocation):
|
||||
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
|
||||
|
||||
|
||||
@invocation("lscale", title="Scale Latents", tags=["latents", "resize"], category="latents", version="1.0.0")
|
||||
@invocation(
|
||||
"lscale",
|
||||
title="Scale Latents",
|
||||
tags=["latents", "resize"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class ScaleLatentsInvocation(BaseInvocation):
|
||||
"""Scales latents by a given factor."""
|
||||
|
||||
@ -916,7 +985,11 @@ class ScaleLatentsInvocation(BaseInvocation):
|
||||
|
||||
|
||||
@invocation(
|
||||
"i2l", title="Image to Latents", tags=["latents", "image", "vae", "i2l"], category="latents", version="1.0.0"
|
||||
"i2l",
|
||||
title="Image to Latents",
|
||||
tags=["latents", "image", "vae", "i2l"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
@ -980,7 +1053,7 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
image = context.services.images.get_pil_image(self.image.image_name)
|
||||
|
||||
vae_info = context.services.model_manager.get_model(
|
||||
**self.vae.vae.dict(),
|
||||
**self.vae.vae.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
@ -1008,7 +1081,13 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
return vae.encode(image_tensor).latents
|
||||
|
||||
|
||||
@invocation("lblend", title="Blend Latents", tags=["latents", "blend"], category="latents", version="1.0.0")
|
||||
@invocation(
|
||||
"lblend",
|
||||
title="Blend Latents",
|
||||
tags=["latents", "blend"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class BlendLatentsInvocation(BaseInvocation):
|
||||
"""Blend two latents using a given alpha. Latents must have same size."""
|
||||
|
||||
|
Reference in New Issue
Block a user