Merge branch 'main' into feat/nodes/freeu

This commit is contained in:
Millun Atluri
2023-10-17 15:58:00 +11:00
committed by GitHub
253 changed files with 13550 additions and 7776 deletions

View File

@ -1,7 +1,7 @@
import copy
from typing import List, Optional
from pydantic import BaseModel, Field
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.shared import FreeUConfig
@ -26,6 +26,8 @@ class ModelInfo(BaseModel):
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
model_config = ConfigDict(protected_namespaces=())
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
@ -87,6 +89,8 @@ class MainModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
class LoRAModelField(BaseModel):
"""LoRA model field"""
@ -94,8 +98,16 @@ class LoRAModelField(BaseModel):
model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation("main_model_loader", title="Main Model", tags=["model"], category="model", version="1.0.0")
@invocation(
"main_model_loader",
title="Main Model",
tags=["model"],
category="model",
version="1.0.0",
)
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
@ -202,10 +214,16 @@ class LoraLoaderInvocation(BaseInvocation):
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP"
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
@ -266,20 +284,35 @@ class SDXLLoraLoaderOutput(BaseInvocationOutput):
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
@invocation("sdxl_lora_loader", title="SDXL LoRA", tags=["lora", "model"], category="model", version="1.0.0")
@invocation(
"sdxl_lora_loader",
title="SDXL LoRA",
tags=["lora", "model"],
category="model",
version="1.0.0",
)
class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1"
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 1",
)
clip2: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2"
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
)
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
@ -352,13 +385,18 @@ class VAEModelField(BaseModel):
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0")
class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: VAEModelField = InputField(
description=FieldDescriptions.vae_model, input=Input.Direct, ui_type=UIType.VaeModel, title="VAE"
description=FieldDescriptions.vae_model,
input=Input.Direct,
ui_type=UIType.VaeModel,
title="VAE",
)
def invoke(self, context: InvocationContext) -> VAEOutput:
@ -387,19 +425,31 @@ class VaeLoaderInvocation(BaseInvocation):
class SeamlessModeOutput(BaseInvocationOutput):
"""Modified Seamless Model output"""
unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE")
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
@invocation("seamless", title="Seamless", tags=["seamless", "model"], category="model", version="1.0.0")
@invocation(
"seamless",
title="Seamless",
tags=["seamless", "model"],
category="model",
version="1.0.0",
)
class SeamlessModeInvocation(BaseInvocation):
"""Applies the seamless transformation to the Model UNet and VAE."""
unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
vae: Optional[VaeField] = InputField(
default=None, description=FieldDescriptions.vae_model, input=Input.Connection, title="VAE"
default=None,
description=FieldDescriptions.vae_model,
input=Input.Connection,
title="VAE",
)
seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless")
seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless")