tidy(ui): clean up control layers graph builder

This commit is contained in:
psychedelicious 2024-05-08 15:21:51 +10:00 committed by Kent Keirsey
parent 3f489c92c8
commit 00f36cb491

View File

@ -8,14 +8,12 @@ import {
rgLayerMaskImageUploaded,
} from 'features/controlLayers/store/controlLayersSlice';
import type { InitialImageLayer, Layer, RegionalGuidanceLayer } from 'features/controlLayers/store/types';
import {
type ControlNetConfigV2,
type ImageWithDims,
type IPAdapterConfigV2,
isControlNetConfigV2,
isT2IAdapterConfigV2,
type ProcessorConfig,
type T2IAdapterConfigV2,
import type {
ControlNetConfigV2,
ImageWithDims,
IPAdapterConfigV2,
ProcessorConfig,
T2IAdapterConfigV2,
} from 'features/controlLayers/util/controlAdapters';
import { getRegionalPromptLayerBlobs } from 'features/controlLayers/util/getLayerBlobs';
import type { ImageField } from 'features/nodes/types/common';
@ -40,6 +38,7 @@ import { upsertMetadata } from 'features/nodes/util/graph/metadata';
import { size } from 'lodash-es';
import { getImageDTO, imagesApi } from 'services/api/endpoints/images';
import type {
BaseModelType,
CollectInvocation,
ControlNetInvocation,
Edge,
@ -53,324 +52,6 @@ import type {
} from 'services/api/types';
import { assert } from 'tsafe';
const buildControlImage = (
image: ImageWithDims | null,
processedImage: ImageWithDims | null,
processorConfig: ProcessorConfig | null
): ImageField => {
if (processedImage && processorConfig) {
// We've processed the image in the app - use it for the control image.
return {
image_name: processedImage.name,
};
} else if (image) {
// No processor selected, and we have an image - the user provided a processed image, use it for the control image.
return {
image_name: image.name,
};
}
assert(false, 'Attempted to add unprocessed control image');
};
const addControlNetCollectorSafe = (graph: NonNullableGraph, denoiseNodeId: string) => {
if (graph.nodes[CONTROL_NET_COLLECT]) {
// You see, we've already got one!
return;
}
// Add the ControlNet collector
const controlNetIterateNode: CollectInvocation = {
id: CONTROL_NET_COLLECT,
type: 'collect',
is_intermediate: true,
};
graph.nodes[CONTROL_NET_COLLECT] = controlNetIterateNode;
graph.edges.push({
source: { node_id: CONTROL_NET_COLLECT, field: 'collection' },
destination: {
node_id: denoiseNodeId,
field: 'control',
},
});
};
const addGlobalControlNetsToGraph = async (
controlNets: ControlNetConfigV2[],
graph: NonNullableGraph,
denoiseNodeId: string
) => {
if (controlNets.length === 0) {
return;
}
addControlNetCollectorSafe(graph, denoiseNodeId);
for (const controlNet of controlNets) {
if (!controlNet.model) {
return;
}
const { id, beginEndStepPct, controlMode, image, model, processedImage, processorConfig, weight } = controlNet;
const controlNetNode: ControlNetInvocation = {
id: `control_net_${id}`,
type: 'controlnet',
is_intermediate: true,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
control_mode: controlMode,
resize_mode: 'just_resize',
control_model: model,
control_weight: weight,
image: buildControlImage(image, processedImage, processorConfig),
};
graph.nodes[controlNetNode.id] = controlNetNode;
graph.edges.push({
source: { node_id: controlNetNode.id, field: 'control' },
destination: {
node_id: CONTROL_NET_COLLECT,
field: 'item',
},
});
}
};
const addT2IAdapterCollectorSafe = (graph: NonNullableGraph, denoiseNodeId: string) => {
if (graph.nodes[T2I_ADAPTER_COLLECT]) {
// You see, we've already got one!
return;
}
// Even though denoise_latents' t2i adapter input is collection or scalar, keep it simple and always use a collect
const t2iAdapterCollectNode: CollectInvocation = {
id: T2I_ADAPTER_COLLECT,
type: 'collect',
is_intermediate: true,
};
graph.nodes[T2I_ADAPTER_COLLECT] = t2iAdapterCollectNode;
graph.edges.push({
source: { node_id: T2I_ADAPTER_COLLECT, field: 'collection' },
destination: {
node_id: denoiseNodeId,
field: 't2i_adapter',
},
});
};
const addGlobalT2IAdaptersToGraph = async (
t2iAdapters: T2IAdapterConfigV2[],
graph: NonNullableGraph,
denoiseNodeId: string
) => {
if (t2iAdapters.length === 0) {
return;
}
addT2IAdapterCollectorSafe(graph, denoiseNodeId);
for (const t2iAdapter of t2iAdapters) {
if (!t2iAdapter.model) {
return;
}
const { id, beginEndStepPct, image, model, processedImage, processorConfig, weight } = t2iAdapter;
const t2iAdapterNode: T2IAdapterInvocation = {
id: `t2i_adapter_${id}`,
type: 't2i_adapter',
is_intermediate: true,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
resize_mode: 'just_resize',
t2i_adapter_model: model,
weight: weight,
image: buildControlImage(image, processedImage, processorConfig),
};
graph.nodes[t2iAdapterNode.id] = t2iAdapterNode;
graph.edges.push({
source: { node_id: t2iAdapterNode.id, field: 't2i_adapter' },
destination: {
node_id: T2I_ADAPTER_COLLECT,
field: 'item',
},
});
}
};
const addIPAdapterCollectorSafe = (graph: NonNullableGraph, denoiseNodeId: string) => {
if (graph.nodes[IP_ADAPTER_COLLECT]) {
// You see, we've already got one!
return;
}
const ipAdapterCollectNode: CollectInvocation = {
id: IP_ADAPTER_COLLECT,
type: 'collect',
is_intermediate: true,
};
graph.nodes[IP_ADAPTER_COLLECT] = ipAdapterCollectNode;
graph.edges.push({
source: { node_id: IP_ADAPTER_COLLECT, field: 'collection' },
destination: {
node_id: denoiseNodeId,
field: 'ip_adapter',
},
});
};
const addGlobalIPAdaptersToGraph = async (
ipAdapters: IPAdapterConfigV2[],
graph: NonNullableGraph,
denoiseNodeId: string
) => {
if (ipAdapters.length === 0) {
return;
}
addIPAdapterCollectorSafe(graph, denoiseNodeId);
for (const ipAdapter of ipAdapters) {
const { id, weight, model, clipVisionModel, method, beginEndStepPct, image } = ipAdapter;
assert(image, 'IP Adapter image is required');
assert(model, 'IP Adapter model is required');
const ipAdapterNode: IPAdapterInvocation = {
id: `ip_adapter_${id}`,
type: 'ip_adapter',
is_intermediate: true,
weight,
method,
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
image: {
image_name: image.name,
},
};
graph.nodes[ipAdapterNode.id] = ipAdapterNode;
graph.edges.push({
source: { node_id: ipAdapterNode.id, field: 'ip_adapter' },
destination: {
node_id: IP_ADAPTER_COLLECT,
field: 'item',
},
});
}
};
const addInitialImageLayerToGraph = (
state: RootState,
graph: NonNullableGraph,
denoiseNodeId: string,
layer: InitialImageLayer
) => {
const { vaePrecision, model } = state.generation;
const { refinerModel, refinerStart } = state.sdxl;
const { width, height } = state.controlLayers.present.size;
assert(layer.isEnabled, 'Initial image layer is not enabled');
assert(layer.image, 'Initial image layer has no image');
const isSDXL = model?.base === 'sdxl';
const useRefinerStartEnd = isSDXL && Boolean(refinerModel);
const denoiseNode = graph.nodes[denoiseNodeId];
assert(denoiseNode?.type === 'denoise_latents', `Missing denoise node or incorrect type: ${denoiseNode?.type}`);
const { denoisingStrength } = layer;
denoiseNode.denoising_start = useRefinerStartEnd
? Math.min(refinerStart, 1 - denoisingStrength)
: 1 - denoisingStrength;
denoiseNode.denoising_end = useRefinerStartEnd ? refinerStart : 1;
// We conditionally hook the image in depending on if a resize is needed
const i2lNode: ImageToLatentsInvocation = {
type: 'i2l',
id: IMAGE_TO_LATENTS,
is_intermediate: true,
use_cache: true,
fp32: vaePrecision === 'fp32',
};
graph.nodes[i2lNode.id] = i2lNode;
graph.edges.push({
source: {
node_id: IMAGE_TO_LATENTS,
field: 'latents',
},
destination: {
node_id: denoiseNode.id,
field: 'latents',
},
});
if (layer.image.width !== width || layer.image.height !== height) {
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
// Create a resize node, explicitly setting its image
const resizeNode: ImageResizeInvocation = {
id: RESIZE,
type: 'img_resize',
image: {
image_name: layer.image.name,
},
is_intermediate: true,
width,
height,
};
graph.nodes[RESIZE] = resizeNode;
// The `RESIZE` node then passes its image to `IMAGE_TO_LATENTS`
graph.edges.push({
source: { node_id: RESIZE, field: 'image' },
destination: {
node_id: IMAGE_TO_LATENTS,
field: 'image',
},
});
// The `RESIZE` node also passes its width and height to `NOISE`
graph.edges.push({
source: { node_id: RESIZE, field: 'width' },
destination: {
node_id: NOISE,
field: 'width',
},
});
graph.edges.push({
source: { node_id: RESIZE, field: 'height' },
destination: {
node_id: NOISE,
field: 'height',
},
});
} else {
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
i2lNode.image = {
image_name: layer.image.name,
};
// Pass the image's dimensions to the `NOISE` node
graph.edges.push({
source: { node_id: IMAGE_TO_LATENTS, field: 'width' },
destination: {
node_id: NOISE,
field: 'width',
},
});
graph.edges.push({
source: { node_id: IMAGE_TO_LATENTS, field: 'height' },
destination: {
node_id: NOISE,
field: 'height',
},
});
}
upsertMetadata(graph, { generation_mode: isSDXL ? 'sdxl_img2img' : 'img2img' });
};
export const addControlLayersToGraph = async (
state: RootState,
graph: NonNullableGraph,
@ -380,74 +61,24 @@ export const addControlLayersToGraph = async (
assert(mainModel, 'Missing main model when building graph');
const isSDXL = mainModel.base === 'sdxl';
const validLayers: Layer[] = [];
// Filter out layers with incompatible base model, missing control image
const validLayers = state.controlLayers.present.layers.filter((l) => isValidLayer(l, mainModel.base));
// Add global control adapters
const validControlAdapterLayers = state.controlLayers.present.layers
// Must be a Control Adapter layer
.filter(isControlAdapterLayer)
// Must be enabled
.filter((l) => l.isEnabled)
.filter((l) => {
const ca = l.controlAdapter;
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ca.model);
const modelMatchesBase = ca.model?.base === mainModel.base;
const hasControlImage = ca.image || (ca.processedImage && ca.processorConfig);
return hasModel && modelMatchesBase && hasControlImage;
});
const validControlNets = validControlAdapterLayers.map((l) => l.controlAdapter).filter(isControlNetConfigV2);
addGlobalControlNetsToGraph(validControlNets, graph, denoiseNodeId);
const validT2IAdapters = validControlAdapterLayers.map((l) => l.controlAdapter).filter(isT2IAdapterConfigV2);
addGlobalT2IAdaptersToGraph(validT2IAdapters, graph, denoiseNodeId);
validLayers.push(...validControlAdapterLayers);
const validIPAdapterLayers = state.controlLayers.present.layers
// Must be an IP Adapter layer
.filter(isIPAdapterLayer)
// Must be enabled
.filter((l) => l.isEnabled)
// We want the IP Adapters themselves
.filter((l) => {
const ipa = l.ipAdapter;
const hasModel = Boolean(ipa.model);
const modelMatchesBase = ipa.model?.base === mainModel.base;
const hasImage = Boolean(ipa.image);
return hasModel && modelMatchesBase && hasImage;
});
const validIPAdapters = validIPAdapterLayers.map((l) => l.ipAdapter);
addGlobalIPAdaptersToGraph(validIPAdapters, graph, denoiseNodeId);
validLayers.push(...validIPAdapterLayers);
const initialImageLayer = state.controlLayers.present.layers.filter(isInitialImageLayer).find((l) => {
if (!l.isEnabled) {
return false;
}
if (!l.image) {
return false;
}
return true;
});
if (initialImageLayer) {
addInitialImageLayerToGraph(state, graph, denoiseNodeId, initialImageLayer);
validLayers.push(initialImageLayer);
const validControlAdapters = validLayers.filter(isControlAdapterLayer).map((l) => l.controlAdapter);
for (const ca of validControlAdapters) {
addGlobalControlAdapterToGraph(ca, graph, denoiseNodeId);
}
const validRGLayers = state.controlLayers.present.layers
// Only RG layers are get masks
.filter(isRegionalGuidanceLayer)
// Only visible layers are rendered on the canvas
.filter((l) => l.isEnabled)
// Only layers with prompts get added to the graph
.filter((l) => {
const hasTextPrompt = Boolean(l.positivePrompt || l.negativePrompt);
const hasIPAdapter = l.ipAdapters.filter((ipa) => ipa.image).length > 0;
return hasTextPrompt || hasIPAdapter;
});
validLayers.push(...validRGLayers);
const validIPAdapters = validLayers.filter(isIPAdapterLayer).map((l) => l.ipAdapter);
for (const ipAdapter of validIPAdapters) {
addGlobalIPAdapterToGraph(ipAdapter, graph, denoiseNodeId);
}
const initialImageLayers = validLayers.filter(isInitialImageLayer);
assert(initialImageLayers.length <= 1, 'Only one initial image layer allowed');
if (initialImageLayers[0]) {
addInitialImageLayerToGraph(state, graph, denoiseNodeId, initialImageLayers[0]);
}
// TODO: We should probably just use conditioning collectors by default, and skip all this fanagling with re-routing
// the existing conditioning nodes.
@ -510,6 +141,7 @@ export const addControlLayersToGraph = async (
},
});
const validRGLayers = validLayers.filter(isRegionalGuidanceLayer);
const layerIds = validRGLayers.map((l) => l.id);
const blobs = await getRegionalPromptLayerBlobs(layerIds);
assert(size(blobs) === size(layerIds), 'Mismatch between layer IDs and blobs');
@ -665,15 +297,11 @@ export const addControlLayersToGraph = async (
}
}
// TODO(psyche): For some reason, I have to explicitly annotate regionalIPAdapters here. Not sure why.
const regionalIPAdapters: IPAdapterConfigV2[] = layer.ipAdapters.filter((ipAdapter) => {
const hasModel = Boolean(ipAdapter.model);
const modelMatchesBase = ipAdapter.model?.base === mainModel.base;
const hasControlImage = Boolean(ipAdapter.image);
return hasModel && modelMatchesBase && hasControlImage;
});
const validRegionalIPAdapters: IPAdapterConfigV2[] = layer.ipAdapters.filter((ipa) =>
isValidIPAdapter(ipa, mainModel.base)
);
for (const ipAdapter of regionalIPAdapters) {
for (const ipAdapter of validRegionalIPAdapters) {
addIPAdapterCollectorSafe(graph, denoiseNodeId);
const { id, weight, model, clipVisionModel, method, beginEndStepPct, image } = ipAdapter;
assert(model, 'IP Adapter model is required');
@ -735,3 +363,347 @@ const getMaskImage = async (layer: RegionalGuidanceLayer, blob: Blob): Promise<I
dispatch(rgLayerMaskImageUploaded({ layerId: layer.id, imageDTO }));
return imageDTO;
};
const buildControlImage = (
image: ImageWithDims | null,
processedImage: ImageWithDims | null,
processorConfig: ProcessorConfig | null
): ImageField => {
if (processedImage && processorConfig) {
// We've processed the image in the app - use it for the control image.
return {
image_name: processedImage.name,
};
} else if (image) {
// No processor selected, and we have an image - the user provided a processed image, use it for the control image.
return {
image_name: image.name,
};
}
assert(false, 'Attempted to add unprocessed control image');
};
const addGlobalControlAdapterToGraph = (
controlAdapter: ControlNetConfigV2 | T2IAdapterConfigV2,
graph: NonNullableGraph,
denoiseNodeId: string
) => {
if (controlAdapter.type === 'controlnet') {
addGlobalControlNetToGraph(controlAdapter, graph, denoiseNodeId);
}
if (controlAdapter.type === 't2i_adapter') {
addGlobalT2IAdapterToGraph(controlAdapter, graph, denoiseNodeId);
}
};
const addControlNetCollectorSafe = (graph: NonNullableGraph, denoiseNodeId: string) => {
if (graph.nodes[CONTROL_NET_COLLECT]) {
// You see, we've already got one!
return;
}
// Add the ControlNet collector
const controlNetIterateNode: CollectInvocation = {
id: CONTROL_NET_COLLECT,
type: 'collect',
is_intermediate: true,
};
graph.nodes[CONTROL_NET_COLLECT] = controlNetIterateNode;
graph.edges.push({
source: { node_id: CONTROL_NET_COLLECT, field: 'collection' },
destination: {
node_id: denoiseNodeId,
field: 'control',
},
});
};
const addGlobalControlNetToGraph = (controlNet: ControlNetConfigV2, graph: NonNullableGraph, denoiseNodeId: string) => {
const { id, beginEndStepPct, controlMode, image, model, processedImage, processorConfig, weight } = controlNet;
assert(model, 'ControlNet model is required');
const controlImage = buildControlImage(image, processedImage, processorConfig);
addControlNetCollectorSafe(graph, denoiseNodeId);
const controlNetNode: ControlNetInvocation = {
id: `control_net_${id}`,
type: 'controlnet',
is_intermediate: true,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
control_mode: controlMode,
resize_mode: 'just_resize',
control_model: model,
control_weight: weight,
image: controlImage,
};
graph.nodes[controlNetNode.id] = controlNetNode;
graph.edges.push({
source: { node_id: controlNetNode.id, field: 'control' },
destination: {
node_id: CONTROL_NET_COLLECT,
field: 'item',
},
});
};
const addT2IAdapterCollectorSafe = (graph: NonNullableGraph, denoiseNodeId: string) => {
if (graph.nodes[T2I_ADAPTER_COLLECT]) {
// You see, we've already got one!
return;
}
// Even though denoise_latents' t2i adapter input is collection or scalar, keep it simple and always use a collect
const t2iAdapterCollectNode: CollectInvocation = {
id: T2I_ADAPTER_COLLECT,
type: 'collect',
is_intermediate: true,
};
graph.nodes[T2I_ADAPTER_COLLECT] = t2iAdapterCollectNode;
graph.edges.push({
source: { node_id: T2I_ADAPTER_COLLECT, field: 'collection' },
destination: {
node_id: denoiseNodeId,
field: 't2i_adapter',
},
});
};
const addGlobalT2IAdapterToGraph = (t2iAdapter: T2IAdapterConfigV2, graph: NonNullableGraph, denoiseNodeId: string) => {
const { id, beginEndStepPct, image, model, processedImage, processorConfig, weight } = t2iAdapter;
assert(model, 'T2I Adapter model is required');
const controlImage = buildControlImage(image, processedImage, processorConfig);
addT2IAdapterCollectorSafe(graph, denoiseNodeId);
const t2iAdapterNode: T2IAdapterInvocation = {
id: `t2i_adapter_${id}`,
type: 't2i_adapter',
is_intermediate: true,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
resize_mode: 'just_resize',
t2i_adapter_model: model,
weight: weight,
image: controlImage,
};
graph.nodes[t2iAdapterNode.id] = t2iAdapterNode;
graph.edges.push({
source: { node_id: t2iAdapterNode.id, field: 't2i_adapter' },
destination: {
node_id: T2I_ADAPTER_COLLECT,
field: 'item',
},
});
};
const addIPAdapterCollectorSafe = (graph: NonNullableGraph, denoiseNodeId: string) => {
if (graph.nodes[IP_ADAPTER_COLLECT]) {
// You see, we've already got one!
return;
}
const ipAdapterCollectNode: CollectInvocation = {
id: IP_ADAPTER_COLLECT,
type: 'collect',
is_intermediate: true,
};
graph.nodes[IP_ADAPTER_COLLECT] = ipAdapterCollectNode;
graph.edges.push({
source: { node_id: IP_ADAPTER_COLLECT, field: 'collection' },
destination: {
node_id: denoiseNodeId,
field: 'ip_adapter',
},
});
};
const addGlobalIPAdapterToGraph = (ipAdapter: IPAdapterConfigV2, graph: NonNullableGraph, denoiseNodeId: string) => {
addIPAdapterCollectorSafe(graph, denoiseNodeId);
const { id, weight, model, clipVisionModel, method, beginEndStepPct, image } = ipAdapter;
assert(image, 'IP Adapter image is required');
assert(model, 'IP Adapter model is required');
const ipAdapterNode: IPAdapterInvocation = {
id: `ip_adapter_${id}`,
type: 'ip_adapter',
is_intermediate: true,
weight,
method,
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
image: {
image_name: image.name,
},
};
graph.nodes[ipAdapterNode.id] = ipAdapterNode;
graph.edges.push({
source: { node_id: ipAdapterNode.id, field: 'ip_adapter' },
destination: {
node_id: IP_ADAPTER_COLLECT,
field: 'item',
},
});
};
const addInitialImageLayerToGraph = (
state: RootState,
graph: NonNullableGraph,
denoiseNodeId: string,
layer: InitialImageLayer
) => {
const { vaePrecision, model } = state.generation;
const { refinerModel, refinerStart } = state.sdxl;
const { width, height } = state.controlLayers.present.size;
assert(layer.isEnabled, 'Initial image layer is not enabled');
assert(layer.image, 'Initial image layer has no image');
const isSDXL = model?.base === 'sdxl';
const useRefinerStartEnd = isSDXL && Boolean(refinerModel);
const denoiseNode = graph.nodes[denoiseNodeId];
assert(denoiseNode?.type === 'denoise_latents', `Missing denoise node or incorrect type: ${denoiseNode?.type}`);
const { denoisingStrength } = layer;
denoiseNode.denoising_start = useRefinerStartEnd
? Math.min(refinerStart, 1 - denoisingStrength)
: 1 - denoisingStrength;
denoiseNode.denoising_end = useRefinerStartEnd ? refinerStart : 1;
const i2lNode: ImageToLatentsInvocation = {
type: 'i2l',
id: IMAGE_TO_LATENTS,
is_intermediate: true,
use_cache: true,
fp32: vaePrecision === 'fp32',
};
graph.nodes[i2lNode.id] = i2lNode;
graph.edges.push({
source: {
node_id: IMAGE_TO_LATENTS,
field: 'latents',
},
destination: {
node_id: denoiseNode.id,
field: 'latents',
},
});
if (layer.image.width !== width || layer.image.height !== height) {
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
// Create a resize node, explicitly setting its image
const resizeNode: ImageResizeInvocation = {
id: RESIZE,
type: 'img_resize',
image: {
image_name: layer.image.name,
},
is_intermediate: true,
width,
height,
};
graph.nodes[RESIZE] = resizeNode;
// The `RESIZE` node then passes its image to `IMAGE_TO_LATENTS`
graph.edges.push({
source: { node_id: RESIZE, field: 'image' },
destination: {
node_id: IMAGE_TO_LATENTS,
field: 'image',
},
});
// The `RESIZE` node also passes its width and height to `NOISE`
graph.edges.push({
source: { node_id: RESIZE, field: 'width' },
destination: {
node_id: NOISE,
field: 'width',
},
});
graph.edges.push({
source: { node_id: RESIZE, field: 'height' },
destination: {
node_id: NOISE,
field: 'height',
},
});
} else {
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
i2lNode.image = {
image_name: layer.image.name,
};
// Pass the image's dimensions to the `NOISE` node
graph.edges.push({
source: { node_id: IMAGE_TO_LATENTS, field: 'width' },
destination: {
node_id: NOISE,
field: 'width',
},
});
graph.edges.push({
source: { node_id: IMAGE_TO_LATENTS, field: 'height' },
destination: {
node_id: NOISE,
field: 'height',
},
});
}
upsertMetadata(graph, { generation_mode: isSDXL ? 'sdxl_img2img' : 'img2img' });
};
const isValidControlAdapter = (ca: ControlNetConfigV2 | T2IAdapterConfigV2, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ca.model);
const modelMatchesBase = ca.model?.base === base;
const hasControlImage = Boolean(ca.image || (ca.processedImage && ca.processorConfig));
return hasModel && modelMatchesBase && hasControlImage;
};
const isValidIPAdapter = (ipa: IPAdapterConfigV2, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ipa.model);
const modelMatchesBase = ipa.model?.base === base;
const hasImage = Boolean(ipa.image);
return hasModel && modelMatchesBase && hasImage;
};
const isValidLayer = (layer: Layer, base: BaseModelType) => {
if (isControlAdapterLayer(layer)) {
if (!layer.isEnabled) {
return false;
}
return isValidControlAdapter(layer.controlAdapter, base);
}
if (isIPAdapterLayer(layer)) {
if (!layer.isEnabled) {
return false;
}
return isValidIPAdapter(layer.ipAdapter, base);
}
if (isInitialImageLayer(layer)) {
if (!layer.isEnabled) {
return false;
}
if (!layer.image) {
return false;
}
return true;
}
if (isRegionalGuidanceLayer(layer)) {
const hasTextPrompt = Boolean(layer.positivePrompt || layer.negativePrompt);
const hasIPAdapter = layer.ipAdapters.filter((ipa) => isValidIPAdapter(ipa, base)).length > 0;
return hasTextPrompt || hasIPAdapter;
}
return false;
};