Merge branch 'main' into feat/batch-graphs

This commit is contained in:
Brandon 2023-08-18 23:32:08 -04:00 committed by GitHub
commit 018ff56314
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 32 additions and 44 deletions

View File

@ -20,11 +20,36 @@
import re import re
from contextlib import nullcontext from contextlib import nullcontext
from io import BytesIO from io import BytesIO
from typing import Optional, Union
from pathlib import Path from pathlib import Path
from typing import Optional, Union
import requests import requests
import torch import torch
from diffusers.models import (
AutoencoderKL,
ControlNetModel,
PriorTransformer,
UNet2DConditionModel,
)
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.schedulers import (
DDIMScheduler,
DDPMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UnCLIPScheduler,
)
from diffusers.utils import is_accelerate_available, is_omegaconf_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
from picklescan.scanner import scan_file_path
from transformers import ( from transformers import (
AutoFeatureExtractor, AutoFeatureExtractor,
BertTokenizerFast, BertTokenizerFast,
@ -37,35 +62,8 @@ from transformers import (
CLIPVisionModelWithProjection, CLIPVisionModelWithProjection,
) )
from diffusers.models import (
AutoencoderKL,
ControlNetModel,
PriorTransformer,
UNet2DConditionModel,
)
from diffusers.schedulers import (
DDIMScheduler,
DDPMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UnCLIPScheduler,
)
from diffusers.utils import is_accelerate_available, is_omegaconf_available, is_safetensors_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
from picklescan.scanner import scan_file_path
from .models import BaseModelType, ModelVariantType from .models import BaseModelType, ModelVariantType
try: try:
@ -1221,9 +1219,6 @@ def download_from_original_stable_diffusion_ckpt(
raise ValueError(BACKENDS_MAPPING["omegaconf"][1]) raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
if from_safetensors: if from_safetensors:
if not is_safetensors_available():
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
from safetensors.torch import load_file as safe_load from safetensors.torch import load_file as safe_load
checkpoint = safe_load(checkpoint_path, device="cpu") checkpoint = safe_load(checkpoint_path, device="cpu")
@ -1662,9 +1657,6 @@ def download_controlnet_from_original_ckpt(
from omegaconf import OmegaConf from omegaconf import OmegaConf
if from_safetensors: if from_safetensors:
if not is_safetensors_available():
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
from safetensors import safe_open from safetensors import safe_open
checkpoint = {} checkpoint = {}
@ -1741,7 +1733,7 @@ def convert_ckpt_to_diffusers(
pipe.save_pretrained( pipe.save_pretrained(
dump_path, dump_path,
safe_serialization=use_safetensors and is_safetensors_available(), safe_serialization=use_safetensors,
) )
@ -1757,7 +1749,4 @@ def convert_controlnet_to_diffusers(
""" """
pipe = download_controlnet_from_original_ckpt(checkpoint_path, **kwargs) pipe = download_controlnet_from_original_ckpt(checkpoint_path, **kwargs)
pipe.save_pretrained( pipe.save_pretrained(dump_path, safe_serialization=True)
dump_path,
safe_serialization=is_safetensors_available(),
)

View File

@ -5,7 +5,6 @@ from typing import Optional
import safetensors import safetensors
import torch import torch
from diffusers.utils import is_safetensors_available
from omegaconf import OmegaConf from omegaconf import OmegaConf
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
@ -175,5 +174,5 @@ def _convert_vae_ckpt_and_cache(
vae_config=config, vae_config=config,
image_size=image_size, image_size=image_size,
) )
vae_model.save_pretrained(output_path, safe_serialization=is_safetensors_available()) vae_model.save_pretrained(output_path, safe_serialization=True)
return output_path return output_path

View File

@ -40,7 +40,7 @@ dependencies = [
"controlnet-aux>=0.0.6", "controlnet-aux>=0.0.6",
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26 "timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
"datasets", "datasets",
"diffusers[torch]~=0.19.3", "diffusers[torch]~=0.20.0",
"dnspython~=2.4.0", "dnspython~=2.4.0",
"dynamicprompts", "dynamicprompts",
"easing-functions", "easing-functions",
@ -49,7 +49,7 @@ dependencies = [
"fastapi==0.88.0", "fastapi==0.88.0",
"fastapi-events==0.8.0", "fastapi-events==0.8.0",
"fastapi-socketio==0.0.10", "fastapi-socketio==0.0.10",
"huggingface-hub>=0.11.1", "huggingface-hub~=0.16.4",
"invisible-watermark~=0.2.0", # needed to install SDXL base and refiner using their repo_ids "invisible-watermark~=0.2.0", # needed to install SDXL base and refiner using their repo_ids
"matplotlib", # needed for plotting of Penner easing functions "matplotlib", # needed for plotting of Penner easing functions
"mediapipe", # needed for "mediapipeface" controlnet model "mediapipe", # needed for "mediapipeface" controlnet model