From 0564397ee6d206a7ede5ff16628b4b46578339c4 Mon Sep 17 00:00:00 2001 From: Damian at mba <damian@frey.NOSPAMco.nz> Date: Mon, 24 Oct 2022 11:16:43 +0200 Subject: [PATCH] cleanup logs --- ldm/models/diffusion/shared_invokeai_diffusion.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/ldm/models/diffusion/shared_invokeai_diffusion.py b/ldm/models/diffusion/shared_invokeai_diffusion.py index f52dd46766..b8a7a04d0e 100644 --- a/ldm/models/diffusion/shared_invokeai_diffusion.py +++ b/ldm/models/diffusion/shared_invokeai_diffusion.py @@ -82,18 +82,18 @@ class InvokeAIDiffuserComponent: # flip because sigmas[0] is for the fully denoised image # percent_through must be <1 percent_through = 1.0 - float(sigma_index.item() + 1) / float(self.model.sigmas.shape[0]) - print('estimated percent_through', percent_through, 'from sigma', sigma.item()) + #print('estimated percent_through', percent_through, 'from sigma', sigma.item()) cross_attention_control_types_to_do = CrossAttentionControl.get_active_cross_attention_control_types_for_step(self.cross_attention_control_context, percent_through) if len(cross_attention_control_types_to_do)==0: - print('not doing cross attention control') + #print('not doing cross attention control') # faster batched path x_twice = torch.cat([x]*2) sigma_twice = torch.cat([sigma]*2) both_conditionings = torch.cat([unconditioning, conditioning]) unconditioned_next_x, conditioned_next_x = self.model_forward_callback(x_twice, sigma_twice, both_conditionings).chunk(2) else: - print('pct', percent_through, ': doing cross attention control on', cross_attention_control_types_to_do) + #print('pct', percent_through, ': doing cross attention control on', cross_attention_control_types_to_do) # slower non-batched path (20% slower on mac MPS) # We are only interested in using attention maps for conditioned_next_x, but batching them with generation of # unconditioned_next_x causes attention maps to *also* be saved for the unconditioned_next_x.