diff --git a/invokeai/app/invocations/latent.py b/invokeai/app/invocations/latent.py index 0e1f7e1a5f..74952e7896 100644 --- a/invokeai/app/invocations/latent.py +++ b/invokeai/app/invocations/latent.py @@ -334,72 +334,6 @@ class TextToLatentsInvocation(BaseInvocation): multi_control = MultiControlNetModel(control_models) model.control_model = multi_control - print("type of control input: ", type(self.control)) - - if (self.control is None): - control_model = None - control_image_field = None - control_weight = None - else: - control_model_name = self.control.control_model - control_image_field = self.control.image - control_weight = self.control.control_weight - - # # loading controlnet model - # if (self.control_model is None or self.control_model==''): - # control_model = None - # else: - # FIXME: change this to dropdown menu? - # FIXME: generalize so don't have to hardcode torch_dtype and device - control_model = ControlNetModel.from_pretrained(control_model_name, - torch_dtype=torch.float16).to("cuda") - model.control_model = control_model - - # loading controlnet image (currently requires pre-processed image) - control_image = ( - None if control_image_field is None - else context.services.images.get( - control_image_field.image_type, control_image_field.image_name - ) - ) - - latents_shape = noise.shape - control_height_resize = latents_shape[2] * 8 - control_width_resize = latents_shape[3] * 8 - - # copied from old backend/txt2img.py - # FIXME: still need to test with different widths, heights, devices, dtypes - # and add in batch_size, num_images_per_prompt? - if control_image is not None: - if isinstance(control_model, ControlNetModel): - control_image = model.prepare_control_image( - image=control_image, - # do_classifier_free_guidance=do_classifier_free_guidance, - do_classifier_free_guidance=True, - width=control_width_resize, - height=control_height_resize, - # batch_size=batch_size * num_images_per_prompt, - # num_images_per_prompt=num_images_per_prompt, - device=control_model.device, - dtype=control_model.dtype, - ) - elif isinstance(control_model, MultiControlNetModel): - images = [] - for image_ in control_image: - image_ = model.prepare_control_image( - image=image_, - # do_classifier_free_guidance=do_classifier_free_guidance, - do_classifier_free_guidance=True, - width=control_width_resize, - height=control_height_resize, - # batch_size=batch_size * num_images_per_prompt, - # num_images_per_prompt=num_images_per_prompt, - device=control_model.device, - dtype=control_model.dtype, - ) - images.append(image_) - control_image = images - # TODO: Verify the noise is the right size result_latents, result_attention_map_saver = model.latents_from_embeddings( latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),