Merge branch 'main' into bugfix/convert-script

This commit is contained in:
Lincoln Stein 2023-07-29 17:30:40 -04:00 committed by GitHub
commit 078b33bda2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 493 additions and 329 deletions

View File

@ -6,8 +6,7 @@ from pydantic import Field
from invokeai.app.invocations.prompt import PromptOutput
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .math import FloatOutput, IntOutput
# Pass-through parameter nodes - used by subgraphs
@ -68,6 +67,7 @@ class ParamStringInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> StringOutput:
return StringOutput(text=self.text)
class ParamPromptInvocation(BaseInvocation):
"""A prompt input parameter"""

View File

@ -139,8 +139,19 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
useHotkeys('s', handleUseSeed, [imageDTO]);
const handleUsePrompt = useCallback(() => {
recallBothPrompts(metadata?.positive_prompt, metadata?.negative_prompt);
}, [metadata?.negative_prompt, metadata?.positive_prompt, recallBothPrompts]);
recallBothPrompts(
metadata?.positive_prompt,
metadata?.negative_prompt,
metadata?.positive_style_prompt,
metadata?.negative_style_prompt
);
}, [
metadata?.negative_prompt,
metadata?.positive_prompt,
metadata?.positive_style_prompt,
metadata?.negative_style_prompt,
recallBothPrompts,
]);
useHotkeys('p', handleUsePrompt, [imageDTO]);

View File

@ -102,8 +102,19 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
// Recall parameters handlers
const handleRecallPrompt = useCallback(() => {
recallBothPrompts(metadata?.positive_prompt, metadata?.negative_prompt);
}, [metadata?.negative_prompt, metadata?.positive_prompt, recallBothPrompts]);
recallBothPrompts(
metadata?.positive_prompt,
metadata?.negative_prompt,
metadata?.positive_style_prompt,
metadata?.negative_style_prompt
);
}, [
metadata?.negative_prompt,
metadata?.positive_prompt,
metadata?.positive_style_prompt,
metadata?.negative_style_prompt,
recallBothPrompts,
]);
const handleRecallSeed = useCallback(() => {
recallSeed(metadata?.seed);

View File

@ -1,5 +1,15 @@
import { useAppToaster } from 'app/components/Toaster';
import { useAppDispatch } from 'app/store/storeHooks';
import {
refinerModelChanged,
setNegativeStylePromptSDXL,
setPositiveStylePromptSDXL,
setRefinerAestheticScore,
setRefinerCFGScale,
setRefinerScheduler,
setRefinerStart,
setRefinerSteps,
} from 'features/sdxl/store/sdxlSlice';
import { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { UnsafeImageMetadata } from 'services/api/endpoints/images';
@ -22,6 +32,10 @@ import {
isValidMainModel,
isValidNegativePrompt,
isValidPositivePrompt,
isValidSDXLNegativeStylePrompt,
isValidSDXLPositiveStylePrompt,
isValidSDXLRefinerAestheticScore,
isValidSDXLRefinerStart,
isValidScheduler,
isValidSeed,
isValidSteps,
@ -74,17 +88,34 @@ export const useRecallParameters = () => {
* Recall both prompts with toast
*/
const recallBothPrompts = useCallback(
(positivePrompt: unknown, negativePrompt: unknown) => {
(
positivePrompt: unknown,
negativePrompt: unknown,
positiveStylePrompt: unknown,
negativeStylePrompt: unknown
) => {
if (
isValidPositivePrompt(positivePrompt) ||
isValidNegativePrompt(negativePrompt)
isValidNegativePrompt(negativePrompt) ||
isValidSDXLPositiveStylePrompt(positiveStylePrompt) ||
isValidSDXLNegativeStylePrompt(negativeStylePrompt)
) {
if (isValidPositivePrompt(positivePrompt)) {
dispatch(setPositivePrompt(positivePrompt));
}
if (isValidNegativePrompt(negativePrompt)) {
dispatch(setNegativePrompt(negativePrompt));
}
if (isValidSDXLPositiveStylePrompt(positiveStylePrompt)) {
dispatch(setPositiveStylePromptSDXL(positiveStylePrompt));
}
if (isValidSDXLPositiveStylePrompt(negativeStylePrompt)) {
dispatch(setNegativeStylePromptSDXL(negativeStylePrompt));
}
parameterSetToast();
return;
}
@ -123,6 +154,36 @@ export const useRecallParameters = () => {
[dispatch, parameterSetToast, parameterNotSetToast]
);
/**
* Recall SDXL Positive Style Prompt with toast
*/
const recallSDXLPositiveStylePrompt = useCallback(
(positiveStylePrompt: unknown) => {
if (!isValidSDXLPositiveStylePrompt(positiveStylePrompt)) {
parameterNotSetToast();
return;
}
dispatch(setPositiveStylePromptSDXL(positiveStylePrompt));
parameterSetToast();
},
[dispatch, parameterSetToast, parameterNotSetToast]
);
/**
* Recall SDXL Negative Style Prompt with toast
*/
const recallSDXLNegativeStylePrompt = useCallback(
(negativeStylePrompt: unknown) => {
if (!isValidSDXLNegativeStylePrompt(negativeStylePrompt)) {
parameterNotSetToast();
return;
}
dispatch(setNegativeStylePromptSDXL(negativeStylePrompt));
parameterSetToast();
},
[dispatch, parameterSetToast, parameterNotSetToast]
);
/**
* Recall seed with toast
*/
@ -271,6 +332,14 @@ export const useRecallParameters = () => {
steps,
width,
strength,
positive_style_prompt,
negative_style_prompt,
refiner_model,
refiner_cfg_scale,
refiner_steps,
refiner_scheduler,
refiner_aesthetic_store,
refiner_start,
} = metadata;
if (isValidCfgScale(cfg_scale)) {
@ -304,6 +373,38 @@ export const useRecallParameters = () => {
dispatch(setImg2imgStrength(strength));
}
if (isValidSDXLPositiveStylePrompt(positive_style_prompt)) {
dispatch(setPositiveStylePromptSDXL(positive_style_prompt));
}
if (isValidSDXLNegativeStylePrompt(negative_style_prompt)) {
dispatch(setNegativeStylePromptSDXL(negative_style_prompt));
}
if (isValidMainModel(refiner_model)) {
dispatch(refinerModelChanged(refiner_model));
}
if (isValidSteps(refiner_steps)) {
dispatch(setRefinerSteps(refiner_steps));
}
if (isValidCfgScale(refiner_cfg_scale)) {
dispatch(setRefinerCFGScale(refiner_cfg_scale));
}
if (isValidScheduler(refiner_scheduler)) {
dispatch(setRefinerScheduler(refiner_scheduler));
}
if (isValidSDXLRefinerAestheticScore(refiner_aesthetic_store)) {
dispatch(setRefinerAestheticScore(refiner_aesthetic_store));
}
if (isValidSDXLRefinerStart(refiner_start)) {
dispatch(setRefinerStart(refiner_start));
}
allParameterSetToast();
},
[allParameterNotSetToast, allParameterSetToast, dispatch]
@ -313,6 +414,8 @@ export const useRecallParameters = () => {
recallBothPrompts,
recallPositivePrompt,
recallNegativePrompt,
recallSDXLPositiveStylePrompt,
recallSDXLNegativeStylePrompt,
recallSeed,
recallCfgScale,
recallModel,

View File

@ -310,6 +310,39 @@ export type PrecisionParam = z.infer<typeof zPrecision>;
export const isValidPrecision = (val: unknown): val is PrecisionParam =>
zPrecision.safeParse(val).success;
/**
* Zod schema for SDXL refiner aesthetic score parameter
*/
export const zSDXLRefinerAestheticScore = z.number().min(1).max(10);
/**
* Type alias for SDXL refiner aesthetic score parameter, inferred from its zod schema
*/
export type SDXLRefinerAestheticScoreParam = z.infer<
typeof zSDXLRefinerAestheticScore
>;
/**
* Validates/type-guards a value as a SDXL refiner aesthetic score parameter
*/
export const isValidSDXLRefinerAestheticScore = (
val: unknown
): val is SDXLRefinerAestheticScoreParam =>
zSDXLRefinerAestheticScore.safeParse(val).success;
/**
* Zod schema for SDXL start parameter
*/
export const zSDXLRefinerstart = z.number().min(0).max(1);
/**
* Type alias for SDXL start, inferred from its zod schema
*/
export type SDXLRefinerStartParam = z.infer<typeof zSDXLRefinerstart>;
/**
* Validates/type-guards a value as a SDXL refiner aesthetic score parameter
*/
export const isValidSDXLRefinerStart = (
val: unknown
): val is SDXLRefinerStartParam => zSDXLRefinerstart.safeParse(val).success;
// /**
// * Zod schema for BaseModelType
// */

View File

@ -21,8 +21,8 @@ export default function ParamSDXLConcatButton() {
return (
<IAIIconButton
aria-label="Concat"
tooltip="Concatenates Basic Prompt with Style (Recommended)"
aria-label="Concatenate Prompt & Style"
tooltip="Concatenate Prompt & Style"
variant="outline"
isChecked={shouldConcatSDXLStylePrompt}
onClick={handleShouldConcatPromptChange}

View File

@ -1,281 +1,283 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "ycYWcsEKc6w7"
},
"source": [
"# Stable Diffusion AI Notebook (Release 2.0.0)\n",
"\n",
"<img src=\"https://user-images.githubusercontent.com/60411196/186547976-d9de378a-9de8-4201-9c25-c057a9c59bad.jpeg\" alt=\"stable-diffusion-ai\" width=\"170px\"/> <br>\n",
"#### Instructions:\n",
"1. Execute each cell in order to mount a Dream bot and create images from text. <br>\n",
"2. Once cells 1-8 were run correctly you'll be executing a terminal in cell #9, you'll need to enter `python scripts/dream.py` command to run Dream bot.<br> \n",
"3. After launching dream bot, you'll see: <br> `Dream > ` in terminal. <br> Insert a command, eg. `Dream > Astronaut floating in a distant galaxy`, or type `-h` for help.\n",
"3. After completion you'll see your generated images in path `stable-diffusion/outputs/img-samples/`, you can also show last generated images in cell #10.\n",
"4. To quit Dream bot use `q` command. <br> \n",
"---\n",
"<font color=\"red\">Note:</font> It takes some time to load, but after installing all dependencies you can use the bot all time you want while colab instance is up. <br>\n",
"<font color=\"red\">Requirements:</font> For this notebook to work you need to have [Stable-Diffusion-v-1-4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original) stored in your Google Drive, it will be needed in cell #7\n",
"##### For more details visit Github repository: [invoke-ai/InvokeAI](https://github.com/invoke-ai/InvokeAI)\n",
"---\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dr32VLxlnouf"
},
"source": [
"## ◢ Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "a2Z5Qu_o8VtQ"
},
"outputs": [],
"source": [
"#@title 1. Check current GPU assigned\n",
"!nvidia-smi -L\n",
"!nvidia-smi"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "vbI9ZsQHzjqF"
},
"outputs": [],
"source": [
"#@title 2. Download stable-diffusion Repository\n",
"from os.path import exists\n",
"\n",
"!git clone --quiet https://github.com/invoke-ai/InvokeAI.git # Original repo\n",
"%cd /content/InvokeAI/\n",
"!git checkout --quiet tags/v2.0.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "QbXcGXYEFSNB"
},
"outputs": [],
"source": [
"#@title 3. Install dependencies\n",
"import gc\n",
"\n",
"!wget https://raw.githubusercontent.com/invoke-ai/InvokeAI/development/environments-and-requirements/requirements-base.txt\n",
"!wget https://raw.githubusercontent.com/invoke-ai/InvokeAI/development/environments-and-requirements/requirements-win-colab-cuda.txt\n",
"!pip install colab-xterm\n",
"!pip install -r requirements-lin-win-colab-CUDA.txt\n",
"!pip install clean-fid torchtext\n",
"!pip install transformers\n",
"gc.collect()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "8rSMhgnAttQa"
},
"outputs": [],
"source": [
"#@title 4. Restart Runtime\n",
"exit()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "ChIDWxLVHGGJ"
},
"outputs": [],
"source": [
"#@title 5. Load small ML models required\n",
"import gc\n",
"%cd /content/InvokeAI/\n",
"!python scripts/preload_models.py\n",
"gc.collect()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "795x1tMoo8b1"
},
"source": [
"## ◢ Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "YEWPV-sF1RDM"
},
"outputs": [],
"source": [
"#@title 6. Mount google Drive\n",
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "zRTJeZ461WGu"
},
"outputs": [],
"source": [
"#@title 7. Drive Path to model\n",
"#@markdown Path should start with /content/drive/path-to-your-file <br>\n",
"#@markdown <font color=\"red\">Note:</font> Model should be downloaded from https://huggingface.co <br>\n",
"#@markdown Lastest release: [Stable-Diffusion-v-1-4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)\n",
"from os.path import exists\n",
"\n",
"model_path = \"\" #@param {type:\"string\"}\n",
"if exists(model_path):\n",
" print(\"✅ Valid directory\")\n",
"else: \n",
" print(\"❌ File doesn't exist\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "UY-NNz4I8_aG"
},
"outputs": [],
"source": [
"#@title 8. Symlink to model\n",
"\n",
"from os.path import exists\n",
"import os \n",
"\n",
"# Folder creation if it doesn't exist\n",
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1\"):\n",
" print(\"❗ Dir stable-diffusion-v1 already exists\")\n",
"else:\n",
" %mkdir /content/InvokeAI/models/ldm/stable-diffusion-v1\n",
" print(\"✅ Dir stable-diffusion-v1 created\")\n",
"\n",
"# Symbolic link if it doesn't exist\n",
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt\"):\n",
" print(\"❗ Symlink already created\")\n",
"else: \n",
" src = model_path\n",
" dst = '/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt'\n",
" os.symlink(src, dst) \n",
" print(\"✅ Symbolic link created successfully\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Mc28N0_NrCQH"
},
"source": [
"## ◢ Execution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "ir4hCrMIuUpl"
},
"outputs": [],
"source": [
"#@title 9. Run Terminal and Execute Dream bot\n",
"#@markdown <font color=\"blue\">Steps:</font> <br>\n",
"#@markdown 1. Execute command `python scripts/invoke.py` to run InvokeAI.<br>\n",
"#@markdown 2. After initialized you'll see `Dream>` line.<br>\n",
"#@markdown 3. Example text: `Astronaut floating in a distant galaxy` <br>\n",
"#@markdown 4. To quit Dream bot use: `q` command.<br>\n",
"\n",
"%load_ext colabxterm\n",
"%xterm\n",
"gc.collect()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "qnLohSHmKoGk"
},
"outputs": [],
"source": [
"#@title 10. Show the last 15 generated images\n",
"import glob\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.image as mpimg\n",
"%matplotlib inline\n",
"\n",
"images = []\n",
"for img_path in sorted(glob.glob('/content/InvokeAI/outputs/img-samples/*.png'), reverse=True):\n",
" images.append(mpimg.imread(img_path))\n",
"\n",
"images = images[:15] \n",
"\n",
"plt.figure(figsize=(20,10))\n",
"\n",
"columns = 5\n",
"for i, image in enumerate(images):\n",
" ax = plt.subplot(len(images) / columns + 1, columns, i + 1)\n",
" ax.axes.xaxis.set_visible(False)\n",
" ax.axes.yaxis.set_visible(False)\n",
" ax.axis('off')\n",
" plt.imshow(image)\n",
" gc.collect()\n",
"\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"private_outputs": true,
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3.9.12 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.9.12"
},
"vscode": {
"interpreter": {
"hash": "4e870c5c5fe42db7e2c5647ae5af656ff3391bf8c2b729cbf7fa0e16ca8cb5af"
}
}
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "ycYWcsEKc6w7"
},
"source": [
"# Stable Diffusion AI Notebook (Release 2.0.0)\n",
"\n",
"<img src=\"https://user-images.githubusercontent.com/60411196/186547976-d9de378a-9de8-4201-9c25-c057a9c59bad.jpeg\" alt=\"stable-diffusion-ai\" width=\"170px\"/> <br>\n",
"#### Instructions:\n",
"1. Execute each cell in order to mount a Dream bot and create images from text. <br>\n",
"2. Once cells 1-8 were run correctly you'll be executing a terminal in cell #9, you'll need to enter `python scripts/dream.py` command to run Dream bot.<br> \n",
"3. After launching dream bot, you'll see: <br> `Dream > ` in terminal. <br> Insert a command, eg. `Dream > Astronaut floating in a distant galaxy`, or type `-h` for help.\n",
"3. After completion you'll see your generated images in path `stable-diffusion/outputs/img-samples/`, you can also show last generated images in cell #10.\n",
"4. To quit Dream bot use `q` command. <br> \n",
"---\n",
"<font color=\"red\">Note:</font> It takes some time to load, but after installing all dependencies you can use the bot all time you want while colab instance is up. <br>\n",
"<font color=\"red\">Requirements:</font> For this notebook to work you need to have [Stable-Diffusion-v-1-4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original) stored in your Google Drive, it will be needed in cell #7\n",
"##### For more details visit Github repository: [invoke-ai/InvokeAI](https://github.com/invoke-ai/InvokeAI)\n",
"---\n"
]
},
"nbformat": 4,
"nbformat_minor": 0
{
"cell_type": "markdown",
"metadata": {
"id": "dr32VLxlnouf"
},
"source": [
"## ◢ Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "a2Z5Qu_o8VtQ"
},
"outputs": [],
"source": [
"# @title 1. Check current GPU assigned\n",
"!nvidia-smi -L\n",
"!nvidia-smi"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "vbI9ZsQHzjqF"
},
"outputs": [],
"source": [
"# @title 2. Download stable-diffusion Repository\n",
"from os.path import exists\n",
"\n",
"!git clone --quiet https://github.com/invoke-ai/InvokeAI.git # Original repo\n",
"%cd /content/InvokeAI/\n",
"!git checkout --quiet tags/v2.0.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "QbXcGXYEFSNB"
},
"outputs": [],
"source": [
"# @title 3. Install dependencies\n",
"import gc\n",
"\n",
"!wget https://raw.githubusercontent.com/invoke-ai/InvokeAI/development/environments-and-requirements/requirements-base.txt\n",
"!wget https://raw.githubusercontent.com/invoke-ai/InvokeAI/development/environments-and-requirements/requirements-win-colab-cuda.txt\n",
"!pip install colab-xterm\n",
"!pip install -r requirements-lin-win-colab-CUDA.txt\n",
"!pip install clean-fid torchtext\n",
"!pip install transformers\n",
"gc.collect()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "8rSMhgnAttQa"
},
"outputs": [],
"source": [
"# @title 4. Restart Runtime\n",
"exit()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "ChIDWxLVHGGJ"
},
"outputs": [],
"source": [
"# @title 5. Load small ML models required\n",
"import gc\n",
"\n",
"%cd /content/InvokeAI/\n",
"!python scripts/preload_models.py\n",
"gc.collect()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "795x1tMoo8b1"
},
"source": [
"## ◢ Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "YEWPV-sF1RDM"
},
"outputs": [],
"source": [
"# @title 6. Mount google Drive\n",
"from google.colab import drive\n",
"\n",
"drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "zRTJeZ461WGu"
},
"outputs": [],
"source": [
"# @title 7. Drive Path to model\n",
"# @markdown Path should start with /content/drive/path-to-your-file <br>\n",
"# @markdown <font color=\"red\">Note:</font> Model should be downloaded from https://huggingface.co <br>\n",
"# @markdown Lastest release: [Stable-Diffusion-v-1-4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)\n",
"from os.path import exists\n",
"\n",
"model_path = \"\" # @param {type:\"string\"}\n",
"if exists(model_path):\n",
" print(\"✅ Valid directory\")\n",
"else:\n",
" print(\"❌ File doesn't exist\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "UY-NNz4I8_aG"
},
"outputs": [],
"source": [
"# @title 8. Symlink to model\n",
"\n",
"from os.path import exists\n",
"import os\n",
"\n",
"# Folder creation if it doesn't exist\n",
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1\"):\n",
" print(\"❗ Dir stable-diffusion-v1 already exists\")\n",
"else:\n",
" %mkdir /content/InvokeAI/models/ldm/stable-diffusion-v1\n",
" print(\"✅ Dir stable-diffusion-v1 created\")\n",
"\n",
"# Symbolic link if it doesn't exist\n",
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt\"):\n",
" print(\"❗ Symlink already created\")\n",
"else:\n",
" src = model_path\n",
" dst = \"/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt\"\n",
" os.symlink(src, dst)\n",
" print(\"✅ Symbolic link created successfully\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Mc28N0_NrCQH"
},
"source": [
"## ◢ Execution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "ir4hCrMIuUpl"
},
"outputs": [],
"source": [
"# @title 9. Run Terminal and Execute Dream bot\n",
"# @markdown <font color=\"blue\">Steps:</font> <br>\n",
"# @markdown 1. Execute command `python scripts/invoke.py` to run InvokeAI.<br>\n",
"# @markdown 2. After initialized you'll see `Dream>` line.<br>\n",
"# @markdown 3. Example text: `Astronaut floating in a distant galaxy` <br>\n",
"# @markdown 4. To quit Dream bot use: `q` command.<br>\n",
"\n",
"%load_ext colabxterm\n",
"%xterm\n",
"gc.collect()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "qnLohSHmKoGk"
},
"outputs": [],
"source": [
"#@title 10. Show the last 15 generated images\n",
"import glob\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.image as mpimg\n",
"%matplotlib inline\n",
"\n",
"images = []\n",
"for img_path in sorted(glob.glob('/content/InvokeAI/outputs/img-samples/*.png'), reverse=True):\n",
" images.append(mpimg.imread(img_path))\n",
"\n",
"images = images[:15] \n",
"\n",
"plt.figure(figsize=(20,10))\n",
"\n",
"columns = 5\n",
"for i, image in enumerate(images):\n",
" ax = plt.subplot(len(images) / columns + 1, columns, i + 1)\n",
" ax.axes.xaxis.set_visible(False)\n",
" ax.axes.yaxis.set_visible(False)\n",
" ax.axis('off')\n",
" plt.imshow(image)\n",
" gc.collect()\n",
"\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"private_outputs": true,
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3.9.12 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.9.12"
},
"vscode": {
"interpreter": {
"hash": "4e870c5c5fe42db7e2c5647ae5af656ff3391bf8c2b729cbf7fa0e16ca8cb5af"
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -52,17 +52,17 @@
"name": "stdout",
"text": [
"Cloning into 'latent-diffusion'...\n",
"remote: Enumerating objects: 992, done.\u001B[K\n",
"remote: Counting objects: 100% (695/695), done.\u001B[K\n",
"remote: Compressing objects: 100% (397/397), done.\u001B[K\n",
"remote: Total 992 (delta 375), reused 564 (delta 253), pack-reused 297\u001B[K\n",
"remote: Enumerating objects: 992, done.\u001b[K\n",
"remote: Counting objects: 100% (695/695), done.\u001b[K\n",
"remote: Compressing objects: 100% (397/397), done.\u001b[K\n",
"remote: Total 992 (delta 375), reused 564 (delta 253), pack-reused 297\u001b[K\n",
"Receiving objects: 100% (992/992), 30.78 MiB | 29.43 MiB/s, done.\n",
"Resolving deltas: 100% (510/510), done.\n",
"Cloning into 'taming-transformers'...\n",
"remote: Enumerating objects: 1335, done.\u001B[K\n",
"remote: Counting objects: 100% (525/525), done.\u001B[K\n",
"remote: Compressing objects: 100% (493/493), done.\u001B[K\n",
"remote: Total 1335 (delta 58), reused 481 (delta 30), pack-reused 810\u001B[K\n",
"remote: Enumerating objects: 1335, done.\u001b[K\n",
"remote: Counting objects: 100% (525/525), done.\u001b[K\n",
"remote: Compressing objects: 100% (493/493), done.\u001b[K\n",
"remote: Total 1335 (delta 58), reused 481 (delta 30), pack-reused 810\u001b[K\n",
"Receiving objects: 100% (1335/1335), 412.35 MiB | 30.53 MiB/s, done.\n",
"Resolving deltas: 100% (267/267), done.\n",
"Obtaining file:///content/taming-transformers\n",
@ -73,23 +73,24 @@
"Installing collected packages: taming-transformers\n",
" Running setup.py develop for taming-transformers\n",
"Successfully installed taming-transformers-0.0.1\n",
"\u001B[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"tensorflow 2.8.0 requires tf-estimator-nightly==2.8.0.dev2021122109, which is not installed.\n",
"arviz 0.11.4 requires typing-extensions<4,>=3.7.4.3, but you have typing-extensions 4.1.1 which is incompatible.\u001B[0m\n"
"arviz 0.11.4 requires typing-extensions<4,>=3.7.4.3, but you have typing-extensions 4.1.1 which is incompatible.\u001b[0m\n"
]
}
],
"source": [
"#@title Installation\n",
"# @title Installation\n",
"!git clone https://github.com/CompVis/latent-diffusion.git\n",
"!git clone https://github.com/CompVis/taming-transformers\n",
"!pip install -e ./taming-transformers\n",
"!pip install omegaconf>=2.0.0 pytorch-lightning>=1.0.8 torch-fidelity einops\n",
"\n",
"import sys\n",
"\n",
"sys.path.append(\".\")\n",
"sys.path.append('./taming-transformers')\n",
"from taming.models import vqgan "
"sys.path.append(\"./taming-transformers\")\n",
"from taming.models import vqgan"
]
},
{
@ -104,11 +105,11 @@
{
"cell_type": "code",
"source": [
"#@title Download\n",
"%cd latent-diffusion/ \n",
"# @title Download\n",
"%cd latent-diffusion/\n",
"\n",
"!mkdir -p models/ldm/cin256-v2/\n",
"!wget -O models/ldm/cin256-v2/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/cin/model.ckpt "
"!wget -O models/ldm/cin256-v2/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/cin/model.ckpt"
],
"metadata": {
"colab": {
@ -203,7 +204,7 @@
{
"cell_type": "code",
"source": [
"#@title loading utils\n",
"# @title loading utils\n",
"import torch\n",
"from omegaconf import OmegaConf\n",
"\n",
@ -212,7 +213,7 @@
"\n",
"def load_model_from_config(config, ckpt):\n",
" print(f\"Loading model from {ckpt}\")\n",
" pl_sd = torch.load(ckpt)#, map_location=\"cpu\")\n",
" pl_sd = torch.load(ckpt) # , map_location=\"cpu\")\n",
" sd = pl_sd[\"state_dict\"]\n",
" model = instantiate_from_config(config.model)\n",
" m, u = model.load_state_dict(sd, strict=False)\n",
@ -222,7 +223,7 @@
"\n",
"\n",
"def get_model():\n",
" config = OmegaConf.load(\"configs/latent-diffusion/cin256-v2.yaml\") \n",
" config = OmegaConf.load(\"configs/latent-diffusion/cin256-v2.yaml\")\n",
" model = load_model_from_config(config, \"models/ldm/cin256-v2/model.ckpt\")\n",
" return model"
],
@ -276,18 +277,18 @@
{
"cell_type": "code",
"source": [
"import numpy as np \n",
"import numpy as np\n",
"from PIL import Image\n",
"from einops import rearrange\n",
"from torchvision.utils import make_grid\n",
"\n",
"\n",
"classes = [25, 187, 448, 992] # define classes to be sampled here\n",
"classes = [25, 187, 448, 992] # define classes to be sampled here\n",
"n_samples_per_class = 6\n",
"\n",
"ddim_steps = 20\n",
"ddim_eta = 0.0\n",
"scale = 3.0 # for unconditional guidance\n",
"scale = 3.0 # for unconditional guidance\n",
"\n",
"\n",
"all_samples = list()\n",
@ -295,36 +296,39 @@
"with torch.no_grad():\n",
" with model.ema_scope():\n",
" uc = model.get_learned_conditioning(\n",
" {model.cond_stage_key: torch.tensor(n_samples_per_class*[1000]).to(model.device)}\n",
" )\n",
" \n",
" {model.cond_stage_key: torch.tensor(n_samples_per_class * [1000]).to(model.device)}\n",
" )\n",
"\n",
" for class_label in classes:\n",
" print(f\"rendering {n_samples_per_class} examples of class '{class_label}' in {ddim_steps} steps and using s={scale:.2f}.\")\n",
" xc = torch.tensor(n_samples_per_class*[class_label])\n",
" print(\n",
" f\"rendering {n_samples_per_class} examples of class '{class_label}' in {ddim_steps} steps and using s={scale:.2f}.\"\n",
" )\n",
" xc = torch.tensor(n_samples_per_class * [class_label])\n",
" c = model.get_learned_conditioning({model.cond_stage_key: xc.to(model.device)})\n",
" \n",
" samples_ddim, _ = sampler.sample(S=ddim_steps,\n",
" conditioning=c,\n",
" batch_size=n_samples_per_class,\n",
" shape=[3, 64, 64],\n",
" verbose=False,\n",
" unconditional_guidance_scale=scale,\n",
" unconditional_conditioning=uc, \n",
" eta=ddim_eta)\n",
"\n",
" samples_ddim, _ = sampler.sample(\n",
" S=ddim_steps,\n",
" conditioning=c,\n",
" batch_size=n_samples_per_class,\n",
" shape=[3, 64, 64],\n",
" verbose=False,\n",
" unconditional_guidance_scale=scale,\n",
" unconditional_conditioning=uc,\n",
" eta=ddim_eta,\n",
" )\n",
"\n",
" x_samples_ddim = model.decode_first_stage(samples_ddim)\n",
" x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, \n",
" min=0.0, max=1.0)\n",
" x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)\n",
" all_samples.append(x_samples_ddim)\n",
"\n",
"\n",
"# display as grid\n",
"grid = torch.stack(all_samples, 0)\n",
"grid = rearrange(grid, 'n b c h w -> (n b) c h w')\n",
"grid = rearrange(grid, \"n b c h w -> (n b) c h w\")\n",
"grid = make_grid(grid, nrow=n_samples_per_class)\n",
"\n",
"# to image\n",
"grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()\n",
"grid = 255.0 * rearrange(grid, \"c h w -> h w c\").cpu().numpy()\n",
"Image.fromarray(grid.astype(np.uint8))"
],
"metadata": {