Merge branch 'blessedcoolant-grounding_segment_anything' into ryan/clothing-workflow-sam

This commit is contained in:
Ryan Dick 2024-07-25 15:36:55 -04:00
commit 09046e811f
50 changed files with 9934 additions and 1 deletions

View File

@ -0,0 +1,76 @@
from typing import Dict, cast
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.grounding_segment_anything.gsa import GroundingSegmentAnythingDetector
from invokeai.backend.util.devices import TorchDevice
GROUNDING_SEGMENT_ANYTHING_MODELS = {
"groundingdino_swint_ogc": "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth",
"segment_anything_vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
}
@invocation(
"segment_anything",
title="Segment Anything",
tags=["grounding_dino", "segment", "anything"],
category="image",
version="1.0.0",
)
class SegmentAnythingInvocation(BaseInvocation):
"""Automatically generate masks from an image using GroundingDINO & Segment Anything"""
image: ImageField = InputField(description="The image to process")
prompt: str = InputField(default="", description="Keywords to segment", title="Prompt")
box_threshold: float = InputField(
default=0.5, ge=0, le=1, description="Threshold of box detection", title="Box Threshold"
)
text_threshold: float = InputField(
default=0.5, ge=0, le=1, description="Threshold of text detection", title="Text Threshold"
)
nms_threshold: float = InputField(
default=0.8, ge=0, le=1, description="Threshold of nms detection", title="NMS Threshold"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
input_image = context.images.get_pil(self.image.image_name)
grounding_dino_model = context.models.load_remote_model(
GROUNDING_SEGMENT_ANYTHING_MODELS["groundingdino_swint_ogc"]
)
segment_anything_model = context.models.load_remote_model(
GROUNDING_SEGMENT_ANYTHING_MODELS["segment_anything_vit_h"]
)
with (
grounding_dino_model.model_on_device() as (_, grounding_dino_state_dict),
segment_anything_model.model_on_device() as (_, segment_anything_state_dict),
):
if not grounding_dino_state_dict or not segment_anything_state_dict:
raise RuntimeError("Unable to load segmentation models")
grounding_dino = GroundingSegmentAnythingDetector.build_grounding_dino(
cast(Dict[str, torch.Tensor], grounding_dino_state_dict), TorchDevice.choose_torch_device()
)
segment_anything = GroundingSegmentAnythingDetector.build_segment_anything(
cast(Dict[str, torch.Tensor], segment_anything_state_dict), TorchDevice.choose_torch_device()
)
detector = GroundingSegmentAnythingDetector(grounding_dino, segment_anything)
mask = detector.predict(
input_image, self.prompt, self.box_threshold, self.text_threshold, self.nms_threshold
)
image_dto = context.images.save(mask)
"""Builds an ImageOutput and its ImageField"""
processed_image_field = ImageField(image_name=image_dto.image_name)
return ImageOutput(
image=processed_image_field,
width=input_image.width,
height=input_image.height,
)

View File

@ -0,0 +1,43 @@
batch_size = 1
modelname = "groundingdino"
backbone = "swin_B_384_22k"
position_embedding = "sine"
pe_temperatureH = 20
pe_temperatureW = 20
return_interm_indices = [1, 2, 3]
backbone_freeze_keywords = None
enc_layers = 6
dec_layers = 6
pre_norm = False
dim_feedforward = 2048
hidden_dim = 256
dropout = 0.0
nheads = 8
num_queries = 900
query_dim = 4
num_patterns = 0
num_feature_levels = 4
enc_n_points = 4
dec_n_points = 4
two_stage_type = "standard"
two_stage_bbox_embed_share = False
two_stage_class_embed_share = False
transformer_activation = "relu"
dec_pred_bbox_embed_share = True
dn_box_noise_scale = 1.0
dn_label_noise_ratio = 0.5
dn_label_coef = 1.0
dn_bbox_coef = 1.0
embed_init_tgt = True
dn_labelbook_size = 2000
max_text_len = 256
text_encoder_type = "bert-base-uncased"
use_text_enhancer = True
use_fusion_layer = True
use_checkpoint = True
use_transformer_ckpt = True
use_text_cross_attention = True
text_dropout = 0.0
fusion_dropout = 0.0
fusion_droppath = 0.1
sub_sentence_present = True

View File

@ -0,0 +1,43 @@
batch_size = 1
modelname = "groundingdino"
backbone = "swin_T_224_1k"
position_embedding = "sine"
pe_temperatureH = 20
pe_temperatureW = 20
return_interm_indices = [1, 2, 3]
backbone_freeze_keywords = None
enc_layers = 6
dec_layers = 6
pre_norm = False
dim_feedforward = 2048
hidden_dim = 256
dropout = 0.0
nheads = 8
num_queries = 900
query_dim = 4
num_patterns = 0
num_feature_levels = 4
enc_n_points = 4
dec_n_points = 4
two_stage_type = "standard"
two_stage_bbox_embed_share = False
two_stage_class_embed_share = False
transformer_activation = "relu"
dec_pred_bbox_embed_share = True
dn_box_noise_scale = 1.0
dn_label_noise_ratio = 0.5
dn_label_coef = 1.0
dn_bbox_coef = 1.0
embed_init_tgt = True
dn_labelbook_size = 2000
max_text_len = 256
text_encoder_type = "bert-base-uncased"
use_text_enhancer = True
use_fusion_layer = True
use_checkpoint = True
use_transformer_ckpt = True
use_text_cross_attention = True
text_dropout = 0.0
fusion_dropout = 0.0
fusion_droppath = 0.1
sub_sentence_present = True

View File

@ -0,0 +1,299 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Transforms and data augmentation for both image + bbox.
"""
import os
import random
import PIL
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.box_ops import box_xyxy_to_cxcywh
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.misc import interpolate
def crop(image, target, region):
cropped_image = F.crop(image, *region)
target = target.copy()
i, j, h, w = region
# should we do something wrt the original size?
target["size"] = torch.tensor([h, w])
fields = ["labels", "area", "iscrowd", "positive_map"]
if "boxes" in target:
boxes = target["boxes"]
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
target["boxes"] = cropped_boxes.reshape(-1, 4)
target["area"] = area
fields.append("boxes")
if "masks" in target:
# FIXME should we update the area here if there are no boxes?
target["masks"] = target["masks"][:, i : i + h, j : j + w]
fields.append("masks")
# remove elements for which the boxes or masks that have zero area
if "boxes" in target or "masks" in target:
# favor boxes selection when defining which elements to keep
# this is compatible with previous implementation
if "boxes" in target:
cropped_boxes = target["boxes"].reshape(-1, 2, 2)
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
else:
keep = target["masks"].flatten(1).any(1)
for field in fields:
if field in target:
target[field] = target[field][keep]
if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO":
# for debug and visualization only.
if "strings_positive" in target:
target["strings_positive"] = [_i for _i, _j in zip(target["strings_positive"], keep, strict=False) if _j]
return cropped_image, target
def hflip(image, target):
flipped_image = F.hflip(image)
w, h = image.size
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
target["boxes"] = boxes
if "masks" in target:
target["masks"] = target["masks"].flip(-1)
return flipped_image, target
def resize(image, target, size, max_size=None):
# size can be min_size (scalar) or (w, h) tuple
def get_size_with_aspect_ratio(image_size, size, max_size=None):
w, h = image_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
size = get_size(image.size, size, max_size)
rescaled_image = F.resize(image, size)
if target is None:
return rescaled_image, None
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size, strict=False))
ratio_width, ratio_height = ratios
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
target["boxes"] = scaled_boxes
if "area" in target:
area = target["area"]
scaled_area = area * (ratio_width * ratio_height)
target["area"] = scaled_area
h, w = size
target["size"] = torch.tensor([h, w])
if "masks" in target:
target["masks"] = interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5
return rescaled_image, target
def pad(image, target, padding):
# assumes that we only pad on the bottom right corners
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
if target is None:
return padded_image, None
target = target.copy()
# should we do something wrt the original size?
target["size"] = torch.tensor(padded_image.size[::-1])
if "masks" in target:
target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1]))
return padded_image, target
class ResizeDebug(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
return resize(img, target, self.size)
class RandomCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
region = T.RandomCrop.get_params(img, self.size)
return crop(img, target, region)
class RandomSizeCrop(object):
def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False):
# respect_boxes: True to keep all boxes
# False to tolerence box filter
self.min_size = min_size
self.max_size = max_size
self.respect_boxes = respect_boxes
def __call__(self, img: PIL.Image.Image, target: dict):
init_boxes = len(target["boxes"])
max_patience = 10
for i in range(max_patience):
w = random.randint(self.min_size, min(img.width, self.max_size))
h = random.randint(self.min_size, min(img.height, self.max_size))
region = T.RandomCrop.get_params(img, [h, w])
result_img, result_target = crop(img, target, region)
if not self.respect_boxes or len(result_target["boxes"]) == init_boxes or i == max_patience - 1:
return result_img, result_target
return result_img, result_target
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
image_width, image_height = img.size
crop_height, crop_width = self.size
crop_top = int(round((image_height - crop_height) / 2.0))
crop_left = int(round((image_width - crop_width) / 2.0))
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
class RandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return hflip(img, target)
return img, target
class RandomResize(object):
def __init__(self, sizes, max_size=None):
assert isinstance(sizes, (list, tuple))
self.sizes = sizes
self.max_size = max_size
def __call__(self, img, target=None):
size = random.choice(self.sizes)
return resize(img, target, size, self.max_size)
class RandomPad(object):
def __init__(self, max_pad):
self.max_pad = max_pad
def __call__(self, img, target):
pad_x = random.randint(0, self.max_pad)
pad_y = random.randint(0, self.max_pad)
return pad(img, target, (pad_x, pad_y))
class RandomSelect(object):
"""
Randomly selects between transforms1 and transforms2,
with probability p for transforms1 and (1 - p) for transforms2
"""
def __init__(self, transforms1, transforms2, p=0.5):
self.transforms1 = transforms1
self.transforms2 = transforms2
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return self.transforms1(img, target)
return self.transforms2(img, target)
class ToTensor(object):
def __call__(self, img, target):
return F.to_tensor(img), target
class RandomErasing(object):
def __init__(self, *args, **kwargs):
self.eraser = T.RandomErasing(*args, **kwargs)
def __call__(self, img, target):
return self.eraser(img), target
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image, target=None):
image = F.normalize(image, mean=self.mean, std=self.std)
if target is None:
return image, None
target = target.copy()
h, w = image.shape[-2:]
if "boxes" in target:
boxes = target["boxes"]
boxes = box_xyxy_to_cxcywh(boxes)
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
target["boxes"] = boxes
return image, target
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string

View File

@ -0,0 +1,17 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Copied from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.models.GroundingDINO.groundingdino import (
build_groundingdino,
)

View File

@ -0,0 +1 @@
from .backbone import build_backbone

View File

@ -0,0 +1,217 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Copied from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
"""
Backbone modules.
"""
from typing import Dict, List
import torch
import torch.nn.functional as F
import torchvision
from torch import nn
from torchvision.models._utils import IntermediateLayerGetter
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.models.GroundingDINO.backbone.position_encoding import (
build_position_encoding,
)
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.models.GroundingDINO.backbone.swin_transformer import (
build_swin_transformer,
)
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.misc import NestedTensor, is_main_process
class FrozenBatchNorm2d(torch.nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
without which any other models than torchvision.models.resnet[18,34,50,101]
produce nans.
"""
def __init__(self, n):
super(FrozenBatchNorm2d, self).__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super(FrozenBatchNorm2d, self)._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it fuser-friendly
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
rv = self.running_var.reshape(1, -1, 1, 1)
rm = self.running_mean.reshape(1, -1, 1, 1)
eps = 1e-5
scale = w * (rv + eps).rsqrt()
bias = b - rm * scale
return x * scale + bias
class BackboneBase(nn.Module):
def __init__(
self,
backbone: nn.Module,
train_backbone: bool,
num_channels: int,
return_interm_indices: list,
):
super().__init__()
for name, parameter in backbone.named_parameters():
if not train_backbone or "layer2" not in name and "layer3" not in name and "layer4" not in name:
parameter.requires_grad_(False)
return_layers = {}
for idx, layer_index in enumerate(return_interm_indices):
return_layers.update({"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)})
# if len:
# if use_stage1_feature:
# return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
# else:
# return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"}
# else:
# return_layers = {'layer4': "0"}
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
self.num_channels = num_channels
def forward(self, tensor_list: NestedTensor):
xs = self.body(tensor_list.tensors)
out: Dict[str, NestedTensor] = {}
for name, x in xs.items():
m = tensor_list.mask
assert m is not None
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
out[name] = NestedTensor(x, mask)
# import ipdb; ipdb.set_trace()
return out
class Backbone(BackboneBase):
"""ResNet backbone with frozen BatchNorm."""
def __init__(
self,
name: str,
train_backbone: bool,
dilation: bool,
return_interm_indices: list,
batch_norm=FrozenBatchNorm2d,
):
if name in ["resnet18", "resnet34", "resnet50", "resnet101"]:
backbone = getattr(torchvision.models, name)(
replace_stride_with_dilation=[False, False, dilation],
pretrained=is_main_process(),
norm_layer=batch_norm,
)
else:
raise NotImplementedError("Why you can get here with name {}".format(name))
# num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available."
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
num_channels_all = [256, 512, 1024, 2048]
num_channels = num_channels_all[4 - len(return_interm_indices) :]
super().__init__(backbone, train_backbone, num_channels, return_interm_indices)
class Joiner(nn.Sequential):
def __init__(self, backbone, position_embedding):
super().__init__(backbone, position_embedding)
def forward(self, tensor_list: NestedTensor):
xs = self[0](tensor_list)
out: List[NestedTensor] = []
pos = []
for name, x in xs.items():
out.append(x)
# position encoding
pos.append(self[1](x).to(x.tensors.dtype))
return out, pos
def build_backbone(args):
"""
Useful args:
- backbone: backbone name
- lr_backbone:
- dilation
- return_interm_indices: available: [0,1,2,3], [1,2,3], [3]
- backbone_freeze_keywords:
- use_checkpoint: for swin only for now
"""
position_embedding = build_position_encoding(args)
train_backbone = True
if not train_backbone:
raise ValueError("Please set lr_backbone > 0")
return_interm_indices = args.return_interm_indices
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
args.backbone_freeze_keywords
use_checkpoint = getattr(args, "use_checkpoint", False)
if args.backbone in ["resnet50", "resnet101"]:
backbone = Backbone(
args.backbone,
train_backbone,
args.dilation,
return_interm_indices,
batch_norm=FrozenBatchNorm2d,
)
bb_num_channels = backbone.num_channels
elif args.backbone in [
"swin_T_224_1k",
"swin_B_224_22k",
"swin_B_384_22k",
"swin_L_224_22k",
"swin_L_384_22k",
]:
pretrain_img_size = int(args.backbone.split("_")[-2])
backbone = build_swin_transformer(
args.backbone,
pretrain_img_size=pretrain_img_size,
out_indices=tuple(return_interm_indices),
dilation=False,
use_checkpoint=use_checkpoint,
)
bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :]
else:
raise NotImplementedError("Unknown backbone {}".format(args.backbone))
assert len(bb_num_channels) == len(
return_interm_indices
), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}"
model = Joiner(backbone, position_embedding)
model.num_channels = bb_num_channels
assert isinstance(bb_num_channels, List), "bb_num_channels is expected to be a List but {}".format(
type(bb_num_channels)
)
# import ipdb; ipdb.set_trace()
return model

View File

@ -0,0 +1,176 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# DINO
# Copyright (c) 2022 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Copied from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
"""
Various positional encodings for the transformer.
"""
import math
import torch
from torch import nn
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.misc import NestedTensor
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, tensor_list: NestedTensor):
x = tensor_list.tensors
mask = tensor_list.mask
assert mask is not None
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
# if os.environ.get("SHILONG_AMP", None) == '1':
# eps = 1e-4
# else:
# eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
class PositionEmbeddingSineHW(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperatureH = temperatureH
self.temperatureW = temperatureW
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, tensor_list: NestedTensor):
x = tensor_list.tensors
mask = tensor_list.mask
assert mask is not None
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
# import ipdb; ipdb.set_trace()
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_tx = self.temperatureW ** (2 * (torch.div(dim_tx, 2, rounding_mode="floor")) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_tx
dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_ty = self.temperatureH ** (2 * (torch.div(dim_ty, 2, rounding_mode="floor")) / self.num_pos_feats)
pos_y = y_embed[:, :, :, None] / dim_ty
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
# import ipdb; ipdb.set_trace()
return pos
class PositionEmbeddingLearned(nn.Module):
"""
Absolute pos embedding, learned.
"""
def __init__(self, num_pos_feats=256):
super().__init__()
self.row_embed = nn.Embedding(50, num_pos_feats)
self.col_embed = nn.Embedding(50, num_pos_feats)
self.reset_parameters()
def reset_parameters(self):
nn.init.uniform_(self.row_embed.weight)
nn.init.uniform_(self.col_embed.weight)
def forward(self, tensor_list: NestedTensor):
x = tensor_list.tensors
h, w = x.shape[-2:]
i = torch.arange(w, device=x.device)
j = torch.arange(h, device=x.device)
x_emb = self.col_embed(i)
y_emb = self.row_embed(j)
pos = (
torch.cat(
[
x_emb.unsqueeze(0).repeat(h, 1, 1),
y_emb.unsqueeze(1).repeat(1, w, 1),
],
dim=-1,
)
.permute(2, 0, 1)
.unsqueeze(0)
.repeat(x.shape[0], 1, 1, 1)
)
return pos
def build_position_encoding(args):
N_steps = args.hidden_dim // 2
if args.position_embedding in ("v2", "sine"):
# TODO find a better way of exposing other arguments
position_embedding = PositionEmbeddingSineHW(
N_steps,
temperatureH=args.pe_temperatureH,
temperatureW=args.pe_temperatureW,
normalize=True,
)
elif args.position_embedding in ("v3", "learned"):
position_embedding = PositionEmbeddingLearned(N_steps)
else:
raise ValueError(f"not supported {args.position_embedding}")
return position_embedding

View File

@ -0,0 +1,766 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# DINO
# Copyright (c) 2022 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# --------------------------------------------------------
# modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.misc import NestedTensor
class Mlp(nn.Module):
"""Multilayer perceptron."""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
"""Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(
self,
dim,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Module):
"""Swin Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(
self,
dim,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.H = None
self.W = None
def forward(self, x, mask_matrix):
"""Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
mask_matrix: Attention mask for cyclic shift.
"""
B, L, C = x.shape
H, W = self.H, self.W
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchMerging(nn.Module):
"""Patch Merging Layer
Args:
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x, H, W):
"""Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
# padding
pad_input = (H % 2 == 1) or (W % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
class BasicLayer(nn.Module):
"""A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of feature channels
depth (int): Depths of this stage.
num_heads (int): Number of attention head.
window_size (int): Local window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(
self,
dim,
depth,
num_heads,
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False,
):
super().__init__()
self.window_size = window_size
self.shift_size = window_size // 2
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList(
[
SwinTransformerBlock(
dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, H, W):
"""Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device, dtype=x.dtype) # 1 Hp Wp 1
h_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
w_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
for blk in self.blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask)
if self.downsample is not None:
x_down = self.downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x, H, W, x_down, Wh, Ww
else:
return x, H, W, x, H, W
class PatchEmbed(nn.Module):
"""Image to Patch Embedding
Args:
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, H, W = x.size()
if W % self.patch_size[1] != 0:
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
if H % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
x = self.proj(x) # B C Wh Ww
if self.norm is not None:
Wh, Ww = x.size(2), x.size(3)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
return x
class SwinTransformer(nn.Module):
"""Swin Transformer backbone.
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
pretrain_img_size (int): Input image size for training the pretrained model,
used in absolute postion embedding. Default 224.
patch_size (int | tuple(int)): Patch size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
depths (tuple[int]): Depths of each Swin Transformer stage.
num_heads (tuple[int]): Number of attention head of each stage.
window_size (int): Window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): Dropout rate.
attn_drop_rate (float): Attention dropout rate. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
out_indices (Sequence[int]): Output from which stages.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
dilation (bool): if True, the output size if 16x downsample, ow 32x downsample.
"""
def __init__(
self,
pretrain_img_size=224,
patch_size=4,
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.2,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
dilation=False,
use_checkpoint=False,
):
super().__init__()
self.pretrain_img_size = pretrain_img_size
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.dilation = dilation
# if use_checkpoint:
# print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!")
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None,
)
# absolute position embedding
if self.ape:
pretrain_img_size = to_2tuple(pretrain_img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [
pretrain_img_size[0] // patch_size[0],
pretrain_img_size[1] // patch_size[1],
]
self.absolute_pos_embed = nn.Parameter(
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
)
trunc_normal_(self.absolute_pos_embed, std=0.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
# prepare downsample list
downsamplelist = [PatchMerging for i in range(self.num_layers)]
downsamplelist[-1] = None
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
if self.dilation:
downsamplelist[-2] = None
num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2
for i_layer in range(self.num_layers):
layer = BasicLayer(
# dim=int(embed_dim * 2 ** i_layer),
dim=num_features[i_layer],
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
norm_layer=norm_layer,
# downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
downsample=downsamplelist[i_layer],
use_checkpoint=use_checkpoint,
)
self.layers.append(layer)
# num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
self.num_features = num_features
# add a norm layer for each output
for i_layer in out_indices:
layer = norm_layer(num_features[i_layer])
layer_name = f"norm{i_layer}"
self.add_module(layer_name, layer)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1 and self.ape:
self.absolute_pos_embed.requires_grad = False
if self.frozen_stages >= 2:
self.pos_drop.eval()
for i in range(0, self.frozen_stages - 1):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
# def init_weights(self, pretrained=None):
# """Initialize the weights in backbone.
# Args:
# pretrained (str, optional): Path to pre-trained weights.
# Defaults to None.
# """
# def _init_weights(m):
# if isinstance(m, nn.Linear):
# trunc_normal_(m.weight, std=.02)
# if isinstance(m, nn.Linear) and m.bias is not None:
# nn.init.constant_(m.bias, 0)
# elif isinstance(m, nn.LayerNorm):
# nn.init.constant_(m.bias, 0)
# nn.init.constant_(m.weight, 1.0)
# if isinstance(pretrained, str):
# self.apply(_init_weights)
# logger = get_root_logger()
# load_checkpoint(self, pretrained, strict=False, logger=logger)
# elif pretrained is None:
# self.apply(_init_weights)
# else:
# raise TypeError('pretrained must be a str or None')
def forward_raw(self, x):
"""Forward function."""
x = self.patch_embed(x)
Wh, Ww = x.size(2), x.size(3)
if self.ape:
# interpolate the position embedding to the corresponding size
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic")
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
else:
x = x.flatten(2).transpose(1, 2)
x = self.pos_drop(x)
outs = []
for i in range(self.num_layers):
layer = self.layers[i]
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
# import ipdb; ipdb.set_trace()
if i in self.out_indices:
norm_layer = getattr(self, f"norm{i}")
x_out = norm_layer(x_out)
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
outs.append(out)
# in:
# torch.Size([2, 3, 1024, 1024])
# outs:
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
return tuple(outs)
def forward(self, tensor_list: NestedTensor):
x = tensor_list.tensors
"""Forward function."""
x = self.patch_embed(x)
Wh, Ww = x.size(2), x.size(3)
if self.ape:
# interpolate the position embedding to the corresponding size
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic")
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
else:
x = x.flatten(2).transpose(1, 2)
x = self.pos_drop(x)
outs = []
for i in range(self.num_layers):
layer = self.layers[i]
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
if i in self.out_indices:
norm_layer = getattr(self, f"norm{i}")
x_out = norm_layer(x_out)
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
outs.append(out)
# in:
# torch.Size([2, 3, 1024, 1024])
# out:
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
# collect for nesttensors
outs_dict = {}
for idx, out_i in enumerate(outs):
m = tensor_list.mask
assert m is not None
mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[0]
outs_dict[idx] = NestedTensor(out_i, mask)
return outs_dict
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(SwinTransformer, self).train(mode)
self._freeze_stages()
def build_swin_transformer(modelname, pretrain_img_size, **kw):
assert modelname in [
"swin_T_224_1k",
"swin_B_224_22k",
"swin_B_384_22k",
"swin_L_224_22k",
"swin_L_384_22k",
]
model_para_dict = {
"swin_T_224_1k": dict(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7),
"swin_B_224_22k": dict(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7),
"swin_B_384_22k": dict(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12),
"swin_L_224_22k": dict(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7),
"swin_L_384_22k": dict(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12),
}
kw_cgf = model_para_dict[modelname]
kw_cgf.update(kw)
model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf)
return model
if __name__ == "__main__":
model = build_swin_transformer("swin_L_384_22k", 384, dilation=True)
x = torch.rand(2, 3, 1024, 1024)
y = model.forward_raw(x)
import ipdb
ipdb.set_trace()
x = torch.rand(2, 3, 384, 384)
y = model.forward_raw(x)

View File

@ -0,0 +1,250 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
import torch
from torch import nn
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
class BertModelWarper(nn.Module):
def __init__(self, bert_model):
super().__init__()
# self.bert = bert_modelc
self.config = bert_model.config
self.embeddings = bert_model.embeddings
self.encoder = bert_model.encoder
self.pooler = bert_model.pooler
self.get_extended_attention_mask = bert_model.get_extended_attention_mask
self.invert_attention_mask = bert_model.invert_attention_mask
self.get_head_mask = bert_model.get_head_mask
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class TextEncoderShell(nn.Module):
def __init__(self, text_encoder):
super().__init__()
self.text_encoder = text_encoder
self.config = self.text_encoder.config
def forward(self, **kw):
# feed into text encoder
return self.text_encoder(**kw)
def generate_masks_with_special_tokens(tokenized, special_tokens_list, tokenizer):
"""Generate attention mask between each pair of special tokens
Args:
input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
special_tokens_mask (list): special tokens mask.
Returns:
torch.Tensor: attention mask between each special tokens.
"""
input_ids = tokenized["input_ids"]
bs, num_token = input_ids.shape
# special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
for special_token in special_tokens_list:
special_tokens_mask |= input_ids == special_token
# idxs: each row is a list of indices of special tokens
idxs = torch.nonzero(special_tokens_mask)
# generate attention mask and positional ids
attention_mask = torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1)
position_ids = torch.zeros((bs, num_token), device=input_ids.device)
previous_col = 0
for i in range(idxs.shape[0]):
row, col = idxs[i]
if (col == 0) or (col == num_token - 1):
attention_mask[row, col, col] = True
position_ids[row, col] = 0
else:
attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
position_ids[row, previous_col + 1 : col + 1] = torch.arange(0, col - previous_col, device=input_ids.device)
previous_col = col
# # padding mask
# padding_mask = tokenized['attention_mask']
# attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
return attention_mask, position_ids.to(torch.long)
def generate_masks_with_special_tokens_and_transfer_map(tokenized, special_tokens_list, tokenizer):
"""Generate attention mask between each pair of special tokens
Args:
input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
special_tokens_mask (list): special tokens mask.
Returns:
torch.Tensor: attention mask between each special tokens.
"""
input_ids = tokenized["input_ids"]
bs, num_token = input_ids.shape
# special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
for special_token in special_tokens_list:
special_tokens_mask |= input_ids == special_token
# idxs: each row is a list of indices of special tokens
idxs = torch.nonzero(special_tokens_mask)
# generate attention mask and positional ids
attention_mask = torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1)
position_ids = torch.zeros((bs, num_token), device=input_ids.device)
cate_to_token_mask_list = [[] for _ in range(bs)]
previous_col = 0
for i in range(idxs.shape[0]):
row, col = idxs[i]
if (col == 0) or (col == num_token - 1):
attention_mask[row, col, col] = True
position_ids[row, col] = 0
else:
attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
position_ids[row, previous_col + 1 : col + 1] = torch.arange(0, col - previous_col, device=input_ids.device)
c2t_maski = torch.zeros((num_token), device=input_ids.device).bool()
c2t_maski[previous_col + 1 : col] = True
cate_to_token_mask_list[row].append(c2t_maski)
previous_col = col
cate_to_token_mask_list = [
torch.stack(cate_to_token_mask_listi, dim=0) for cate_to_token_mask_listi in cate_to_token_mask_list
]
# # padding mask
# padding_mask = tokenized['attention_mask']
# attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
return attention_mask, position_ids.to(torch.long), cate_to_token_mask_list

View File

@ -0,0 +1,295 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath
class FeatureResizer(nn.Module):
"""
This class takes as input a set of embeddings of dimension C1 and outputs a set of
embedding of dimension C2, after a linear transformation, dropout and normalization (LN).
"""
def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True):
super().__init__()
self.do_ln = do_ln
# Object feature encoding
self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True)
self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12)
self.dropout = nn.Dropout(dropout)
def forward(self, encoder_features):
x = self.fc(encoder_features)
if self.do_ln:
x = self.layer_norm(x)
output = self.dropout(x)
return output
def l1norm(X, dim, eps=1e-8):
"""L1-normalize columns of X"""
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
X = torch.div(X, norm)
return X
def l2norm(X, dim, eps=1e-8):
"""L2-normalize columns of X"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8):
"""
query: (n_context, queryL, d)
context: (n_context, sourceL, d)
"""
_, queryL = query.size(0), query.size(1)
batch_size, sourceL = context.size(0), context.size(1)
# Get attention
# --> (batch, d, queryL)
queryT = torch.transpose(query, 1, 2)
# (batch, sourceL, d)(batch, d, queryL)
# --> (batch, sourceL, queryL)
attn = torch.bmm(context, queryT)
if raw_feature_norm == "softmax":
# --> (batch*sourceL, queryL)
attn = attn.view(batch_size * sourceL, queryL)
attn = nn.Softmax()(attn)
# --> (batch, sourceL, queryL)
attn = attn.view(batch_size, sourceL, queryL)
elif raw_feature_norm == "l2norm":
attn = l2norm(attn, 2)
elif raw_feature_norm == "clipped_l2norm":
attn = nn.LeakyReLU(0.1)(attn)
attn = l2norm(attn, 2)
else:
raise ValueError("unknown first norm type:", raw_feature_norm)
# --> (batch, queryL, sourceL)
attn = torch.transpose(attn, 1, 2).contiguous()
# --> (batch*queryL, sourceL)
attn = attn.view(batch_size * queryL, sourceL)
attn = nn.Softmax()(attn * smooth)
# --> (batch, queryL, sourceL)
attn = attn.view(batch_size, queryL, sourceL)
# --> (batch, sourceL, queryL)
attnT = torch.transpose(attn, 1, 2).contiguous()
# --> (batch, d, sourceL)
contextT = torch.transpose(context, 1, 2)
# (batch x d x sourceL)(batch x sourceL x queryL)
# --> (batch, d, queryL)
weightedContext = torch.bmm(contextT, attnT)
# --> (batch, queryL, d)
weightedContext = torch.transpose(weightedContext, 1, 2)
return weightedContext, attnT
class BiMultiHeadAttention(nn.Module):
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
super(BiMultiHeadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.v_dim = v_dim
self.l_dim = l_dim
assert (
self.head_dim * self.num_heads == self.embed_dim
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and \
`num_heads`: {self.num_heads})."
self.scale = self.head_dim ** (-0.5)
self.dropout = dropout
self.v_proj = nn.Linear(self.v_dim, self.embed_dim)
self.l_proj = nn.Linear(self.l_dim, self.embed_dim)
self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim)
self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim)
self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim)
self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim)
self.stable_softmax_2d = True
self.clamp_min_for_underflow = True
self.clamp_max_for_overflow = True
self._reset_parameters()
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _reset_parameters(self):
nn.init.xavier_uniform_(self.v_proj.weight)
self.v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.l_proj.weight)
self.l_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.values_v_proj.weight)
self.values_v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.values_l_proj.weight)
self.values_l_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.out_v_proj.weight)
self.out_v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.out_l_proj.weight)
self.out_l_proj.bias.data.fill_(0)
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
"""_summary_
Args:
v (_type_): bs, n_img, dim
l (_type_): bs, n_text, dim
attention_mask_v (_type_, optional): _description_. bs, n_img
attention_mask_l (_type_, optional): _description_. bs, n_text
Returns:
_type_: _description_
"""
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
bsz, tgt_len, _ = v.size()
query_states = self.v_proj(v) * self.scale
key_states = self._shape(self.l_proj(l), -1, bsz)
value_v_states = self._shape(self.values_v_proj(v), -1, bsz)
value_l_states = self._shape(self.values_l_proj(l), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_v_states = value_v_states.view(*proj_shape)
value_l_states = value_l_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, \
but is {attn_weights.size()}"
)
if self.stable_softmax_2d:
attn_weights = attn_weights - attn_weights.max()
if self.clamp_min_for_underflow:
attn_weights = torch.clamp(
attn_weights, min=-50000
) # Do not increase -50000, data type half has quite limited range
if self.clamp_max_for_overflow:
attn_weights = torch.clamp(
attn_weights, max=50000
) # Do not increase 50000, data type half has quite limited range
attn_weights_T = attn_weights.transpose(1, 2)
attn_weights_l = attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0]
if self.clamp_min_for_underflow:
attn_weights_l = torch.clamp(
attn_weights_l, min=-50000
) # Do not increase -50000, data type half has quite limited range
if self.clamp_max_for_overflow:
attn_weights_l = torch.clamp(
attn_weights_l, max=50000
) # Do not increase 50000, data type half has quite limited range
# mask vison for language
if attention_mask_v is not None:
attention_mask_v = attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
attn_weights_l.masked_fill_(attention_mask_v, float("-inf"))
attn_weights_l = attn_weights_l.softmax(dim=-1)
# mask language for vision
if attention_mask_l is not None:
attention_mask_l = attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
attn_weights.masked_fill_(attention_mask_l, float("-inf"))
attn_weights_v = attn_weights.softmax(dim=-1)
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training)
attn_output_v = torch.bmm(attn_probs_v, value_l_states)
attn_output_l = torch.bmm(attn_probs_l, value_v_states)
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, \
but is {attn_output_v.size()}"
)
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim):
raise ValueError(
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, \
but is {attn_output_l.size()}"
)
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output_v = attn_output_v.transpose(1, 2)
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim)
attn_output_l = attn_output_l.transpose(1, 2)
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
attn_output_v = self.out_v_proj(attn_output_v)
attn_output_l = self.out_l_proj(attn_output_l)
return attn_output_v, attn_output_l
# Bi-Direction MHA (text->image, image->text)
class BiAttentionBlock(nn.Module):
def __init__(
self,
v_dim,
l_dim,
embed_dim,
num_heads,
dropout=0.1,
drop_path=0.0,
init_values=1e-4,
cfg=None,
):
"""
Inputs:
embed_dim - Dimensionality of input and attention feature vectors
hidden_dim - Dimensionality of hidden layer in feed-forward network
(usually 2-4x larger than embed_dim)
num_heads - Number of heads to use in the Multi-Head Attention block
dropout - Amount of dropout to apply in the feed-forward network
"""
super(BiAttentionBlock, self).__init__()
# pre layer norm
self.layer_norm_v = nn.LayerNorm(v_dim)
self.layer_norm_l = nn.LayerNorm(l_dim)
self.attn = BiMultiHeadAttention(
v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout
)
# add layer scale for training stability
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True)
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True)
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
v = self.layer_norm_v(v)
l = self.layer_norm_l(l)
delta_v, delta_l = self.attn(v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l)
# v, l = v + delta_v, l + delta_l
v = v + self.drop_path(self.gamma_v * delta_v)
l = l + self.drop_path(self.gamma_l * delta_l)
return v, l
# def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None)

View File

@ -0,0 +1,362 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR model and criterion classes.
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
import copy
from typing import List
import torch
import torch.nn.functional as F
from torch import nn
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util import get_tokenlizer
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.misc import (
NestedTensor,
inverse_sigmoid,
nested_tensor_from_tensor_list,
)
from ..registry import MODULE_BUILD_FUNCS
from .backbone import build_backbone
from .bertwarper import BertModelWarper, generate_masks_with_special_tokens_and_transfer_map
from .transformer import build_transformer
from .utils import MLP, ContrastiveEmbed
class GroundingDINO(nn.Module):
"""This is the Cross-Attention Detector module that performs object detection"""
def __init__(
self,
backbone,
transformer,
num_queries,
aux_loss=False,
iter_update=False,
query_dim=2,
num_feature_levels=1,
nheads=8,
# two stage
two_stage_type="no", # ['no', 'standard']
dec_pred_bbox_embed_share=True,
two_stage_class_embed_share=True,
two_stage_bbox_embed_share=True,
num_patterns=0,
dn_number=100,
dn_box_noise_scale=0.4,
dn_label_noise_ratio=0.5,
dn_labelbook_size=100,
text_encoder_type="bert-base-uncased",
sub_sentence_present=True,
max_text_len=256,
):
"""Initializes the model.
Parameters:
backbone: torch module of the backbone to be used. See backbone.py
transformer: torch module of the transformer architecture. See transformer.py
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
"""
super().__init__()
self.num_queries = num_queries
self.transformer = transformer
self.hidden_dim = hidden_dim = transformer.d_model
self.num_feature_levels = num_feature_levels
self.nheads = nheads
self.max_text_len = 256
self.sub_sentence_present = sub_sentence_present
# setting query dim
self.query_dim = query_dim
assert query_dim == 4
# for dn training
self.num_patterns = num_patterns
self.dn_number = dn_number
self.dn_box_noise_scale = dn_box_noise_scale
self.dn_label_noise_ratio = dn_label_noise_ratio
self.dn_labelbook_size = dn_labelbook_size
# bert
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
self.bert.pooler.dense.weight.requires_grad_(False)
self.bert.pooler.dense.bias.requires_grad_(False)
self.bert = BertModelWarper(bert_model=self.bert)
self.feat_map = nn.Linear(self.bert.config.hidden_size, self.hidden_dim, bias=True)
nn.init.constant_(self.feat_map.bias.data, 0)
nn.init.xavier_uniform_(self.feat_map.weight.data)
# freeze
# special tokens
self.specical_tokens = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"])
# prepare input projection layers
if num_feature_levels > 1:
num_backbone_outs = len(backbone.num_channels)
input_proj_list = []
for _ in range(num_backbone_outs):
in_channels = backbone.num_channels[_]
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
)
)
for _ in range(num_feature_levels - num_backbone_outs):
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(32, hidden_dim),
)
)
in_channels = hidden_dim
self.input_proj = nn.ModuleList(input_proj_list)
else:
assert two_stage_type == "no", "two_stage_type should be no if num_feature_levels=1 !!!"
self.input_proj = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
)
]
)
self.backbone = backbone
self.aux_loss = aux_loss
self.box_pred_damping = None
self.iter_update = iter_update
assert iter_update, "Why not iter_update?"
# prepare pred layers
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
# prepare class & box embed
_class_embed = ContrastiveEmbed()
_bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
if dec_pred_bbox_embed_share:
box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)]
else:
box_embed_layerlist = [copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers)]
class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)]
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
self.class_embed = nn.ModuleList(class_embed_layerlist)
self.transformer.decoder.bbox_embed = self.bbox_embed
self.transformer.decoder.class_embed = self.class_embed
# two stage
self.two_stage_type = two_stage_type
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(two_stage_type)
if two_stage_type != "no":
if two_stage_bbox_embed_share:
assert dec_pred_bbox_embed_share
self.transformer.enc_out_bbox_embed = _bbox_embed
else:
self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
if two_stage_class_embed_share:
assert dec_pred_bbox_embed_share
self.transformer.enc_out_class_embed = _class_embed
else:
self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
self.refpoint_embed = None
self._reset_parameters()
def _reset_parameters(self):
# init input_proj
for proj in self.input_proj:
nn.init.xavier_uniform_(proj[0].weight, gain=1)
nn.init.constant_(proj[0].bias, 0)
def init_ref_points(self, use_num_queries):
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
def forward(self, samples: NestedTensor, targets: List = None, **kw):
"""The forward expects a NestedTensor, which consists of:
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
It returns a dict with the following elements:
- "pred_logits": the classification logits (including no-object) for all queries.
Shape= [batch_size x num_queries x num_classes]
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
(center_x, center_y, width, height). These values are normalized in [0, 1],
relative to the size of each individual image (disregarding possible padding).
See PostProcess for information on how to retrieve the unnormalized bounding box.
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
dictionnaries containing the two above keys for each decoder layer.
"""
if targets is None:
captions = kw["captions"]
else:
captions = [t["caption"] for t in targets]
len(captions)
# encoder texts
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(samples.device)
(
text_self_attention_masks,
position_ids,
cate_to_token_mask_list,
) = generate_masks_with_special_tokens_and_transfer_map(tokenized, self.specical_tokens, self.tokenizer)
if text_self_attention_masks.shape[1] > self.max_text_len:
text_self_attention_masks = text_self_attention_masks[:, : self.max_text_len, : self.max_text_len]
position_ids = position_ids[:, : self.max_text_len]
tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
tokenized["attention_mask"] = tokenized["attention_mask"][:, : self.max_text_len]
tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : self.max_text_len]
# extract text embeddings
if self.sub_sentence_present:
tokenized_for_encoder = {k: v for k, v in tokenized.items() if k != "attention_mask"}
tokenized_for_encoder["attention_mask"] = text_self_attention_masks
tokenized_for_encoder["position_ids"] = position_ids
else:
# import ipdb; ipdb.set_trace()
tokenized_for_encoder = tokenized
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
encoded_text = self.feat_map(bert_output["last_hidden_state"]) # bs, 195, d_model
text_token_mask = tokenized.attention_mask.bool() # bs, 195
# text_token_mask: True for nomask, False for mask
# text_self_attention_masks: True for nomask, False for mask
if encoded_text.shape[1] > self.max_text_len:
encoded_text = encoded_text[:, : self.max_text_len, :]
text_token_mask = text_token_mask[:, : self.max_text_len]
position_ids = position_ids[:, : self.max_text_len]
text_self_attention_masks = text_self_attention_masks[:, : self.max_text_len, : self.max_text_len]
text_dict = {
"encoded_text": encoded_text, # bs, 195, d_model
"text_token_mask": text_token_mask, # bs, 195
"position_ids": position_ids, # bs, 195
"text_self_attention_masks": text_self_attention_masks, # bs, 195,195
}
# import ipdb; ipdb.set_trace()
if isinstance(samples, (list, torch.Tensor)):
samples = nested_tensor_from_tensor_list(samples)
features, poss = self.backbone(samples)
srcs = []
masks = []
for l, feat in enumerate(features):
src, mask = feat.decompose()
srcs.append(self.input_proj[l](src))
masks.append(mask)
assert mask is not None
if self.num_feature_levels > len(srcs):
_len_srcs = len(srcs)
for l in range(_len_srcs, self.num_feature_levels):
if l == _len_srcs:
src = self.input_proj[l](features[-1].tensors)
else:
src = self.input_proj[l](srcs[-1])
m = samples.mask
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
srcs.append(src)
masks.append(mask)
poss.append(pos_l)
input_query_bbox = input_query_label = attn_mask = None
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
)
# deformable-detr-like anchor update
outputs_coord_list = []
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(zip(reference[:-1], self.bbox_embed, hs)):
layer_delta_unsig = layer_bbox_embed(layer_hs)
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
outputs_coord_list.append(layer_outputs_unsig)
outputs_coord_list = torch.stack(outputs_coord_list)
# output
outputs_class = torch.stack(
[layer_cls_embed(layer_hs, text_dict) for layer_cls_embed, layer_hs in zip(self.class_embed, hs)]
)
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}
# # for intermediate outputs
# if self.aux_loss:
# out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list)
# # for encoder output
# if hs_enc is not None:
# # prepare intermediate outputs
# interm_coord = ref_enc[-1]
# interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
# out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
# out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
@MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino")
def build_groundingdino(args):
backbone = build_backbone(args)
transformer = build_transformer(args)
dn_labelbook_size = args.dn_labelbook_size
dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
sub_sentence_present = args.sub_sentence_present
model = GroundingDINO(
backbone,
transformer,
num_queries=args.num_queries,
aux_loss=True,
iter_update=True,
query_dim=4,
num_feature_levels=args.num_feature_levels,
nheads=args.nheads,
dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
two_stage_type=args.two_stage_type,
two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
two_stage_class_embed_share=args.two_stage_class_embed_share,
num_patterns=args.num_patterns,
dn_number=0,
dn_box_noise_scale=args.dn_box_noise_scale,
dn_label_noise_ratio=args.dn_label_noise_ratio,
dn_labelbook_size=dn_labelbook_size,
text_encoder_type=args.text_encoder_type,
sub_sentence_present=sub_sentence_present,
max_text_len=args.max_text_len,
)
return model

View File

@ -0,0 +1,340 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
# ------------------------------------------------------------------------------------------------
import math
import warnings
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import constant_, xavier_uniform_
# helpers
def _is_power_of_2(n):
if (not isinstance(n, int)) or (n < 0):
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
return (n & (n - 1) == 0) and n != 0
def multi_scale_deformable_attn_pytorch(
value: torch.Tensor,
value_spatial_shapes: torch.Tensor,
sampling_locations: torch.Tensor,
attention_weights: torch.Tensor,
) -> torch.Tensor:
bs, _, num_heads, embed_dims = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level, (H_, W_) in enumerate(value_spatial_shapes):
# bs, H_*W_, num_heads, embed_dims ->
# bs, H_*W_, num_heads*embed_dims ->
# bs, num_heads*embed_dims, H_*W_ ->
# bs*num_heads, embed_dims, H_, W_
value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
# bs, num_queries, num_heads, num_points, 2 ->
# bs, num_heads, num_queries, num_points, 2 ->
# bs*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
# bs*num_heads, embed_dims, num_queries, num_points
sampling_value_l_ = F.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
sampling_value_list.append(sampling_value_l_)
# (bs, num_queries, num_heads, num_levels, num_points) ->
# (bs, num_heads, num_queries, num_levels, num_points) ->
# (bs, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
bs * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(bs, num_heads * embed_dims, num_queries)
)
return output.transpose(1, 2).contiguous()
class MultiScaleDeformableAttention(nn.Module):
"""Multi-Scale Deformable Attention Module used in Deformable-DETR
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
<https://arxiv.org/pdf/2010.04159.pdf>`_.
Args:
embed_dim (int): The embedding dimension of Attention. Default: 256.
num_heads (int): The number of attention heads. Default: 8.
num_levels (int): The number of feature map used in Attention. Default: 4.
num_points (int): The number of sampling points for each query
in each head. Default: 4.
img2col_steps (int): The step used in image_to_column. Defualt: 64.
dropout (float): Dropout layer used in output. Default: 0.1.
batch_first (bool): if ``True``, then the input and output tensor will be
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
"""
def __init__(
self,
embed_dim: int = 256,
num_heads: int = 8,
num_levels: int = 4,
num_points: int = 4,
img2col_step: int = 64,
batch_first: bool = False,
):
super().__init__()
if embed_dim % num_heads != 0:
raise ValueError("embed_dim must be divisible by num_heads, but got {} and {}".format(embed_dim, num_heads))
head_dim = embed_dim // num_heads
self.batch_first = batch_first
if not _is_power_of_2(head_dim):
warnings.warn(
"""
You'd better set d_model in MSDeformAttn to make sure that
each dim of the attention head a power of 2, which is more efficient.
"""
)
self.im2col_step = img2col_step
self.embed_dim = embed_dim
self.num_heads = num_heads
self.num_levels = num_levels
self.num_points = num_points
self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2)
self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.output_proj = nn.Linear(embed_dim, embed_dim)
self.init_weights()
def _reset_parameters(self):
return self.init_weights()
def init_weights(self):
"""
Default initialization for Parameters of Module.
"""
constant_(self.sampling_offsets.weight.data, 0.0)
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(self.num_heads, 1, 1, 2)
.repeat(1, self.num_levels, self.num_points, 1)
)
for i in range(self.num_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
constant_(self.attention_weights.weight.data, 0.0)
constant_(self.attention_weights.bias.data, 0.0)
xavier_uniform_(self.value_proj.weight.data)
constant_(self.value_proj.bias.data, 0.0)
xavier_uniform_(self.output_proj.weight.data)
constant_(self.output_proj.bias.data, 0.0)
def freeze_sampling_offsets(self):
print("Freeze sampling offsets")
self.sampling_offsets.weight.requires_grad = False
self.sampling_offsets.bias.requires_grad = False
def freeze_attention_weights(self):
print("Freeze attention weights")
self.attention_weights.weight.requires_grad = False
self.attention_weights.bias.requires_grad = False
def forward(
self,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
value: Optional[torch.Tensor] = None,
query_pos: Optional[torch.Tensor] = None,
key_padding_mask: Optional[torch.Tensor] = None,
reference_points: Optional[torch.Tensor] = None,
spatial_shapes: Optional[torch.Tensor] = None,
level_start_index: Optional[torch.Tensor] = None,
**kwargs
) -> torch.Tensor:
"""Forward Function of MultiScaleDeformableAttention
Args:
query (torch.Tensor): Query embeddings with shape
`(num_query, bs, embed_dim)`
key (torch.Tensor): Key embeddings with shape
`(num_key, bs, embed_dim)`
value (torch.Tensor): Value embeddings with shape
`(num_key, bs, embed_dim)`
query_pos (torch.Tensor): The position embedding for `query`. Default: None.
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
indicating which elements within `key` to be ignored in attention.
reference_points (torch.Tensor): The normalized reference points
with shape `(bs, num_query, num_levels, 2)`,
all elements is range in [0, 1], top-left (0, 0),
bottom-right (1, 1), including padding are.
or `(N, Length_{query}, num_levels, 4)`, add additional
two dimensions `(h, w)` to form reference boxes.
spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
level_start_index (torch.Tensor): The start index of each level. A tensor with
shape `(num_levels, )` which can be represented as
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.
Returns:
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
"""
if value is None:
value = query
if query_pos is not None:
query = query + query_pos
if not self.batch_first:
# change to (bs, num_query ,embed_dims)
query = query.permute(1, 0, 2)
value = value.permute(1, 0, 2)
bs, num_query, _ = query.shape
bs, num_value, _ = value.shape
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
value = self.value_proj(value)
if key_padding_mask is not None:
value = value.masked_fill(key_padding_mask[..., None], float(0))
value = value.view(bs, num_value, self.num_heads, -1)
sampling_offsets = self.sampling_offsets(query).view(
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
)
attention_weights = self.attention_weights(query).view(
bs, num_query, self.num_heads, self.num_levels * self.num_points
)
attention_weights = attention_weights.softmax(-1)
attention_weights = attention_weights.view(
bs,
num_query,
self.num_heads,
self.num_levels,
self.num_points,
)
# bs, num_query, num_heads, num_levels, num_points, 2
if reference_points.shape[-1] == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif reference_points.shape[-1] == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
else:
raise ValueError(
"Last dim of reference_points must be 2 or 4, but get {} instead.".format(reference_points.shape[-1])
)
# if torch.cuda.is_available() and value.is_cuda:
# halffloat = False
# if value.dtype == torch.float16:
# halffloat = True
# value = value.float()
# sampling_locations = sampling_locations.float()
# attention_weights = attention_weights.float()
# output = MultiScaleDeformableAttnFunction.apply(
# value,
# spatial_shapes,
# level_start_index,
# sampling_locations,
# attention_weights,
# self.im2col_step,
# )
# if halffloat:
# output = output.half()
# else:
# output = multi_scale_deformable_attn_pytorch(value, spatial_shapes, sampling_locations, attention_weights)
output = multi_scale_deformable_attn_pytorch(value, spatial_shapes, sampling_locations, attention_weights)
output = self.output_proj(output)
if not self.batch_first:
output = output.permute(1, 0, 2)
return output
def create_dummy_class(klass, dependency, message=""):
"""
When a dependency of a class is not available, create a dummy class which throws ImportError
when used.
Args:
klass (str): name of the class.
dependency (str): name of the dependency.
message: extra message to print
Returns:
class: a class object
"""
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
if message:
err = err + " " + message
class _DummyMetaClass(type):
# throw error on class attribute access
def __getattr__(_, __): # noqa: B902
raise ImportError(err)
class _Dummy(object, metaclass=_DummyMetaClass):
# throw error on constructor
def __init__(self, *args, **kwargs):
raise ImportError(err)
return _Dummy
def create_dummy_func(func, dependency, message=""):
"""
When a dependency of a function is not available, create a dummy function which throws
ImportError when used.
Args:
func (str): name of the function.
dependency (str or list[str]): name(s) of the dependency.
message: extra message to print
Returns:
function: a function object
"""
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
if message:
err = err + " " + message
if isinstance(dependency, (list, tuple)):
dependency = ",".join(dependency)
def _dummy(*args, **kwargs):
raise ImportError(err)
return _dummy

View File

@ -0,0 +1,927 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# DINO
# Copyright (c) 2022 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR Transformer class.
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
from typing import Optional
import torch
import torch.utils.checkpoint as checkpoint
from torch import Tensor, nn
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.misc import inverse_sigmoid
from .fuse_modules import BiAttentionBlock
from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn
from .transformer_vanilla import TransformerEncoderLayer
from .utils import (
MLP,
_get_activation_fn,
_get_clones,
gen_encoder_output_proposals,
gen_sineembed_for_position,
get_sine_pos_embed,
)
class Transformer(nn.Module):
def __init__(
self,
d_model=256,
nhead=8,
num_queries=300,
num_encoder_layers=6,
num_unicoder_layers=0,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.0,
activation="relu",
normalize_before=False,
return_intermediate_dec=False,
query_dim=4,
num_patterns=0,
# for deformable encoder
num_feature_levels=1,
enc_n_points=4,
dec_n_points=4,
# init query
learnable_tgt_init=False,
# two stage
two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
embed_init_tgt=False,
# for text
use_text_enhancer=False,
use_fusion_layer=False,
use_checkpoint=False,
use_transformer_ckpt=False,
use_text_cross_attention=False,
text_dropout=0.1,
fusion_dropout=0.1,
fusion_droppath=0.0,
):
super().__init__()
self.num_feature_levels = num_feature_levels
self.num_encoder_layers = num_encoder_layers
self.num_unicoder_layers = num_unicoder_layers
self.num_decoder_layers = num_decoder_layers
self.num_queries = num_queries
assert query_dim == 4
# choose encoder layer type
encoder_layer = DeformableTransformerEncoderLayer(
d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points
)
if use_text_enhancer:
text_enhance_layer = TransformerEncoderLayer(
d_model=d_model,
nhead=nhead // 2,
dim_feedforward=dim_feedforward // 2,
dropout=text_dropout,
)
else:
text_enhance_layer = None
if use_fusion_layer:
feature_fusion_layer = BiAttentionBlock(
v_dim=d_model,
l_dim=d_model,
embed_dim=dim_feedforward // 2,
num_heads=nhead // 2,
dropout=fusion_dropout,
drop_path=fusion_droppath,
)
else:
feature_fusion_layer = None
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
assert encoder_norm is None
self.encoder = TransformerEncoder(
encoder_layer,
num_encoder_layers,
d_model=d_model,
num_queries=num_queries,
text_enhance_layer=text_enhance_layer,
feature_fusion_layer=feature_fusion_layer,
use_checkpoint=use_checkpoint,
use_transformer_ckpt=use_transformer_ckpt,
)
# choose decoder layer type
decoder_layer = DeformableTransformerDecoderLayer(
d_model,
dim_feedforward,
dropout,
activation,
num_feature_levels,
nhead,
dec_n_points,
use_text_cross_attention=use_text_cross_attention,
)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = TransformerDecoder(
decoder_layer,
num_decoder_layers,
decoder_norm,
return_intermediate=return_intermediate_dec,
d_model=d_model,
query_dim=query_dim,
num_feature_levels=num_feature_levels,
)
self.d_model = d_model
self.nhead = nhead
self.dec_layers = num_decoder_layers
self.num_queries = num_queries # useful for single stage model only
self.num_patterns = num_patterns
if not isinstance(num_patterns, int):
Warning("num_patterns should be int but {}".format(type(num_patterns)))
self.num_patterns = 0
if num_feature_levels > 1:
if self.num_encoder_layers > 0:
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
else:
self.level_embed = None
self.learnable_tgt_init = learnable_tgt_init
assert learnable_tgt_init, "why not learnable_tgt_init"
self.embed_init_tgt = embed_init_tgt
if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"):
self.tgt_embed = nn.Embedding(self.num_queries, d_model)
nn.init.normal_(self.tgt_embed.weight.data)
else:
self.tgt_embed = None
# for two stage
self.two_stage_type = two_stage_type
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(two_stage_type)
if two_stage_type == "standard":
# anchor selection at the output of encoder
self.enc_output = nn.Linear(d_model, d_model)
self.enc_output_norm = nn.LayerNorm(d_model)
self.two_stage_wh_embedding = None
if two_stage_type == "no":
self.init_ref_points(num_queries) # init self.refpoint_embed
self.enc_out_class_embed = None
self.enc_out_bbox_embed = None
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MSDeformAttn):
m._reset_parameters()
if self.num_feature_levels > 1 and self.level_embed is not None:
nn.init.normal_(self.level_embed)
def get_valid_ratio(self, mask):
_, H, W = mask.shape
valid_H = torch.sum(~mask[:, :, 0], 1)
valid_W = torch.sum(~mask[:, 0, :], 1)
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
return valid_ratio
def init_ref_points(self, use_num_queries):
self.refpoint_embed = nn.Embedding(use_num_queries, 4)
def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None, text_dict=None):
"""
Input:
- srcs: List of multi features [bs, ci, hi, wi]
- masks: List of multi masks [bs, hi, wi]
- refpoint_embed: [bs, num_dn, 4]. None in infer
- pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
- tgt: [bs, num_dn, d_model]. None in infer
"""
# prepare input for encoder
src_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
bs, c, h, w = src.shape
spatial_shape = (h, w)
spatial_shapes.append(spatial_shape)
src = src.flatten(2).transpose(1, 2) # bs, hw, c
mask = mask.flatten(1) # bs, hw
pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
if self.num_feature_levels > 1 and self.level_embed is not None:
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
else:
lvl_pos_embed = pos_embed
lvl_pos_embed_flatten.append(lvl_pos_embed)
src_flatten.append(src)
mask_flatten.append(mask)
src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1).to(src.dtype)
# two stage
# enc_topk_proposals = enc_refpoint_embed = None
#########################################################
# Begin Encoder
#########################################################
memory, memory_text = self.encoder(
src_flatten,
pos=lvl_pos_embed_flatten,
level_start_index=level_start_index,
spatial_shapes=spatial_shapes,
valid_ratios=valid_ratios,
key_padding_mask=mask_flatten,
memory_text=text_dict["encoded_text"],
text_attention_mask=~text_dict["text_token_mask"],
# we ~ the mask . False means use the token; True means pad the token
position_ids=text_dict["position_ids"],
text_self_attention_masks=text_dict["text_self_attention_masks"],
)
#########################################################
# End Encoder
# - memory: bs, \sum{hw}, c
# - mask_flatten: bs, \sum{hw}
# - lvl_pos_embed_flatten: bs, \sum{hw}, c
# - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
# - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
#########################################################
text_dict["encoded_text"] = memory_text
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
# if memory.isnan().any() | memory.isinf().any():
# import ipdb; ipdb.set_trace()
if self.two_stage_type == "standard":
output_memory, output_proposals = gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)
output_memory = self.enc_output_norm(self.enc_output(output_memory))
if text_dict is not None:
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory, text_dict)
else:
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)
topk_logits = enc_outputs_class_unselected.max(-1)[0]
enc_outputs_coord_unselected = (
self.enc_out_bbox_embed(output_memory) + output_proposals
) # (bs, \sum{hw}, 4) unsigmoid
topk = self.num_queries
topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq
# gather boxes
refpoint_embed_undetach = torch.gather(
enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
) # unsigmoid
refpoint_embed_ = refpoint_embed_undetach.detach()
init_box_proposal = torch.gather(
output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
).sigmoid() # sigmoid
# gather tgt
tgt_undetach = torch.gather(output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model))
if self.embed_init_tgt:
tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model
else:
tgt_ = tgt_undetach.detach()
if refpoint_embed is not None:
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
tgt = torch.cat([tgt, tgt_], dim=1)
else:
refpoint_embed, tgt = refpoint_embed_, tgt_
elif self.two_stage_type == "no":
tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model
refpoint_embed_ = self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, 4
if refpoint_embed is not None:
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
tgt = torch.cat([tgt, tgt_], dim=1)
else:
refpoint_embed, tgt = refpoint_embed_, tgt_
if self.num_patterns > 0:
tgt_embed = tgt.repeat(1, self.num_patterns, 1)
refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(
self.num_queries, 1
) # 1, n_q*n_pat, d_model
tgt = tgt_embed + tgt_pat
init_box_proposal = refpoint_embed_.sigmoid()
else:
raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type))
#########################################################
# End preparing tgt
# - tgt: bs, NQ, d_model
# - refpoint_embed(unsigmoid): bs, NQ, d_model
#########################################################
#########################################################
# Begin Decoder
#########################################################
hs, references = self.decoder(
tgt=tgt.transpose(0, 1),
memory=memory.transpose(0, 1),
memory_key_padding_mask=mask_flatten,
pos=lvl_pos_embed_flatten.transpose(0, 1),
refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
level_start_index=level_start_index,
spatial_shapes=spatial_shapes,
valid_ratios=valid_ratios,
tgt_mask=attn_mask,
memory_text=text_dict["encoded_text"],
text_attention_mask=~text_dict["text_token_mask"],
# we ~ the mask . False means use the token; True means pad the token
)
#########################################################
# End Decoder
# hs: n_dec, bs, nq, d_model
# references: n_dec+1, bs, nq, query_dim
#########################################################
#########################################################
# Begin postprocess
#########################################################
if self.two_stage_type == "standard":
hs_enc = tgt_undetach.unsqueeze(0)
ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0)
else:
hs_enc = ref_enc = None
#########################################################
# End postprocess
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
# ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
#########################################################
return hs, references, hs_enc, ref_enc, init_box_proposal
# hs: (n_dec, bs, nq, d_model)
# references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
# ref_enc: sigmoid coordinates. \
# (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None
class TransformerEncoder(nn.Module):
def __init__(
self,
encoder_layer,
num_layers,
d_model=256,
num_queries=300,
enc_layer_share=False,
text_enhance_layer=None,
feature_fusion_layer=None,
use_checkpoint=False,
use_transformer_ckpt=False,
):
"""_summary_
Args:
encoder_layer (_type_): _description_
num_layers (_type_): _description_
norm (_type_, optional): _description_. Defaults to None.
d_model (int, optional): _description_. Defaults to 256.
num_queries (int, optional): _description_. Defaults to 300.
enc_layer_share (bool, optional): _description_. Defaults to False.
"""
super().__init__()
# prepare layers
self.layers = []
self.text_layers = []
self.fusion_layers = []
if num_layers > 0:
self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share)
if text_enhance_layer is not None:
self.text_layers = _get_clones(text_enhance_layer, num_layers, layer_share=enc_layer_share)
if feature_fusion_layer is not None:
self.fusion_layers = _get_clones(feature_fusion_layer, num_layers, layer_share=enc_layer_share)
else:
self.layers = []
del encoder_layer
if text_enhance_layer is not None:
self.text_layers = []
del text_enhance_layer
if feature_fusion_layer is not None:
self.fusion_layers = []
del feature_fusion_layer
self.query_scale = None
self.num_queries = num_queries
self.num_layers = num_layers
self.d_model = d_model
self.use_checkpoint = use_checkpoint
self.use_transformer_ckpt = use_transformer_ckpt
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
reference_points_list = []
for lvl, (H_, W_) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
)
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(
self,
# for images
src: Tensor,
pos: Tensor,
spatial_shapes: Tensor,
level_start_index: Tensor,
valid_ratios: Tensor,
key_padding_mask: Tensor,
# for texts
memory_text: Tensor = None,
text_attention_mask: Tensor = None,
pos_text: Tensor = None,
text_self_attention_masks: Tensor = None,
position_ids: Tensor = None,
):
"""
Input:
- src: [bs, sum(hi*wi), 256]
- pos: pos embed for src. [bs, sum(hi*wi), 256]
- spatial_shapes: h,w of each level [num_level, 2]
- level_start_index: [num_level] start point of level in sum(hi*wi).
- valid_ratios: [bs, num_level, 2]
- key_padding_mask: [bs, sum(hi*wi)]
- memory_text: bs, n_text, 256
- text_attention_mask: bs, n_text
False for no padding; True for padding
- pos_text: bs, n_text, 256
- position_ids: bs, n_text
Intermedia:
- reference_points: [bs, sum(hi*wi), num_level, 2]
Outpus:
- output: [bs, sum(hi*wi), 256]
"""
output = src
# preparation and reshape
if self.num_layers > 0:
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
if self.text_layers:
# generate pos_text
bs, n_text, text_dim = memory_text.shape
if pos_text is None and position_ids is None:
pos_text = (
torch.arange(n_text, device=memory_text.device).float().unsqueeze(0).unsqueeze(-1).repeat(bs, 1, 1)
)
pos_text = get_sine_pos_embed(pos_text, num_pos_feats=256, exchange_xy=False)
if position_ids is not None:
pos_text = get_sine_pos_embed(position_ids[..., None], num_pos_feats=256, exchange_xy=False)
pos_text = pos_text.to(src.dtype)
# main process
for layer_id, layer in enumerate(self.layers):
# if output.isnan().any() or memory_text.isnan().any():
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
if self.fusion_layers:
if self.use_checkpoint:
output, memory_text = checkpoint.checkpoint(
self.fusion_layers[layer_id],
output,
memory_text,
key_padding_mask,
text_attention_mask,
)
else:
output, memory_text = self.fusion_layers[layer_id](
v=output,
l=memory_text,
attention_mask_v=key_padding_mask,
attention_mask_l=text_attention_mask,
)
if self.text_layers:
memory_text = self.text_layers[layer_id](
src=memory_text.transpose(0, 1),
src_mask=~text_self_attention_masks, # note we use ~ for mask here
src_key_padding_mask=text_attention_mask,
pos=(pos_text.transpose(0, 1) if pos_text is not None else None),
).transpose(0, 1)
# main process
if self.use_transformer_ckpt:
output = checkpoint.checkpoint(
layer,
output,
pos,
reference_points,
spatial_shapes,
level_start_index,
key_padding_mask,
)
else:
output = layer(
src=output,
pos=pos,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
key_padding_mask=key_padding_mask,
)
return output, memory_text
class TransformerDecoder(nn.Module):
def __init__(
self,
decoder_layer,
num_layers,
norm=None,
return_intermediate=False,
d_model=256,
query_dim=4,
num_feature_levels=1,
):
super().__init__()
if num_layers > 0:
self.layers = _get_clones(decoder_layer, num_layers)
else:
self.layers = []
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
assert return_intermediate, "support return_intermediate only"
self.query_dim = query_dim
assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
self.num_feature_levels = num_feature_levels
self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
self.query_pos_sine_scale = None
self.query_scale = None
self.bbox_embed = None
self.class_embed = None
self.d_model = d_model
self.ref_anchor_head = None
def forward(
self,
tgt,
memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
# for memory
level_start_index: Optional[Tensor] = None, # num_levels
spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
valid_ratios: Optional[Tensor] = None,
# for text
memory_text: Optional[Tensor] = None,
text_attention_mask: Optional[Tensor] = None,
):
"""
Input:
- tgt: nq, bs, d_model
- memory: hw, bs, d_model
- pos: hw, bs, d_model
- refpoints_unsigmoid: nq, bs, 2/4
- valid_ratios/spatial_shapes: bs, nlevel, 2
"""
output = tgt
intermediate = []
reference_points = refpoints_unsigmoid.sigmoid()
ref_points = [reference_points]
for layer_id, layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = (
reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[None, :]
) # nq, bs, nlevel, 4
else:
assert reference_points.shape[-1] == 2
reference_points_input = reference_points[:, :, None] * valid_ratios[None, :]
query_sine_embed = gen_sineembed_for_position(reference_points_input[:, :, 0, :]) # nq, bs, 256*2
# conditional query
raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
pos_scale = self.query_scale(output) if self.query_scale is not None else 1
query_pos = pos_scale * raw_query_pos
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
# if query_pos.isnan().any() | query_pos.isinf().any():
# import ipdb; ipdb.set_trace()
# main process
output = layer(
tgt=output,
tgt_query_pos=query_pos,
tgt_query_sine_embed=query_sine_embed,
tgt_key_padding_mask=tgt_key_padding_mask,
tgt_reference_points=reference_points_input,
memory_text=memory_text,
text_attention_mask=text_attention_mask,
memory=memory,
memory_key_padding_mask=memory_key_padding_mask,
memory_level_start_index=level_start_index,
memory_spatial_shapes=spatial_shapes,
memory_pos=pos,
self_attn_mask=tgt_mask,
cross_attn_mask=memory_mask,
)
if output.isnan().any() | output.isinf().any():
print(f"output layer_id {layer_id} is nan")
try:
num_nan = output.isnan().sum().item()
num_inf = output.isinf().sum().item()
print(f"num_nan {num_nan}, num_inf {num_inf}")
except Exception as e:
print(e)
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
# import ipdb; ipdb.set_trace()
# iter update
if self.bbox_embed is not None:
# box_holder = self.bbox_embed(output)
# box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points)
# new_reference_points = box_holder[..., :self.query_dim].sigmoid()
reference_before_sigmoid = inverse_sigmoid(reference_points)
delta_unsig = self.bbox_embed[layer_id](output)
outputs_unsig = delta_unsig + reference_before_sigmoid
new_reference_points = outputs_unsig.sigmoid()
reference_points = new_reference_points.detach()
# if layer_id != self.num_layers - 1:
ref_points.append(new_reference_points)
intermediate.append(self.norm(output))
return [
[itm_out.transpose(0, 1) for itm_out in intermediate],
[itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points],
]
class DeformableTransformerEncoderLayer(nn.Module):
def __init__(
self,
d_model=256,
d_ffn=1024,
dropout=0.1,
activation="relu",
n_levels=4,
n_heads=8,
n_points=4,
):
super().__init__()
# self attention
self.self_attn = MSDeformAttn(
embed_dim=d_model,
num_levels=n_levels,
num_heads=n_heads,
num_points=n_points,
batch_first=True,
)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation, d_model=d_ffn)
self.dropout2 = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout3 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, src):
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
src = src + self.dropout3(src2)
src = self.norm2(src)
return src
def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None):
# self attention
# import ipdb; ipdb.set_trace()
src2 = self.self_attn(
query=self.with_pos_embed(src, pos),
reference_points=reference_points,
value=src,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
key_padding_mask=key_padding_mask,
)
src = src + self.dropout1(src2)
src = self.norm1(src)
# ffn
src = self.forward_ffn(src)
return src
class DeformableTransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model=256,
d_ffn=1024,
dropout=0.1,
activation="relu",
n_levels=4,
n_heads=8,
n_points=4,
use_text_feat_guide=False,
use_text_cross_attention=False,
):
super().__init__()
# cross attention
self.cross_attn = MSDeformAttn(
embed_dim=d_model,
num_levels=n_levels,
num_heads=n_heads,
num_points=n_points,
batch_first=True,
)
self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.norm1 = nn.LayerNorm(d_model)
# cross attention text
if use_text_cross_attention:
self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.catext_norm = nn.LayerNorm(d_model)
# self attention
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.norm2 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.norm3 = nn.LayerNorm(d_model)
self.key_aware_proj = None
self.use_text_feat_guide = use_text_feat_guide
assert not use_text_feat_guide
self.use_text_cross_attention = use_text_cross_attention
def rm_self_attn_modules(self):
self.self_attn = None
self.dropout2 = None
self.norm2 = None
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
with torch.cuda.amp.autocast(enabled=False):
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward(
self,
# for tgt
tgt: Optional[Tensor], # nq, bs, d_model
tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
tgt_key_padding_mask: Optional[Tensor] = None,
tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
memory_text: Optional[Tensor] = None, # bs, num_token, d_model
text_attention_mask: Optional[Tensor] = None, # bs, num_token
# for memory
memory: Optional[Tensor] = None, # hw, bs, d_model
memory_key_padding_mask: Optional[Tensor] = None,
memory_level_start_index: Optional[Tensor] = None, # num_levels
memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
memory_pos: Optional[Tensor] = None, # pos for memory
# sa
self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
):
"""
Input:
- tgt/tgt_query_pos: nq, bs, d_model
-
"""
assert cross_attn_mask is None
# self attention
if self.self_attn is not None:
# import ipdb; ipdb.set_trace()
q = k = self.with_pos_embed(tgt, tgt_query_pos)
tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
if self.use_text_cross_attention:
tgt2 = self.ca_text(
self.with_pos_embed(tgt, tgt_query_pos),
memory_text.transpose(0, 1),
memory_text.transpose(0, 1),
key_padding_mask=text_attention_mask,
)[0]
tgt = tgt + self.catext_dropout(tgt2)
tgt = self.catext_norm(tgt)
tgt2 = self.cross_attn(
query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
reference_points=tgt_reference_points.transpose(0, 1).contiguous(),
value=memory.transpose(0, 1),
spatial_shapes=memory_spatial_shapes,
level_start_index=memory_level_start_index,
key_padding_mask=memory_key_padding_mask,
).transpose(0, 1)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# ffn
tgt = self.forward_ffn(tgt)
return tgt
def build_transformer(args):
return Transformer(
d_model=args.hidden_dim,
dropout=args.dropout,
nhead=args.nheads,
num_queries=args.num_queries,
dim_feedforward=args.dim_feedforward,
num_encoder_layers=args.enc_layers,
num_decoder_layers=args.dec_layers,
normalize_before=args.pre_norm,
return_intermediate_dec=True,
query_dim=args.query_dim,
activation=args.transformer_activation,
num_patterns=args.num_patterns,
num_feature_levels=args.num_feature_levels,
enc_n_points=args.enc_n_points,
dec_n_points=args.dec_n_points,
learnable_tgt_init=True,
# two stage
two_stage_type=args.two_stage_type, # ['no', 'standard', 'early']
embed_init_tgt=args.embed_init_tgt,
use_text_enhancer=args.use_text_enhancer,
use_fusion_layer=args.use_fusion_layer,
use_checkpoint=args.use_checkpoint,
use_transformer_ckpt=args.use_transformer_ckpt,
use_text_cross_attention=args.use_text_cross_attention,
text_dropout=args.text_dropout,
fusion_dropout=args.fusion_dropout,
fusion_droppath=args.fusion_droppath,
)

View File

@ -0,0 +1,115 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
DETR Transformer class.
Copy-paste from torch.nn.Transformer with modifications:
* positional encodings are passed in MHattention
* extra LN at the end of encoder is removed
* decoder returns a stack of activations from all decoding layers
"""
from typing import Optional
import torch
from torch import Tensor, nn
from .utils import _get_activation_fn, _get_clones
class TextTransformer(nn.Module):
def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1):
super().__init__()
self.num_layers = num_layers
self.d_model = d_model
self.nheads = nheads
self.dim_feedforward = dim_feedforward
self.norm = None
single_encoder_layer = TransformerEncoderLayer(
d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout
)
self.layers = _get_clones(single_encoder_layer, num_layers)
def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor):
"""
Args:
text_attention_mask: bs, num_token
memory_text: bs, num_token, d_model
Raises:
RuntimeError: _description_
Returns:
output: bs, num_token, d_model
"""
output = memory_text.transpose(0, 1)
for layer in self.layers:
output = layer(output, src_key_padding_mask=text_attention_mask)
if self.norm is not None:
output = self.norm(output)
return output.transpose(0, 1)
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self.nhead = nhead
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(
self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
):
# repeat attn mask
if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]:
# bs, num_q, num_k
src_mask = src_mask.repeat(self.nhead, 1, 1)
q = k = self.with_pos_embed(src, pos)
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0]
# src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src

View File

@ -0,0 +1,258 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
import copy
import math
import torch
import torch.nn.functional as F
from torch import Tensor, nn
def _get_clones(module, N, layer_share=False):
# import ipdb; ipdb.set_trace()
if layer_share:
return nn.ModuleList([module for i in range(N)])
else:
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def get_sine_pos_embed(
pos_tensor: torch.Tensor,
num_pos_feats: int = 128,
temperature: int = 10000,
exchange_xy: bool = True,
):
"""generate sine position embedding from a position tensor
Args:
pos_tensor (torch.Tensor): shape: [..., n].
num_pos_feats (int): projected shape for each float in the tensor.
temperature (int): temperature in the sine/cosine function.
exchange_xy (bool, optional): exchange pos x and pos y. \
For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True.
Returns:
pos_embed (torch.Tensor): shape: [..., n*num_pos_feats].
"""
scale = 2 * math.pi
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
def sine_func(x: torch.Tensor):
sin_x = x * scale / dim_t
sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2)
return sin_x
pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)]
if exchange_xy:
pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
pos_res = torch.cat(pos_res, dim=-1)
return pos_res
def gen_encoder_output_proposals(memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None):
"""
Input:
- memory: bs, \sum{hw}, d_model
- memory_padding_mask: bs, \sum{hw}
- spatial_shapes: nlevel, 2
- learnedwh: 2
Output:
- output_memory: bs, \sum{hw}, d_model
- output_proposals: bs, \sum{hw}, 4
"""
N_, S_, C_ = memory.shape
proposals = []
_cur = 0
for lvl, (H_, W_) in enumerate(spatial_shapes):
mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
# import ipdb; ipdb.set_trace()
grid_y, grid_x = torch.meshgrid(
torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
)
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
if learnedwh is not None:
# import ipdb; ipdb.set_trace()
wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl)
else:
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
# scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1)
# grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
# wh = torch.ones_like(grid) / scale
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
proposals.append(proposal)
_cur += H_ * W_
# import ipdb; ipdb.set_trace()
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf"))
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
output_memory = memory
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
# output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
# output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf'))
output_proposals = output_proposals.to(output_memory.dtype)
return output_memory, output_proposals
class RandomBoxPerturber:
def __init__(self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2) -> None:
self.noise_scale = torch.Tensor([x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale])
def __call__(self, refanchors: Tensor) -> Tensor:
nq, bs, query_dim = refanchors.shape
device = refanchors.device
noise_raw = torch.rand_like(refanchors)
noise_scale = self.noise_scale.to(device)[:query_dim]
new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
return new_refanchors.clamp_(0, 1)
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
if no_reduction:
return loss
return loss.mean(1).sum() / num_boxes
class MLP(nn.Module):
"""Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
def _get_activation_fn(activation, d_model=256, batch_dim=0):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
if activation == "prelu":
return nn.PReLU()
if activation == "selu":
return F.selu
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
def gen_sineembed_for_position(pos_tensor):
# n_query, bs, _ = pos_tensor.size()
# sineembed_tensor = torch.zeros(n_query, bs, 256)
scale = 2 * math.pi
dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode="floor")) / 128)
x_embed = pos_tensor[:, :, 0] * scale
y_embed = pos_tensor[:, :, 1] * scale
pos_x = x_embed[:, :, None] / dim_t
pos_y = y_embed[:, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
if pos_tensor.size(-1) == 2:
pos = torch.cat((pos_y, pos_x), dim=2)
elif pos_tensor.size(-1) == 4:
w_embed = pos_tensor[:, :, 2] * scale
pos_w = w_embed[:, :, None] / dim_t
pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
h_embed = pos_tensor[:, :, 3] * scale
pos_h = h_embed[:, :, None] / dim_t
pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2)
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
else:
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
pos = pos.to(pos_tensor.dtype)
return pos
class ContrastiveEmbed(nn.Module):
def __init__(self, max_text_len=256):
"""
Args:
max_text_len: max length of text.
"""
super().__init__()
self.max_text_len = max_text_len
def forward(self, x, text_dict):
"""_summary_
Args:
x (_type_): _description_
text_dict (_type_): _description_
{
'encoded_text': encoded_text, # bs, 195, d_model
'text_token_mask': text_token_mask, # bs, 195
# True for used tokens. False for padding tokens
}
Returns:
_type_: _description_
"""
assert isinstance(text_dict, dict)
y = text_dict["encoded_text"]
text_token_mask = text_dict["text_token_mask"]
res = x @ y.transpose(-1, -2)
res.masked_fill_(~text_token_mask[:, None, :], float("-inf"))
# padding to max_text_len
new_res = torch.full((*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device, dtype=res.dtype)
new_res[..., : res.shape[-1]] = res
return new_res

View File

@ -0,0 +1,18 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from .GroundingDINO import build_groundingdino # noqa
def build_model(args):
# we use register to maintain models from catdet6 on.
from .registry import MODULE_BUILD_FUNCS
assert args.modelname in MODULE_BUILD_FUNCS._module_dict
build_func = MODULE_BUILD_FUNCS.get(args.modelname)
model = build_func(args)
return model

View File

@ -0,0 +1,60 @@
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# -*- coding: utf-8 -*-
# @Author: Yihao Chen
# @Date: 2021-08-16 16:03:17
# @Last Modified by: Shilong Liu
# @Last Modified time: 2022-01-23 15:26
# modified from mmcv
import inspect
from functools import partial
class Registry(object):
def __init__(self, name):
self._name = name
self._module_dict = dict()
def __repr__(self):
format_str = self.__class__.__name__ + "(name={}, items={})".format(self._name, list(self._module_dict.keys()))
return format_str
def __len__(self):
return len(self._module_dict)
@property
def name(self):
return self._name
@property
def module_dict(self):
return self._module_dict
def get(self, key):
return self._module_dict.get(key, None)
def registe_with_name(self, module_name=None, force=False):
return partial(self.register, module_name=module_name, force=force)
def register(self, module_build_function, module_name=None, force=False):
"""Register a module build function.
Args:
module (:obj:`nn.Module`): Module to be registered.
"""
if not inspect.isfunction(module_build_function):
raise TypeError("module_build_function must be a function, but got {}".format(type(module_build_function)))
if module_name is None:
module_name = module_build_function.__name__
if not force and module_name in self._module_dict:
raise KeyError("{} is already registered in {}".format(module_name, self.name))
self._module_dict[module_name] = module_build_function
return module_build_function
MODULE_BUILD_FUNCS = Registry("model build functions")

View File

@ -0,0 +1 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

View File

@ -0,0 +1,140 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Utilities for bounding box manipulation and GIoU.
"""
import torch
from torchvision.ops.boxes import box_area
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def box_xyxy_to_cxcywh(x):
x0, y0, x1, y1 = x.unbind(-1)
b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
return torch.stack(b, dim=-1)
# modified from torchvision to also return the union
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
# import ipdb; ipdb.set_trace()
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / (union + 1e-6)
return iou, union
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/
The boxes should be in [x0, y0, x1, y1] format
Returns a [N, M] pairwise matrix, where N = len(boxes1)
and M = len(boxes2)
"""
# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
# except:
# import ipdb; ipdb.set_trace()
iou, union = box_iou(boxes1, boxes2)
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,M,2]
area = wh[:, :, 0] * wh[:, :, 1]
return iou - (area - union) / (area + 1e-6)
# modified from torchvision to also return the union
def box_iou_pairwise(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2]
rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2]
wh = (rb - lt).clamp(min=0) # [N,2]
inter = wh[:, 0] * wh[:, 1] # [N]
union = area1 + area2 - inter
iou = inter / union
return iou, union
def generalized_box_iou_pairwise(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/
Input:
- boxes1, boxes2: N,4
Output:
- giou: N, 4
"""
# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
assert boxes1.shape == boxes2.shape
iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4
lt = torch.min(boxes1[:, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,2]
area = wh[:, 0] * wh[:, 1]
return iou - (area - union) / area
def masks_to_boxes(masks):
"""Compute the bounding boxes around the provided masks
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
Returns a [N, 4] tensors, with the boxes in xyxy format
"""
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device)
h, w = masks.shape[-2:]
y = torch.arange(0, h, dtype=torch.float)
x = torch.arange(0, w, dtype=torch.float)
y, x = torch.meshgrid(y, x)
x_mask = masks * x.unsqueeze(0)
x_max = x_mask.flatten(1).max(-1)[0]
x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
y_mask = masks * y.unsqueeze(0)
y_max = y_mask.flatten(1).max(-1)[0]
y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
return torch.stack([x_min, y_min, x_max, y_max], 1)
if __name__ == "__main__":
x = torch.rand(5, 4)
y = torch.rand(3, 4)
iou, union = box_iou(x, y)
import ipdb
ipdb.set_trace()

View File

@ -0,0 +1,24 @@
from transformers import AutoTokenizer, BertModel, RobertaModel
def get_tokenlizer(text_encoder_type):
if not isinstance(text_encoder_type, str):
# print("text_encoder_type is not a str")
if hasattr(text_encoder_type, "text_encoder_type"):
text_encoder_type = text_encoder_type.text_encoder_type
elif text_encoder_type.get("text_encoder_type", False):
text_encoder_type = text_encoder_type.get("text_encoder_type")
else:
raise ValueError("Unknown type of text_encoder_type: {}".format(type(text_encoder_type)))
print("final text_encoder_type: {}".format(text_encoder_type))
tokenizer = AutoTokenizer.from_pretrained(text_encoder_type)
return tokenizer
def get_pretrained_language_model(text_encoder_type):
if text_encoder_type == "bert-base-uncased":
return BertModel.from_pretrained(text_encoder_type)
if text_encoder_type == "roberta-base":
return RobertaModel.from_pretrained(text_encoder_type)
raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type))

View File

@ -0,0 +1,221 @@
from typing import Dict, List, Tuple
import cv2
import numpy as np
import supervision as sv
import torch
from PIL import Image
from torchvision.ops import box_convert
import invokeai.backend.image_util.grounding_segment_anything.groundingdino.datasets.transforms as T
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.models import build_model
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.misc import clean_state_dict
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.slconfig import SLConfig
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.utils import get_phrases_from_posmap
# ----------------------------------------------------------------------------------------------------------------------
# OLD API
# ----------------------------------------------------------------------------------------------------------------------
def preprocess_caption(caption: str) -> str:
result = caption.lower().strip()
if result.endswith("."):
return result
return result + "."
def load_model(model_config_path: str, model_state_dict: Dict[str, torch.Tensor], device: str = "cuda"):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
model.load_state_dict(clean_state_dict(model_state_dict["model"]), strict=False)
model.eval()
return model
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = Image.open(image_path).convert("RGB")
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def predict(
model, image: torch.Tensor, caption: str, box_threshold: float, text_threshold: float, device: str = "cuda"
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
caption = preprocess_caption(caption=caption)
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256)
prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4)
mask = prediction_logits.max(dim=1)[0] > box_threshold
logits = prediction_logits[mask] # logits.shape = (n, 256)
boxes = prediction_boxes[mask] # boxes.shape = (n, 4)
tokenizer = model.tokenizer
tokenized = tokenizer(caption)
phrases = [
get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace(".", "") for logit in logits
]
return boxes, logits.max(dim=1)[0], phrases
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
h, w, _ = image_source.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
detections = sv.Detections(xyxy=xyxy)
labels = [f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits)]
box_annotator = sv.BoxAnnotator()
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
return annotated_frame
# ----------------------------------------------------------------------------------------------------------------------
# NEW API
# ----------------------------------------------------------------------------------------------------------------------
class Model:
def __init__(self, model_config_path: str, model_state_dict: Dict[str, torch.Tensor], device: str = "cuda"):
self.model = load_model(
model_config_path=model_config_path, model_state_dict=model_state_dict, device=device
).to(device)
self.device = device
def predict_with_caption(
self, image: np.ndarray, caption: str, box_threshold: float = 0.35, text_threshold: float = 0.25
) -> Tuple[sv.Detections, List[str]]:
"""
import cv2
image = cv2.imread(IMAGE_PATH)
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
detections, labels = model.predict_with_caption(
image=image,
caption=caption,
box_threshold=BOX_THRESHOLD,
text_threshold=TEXT_THRESHOLD
)
import supervision as sv
box_annotator = sv.BoxAnnotator()
annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
"""
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
boxes, logits, phrases = predict(
model=self.model,
image=processed_image,
caption=caption,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=self.device,
)
source_h, source_w, _ = image.shape
detections = Model.post_process_result(source_h=source_h, source_w=source_w, boxes=boxes, logits=logits)
return detections, phrases
def predict_with_classes(
self, image: np.ndarray, classes: List[str], box_threshold: float, text_threshold: float
) -> sv.Detections:
"""
import cv2
image = cv2.imread(IMAGE_PATH)
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
detections = model.predict_with_classes(
image=image,
classes=CLASSES,
box_threshold=BOX_THRESHOLD,
text_threshold=TEXT_THRESHOLD
)
import supervision as sv
box_annotator = sv.BoxAnnotator()
annotated_image = box_annotator.annotate(scene=image, detections=detections)
"""
caption = ". ".join(classes)
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
boxes, logits, phrases = predict(
model=self.model,
image=processed_image,
caption=caption,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=self.device,
)
source_h, source_w, _ = image.shape
detections = Model.post_process_result(source_h=source_h, source_w=source_w, boxes=boxes, logits=logits)
class_id = Model.phrases2classes(phrases=phrases, classes=classes)
detections.class_id = class_id
return detections
@staticmethod
def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
image_transformed, _ = transform(image_pillow, None)
return image_transformed
@staticmethod
def post_process_result(source_h: int, source_w: int, boxes: torch.Tensor, logits: torch.Tensor) -> sv.Detections:
boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
confidence = logits.numpy()
return sv.Detections(xyxy=xyxy, confidence=confidence)
@staticmethod
def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray:
class_ids = []
for phrase in phrases:
try:
# class_ids.append(classes.index(phrase))
class_ids.append(Model.find_index(phrase, classes))
except ValueError:
class_ids.append(None)
return np.array(class_ids)
@staticmethod
def find_index(string, lst):
# if meet string like "lake river" will only keep "lake"
# this is an hack implementation for visualization which will be updated in the future
string = string.lower().split()[0]
for i, s in enumerate(lst):
if string in s.lower():
return i
print(
"There's a wrong phrase happen, this is because of our post-process merged wrong tokens, which will be \
modified in the future. We will assign it with a random label at this time."
)
return 0

View File

@ -0,0 +1,701 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Misc functions, including distributed helpers.
Mostly copy-paste from torchvision references.
"""
import colorsys
import datetime
import functools
import io
import json
import os
import pickle
import subprocess
import time
from collections import OrderedDict, defaultdict, deque
from typing import List, Optional
import numpy as np
import torch
import torch.distributed as dist
# needed due to empty tensor bug in pytorch and torchvision 0.5
import torchvision
from torch import Tensor
__torchvision_need_compat_flag = float(torchvision.__version__.split(".")[1]) < 7
if __torchvision_need_compat_flag:
from torchvision.ops import _new_empty_tensor
from torchvision.ops.misc import _output_size
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
if d.shape[0] == 0:
return 0
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
if os.environ.get("SHILONG_AMP", None) == "1":
eps = 1e-4
else:
eps = 1e-6
return self.total / (self.count + eps)
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value,
)
@functools.lru_cache()
def _get_global_gloo_group():
"""
Return a process group based on gloo backend, containing all the ranks
The result is cached.
"""
if dist.get_backend() == "nccl":
return dist.new_group(backend="gloo")
return dist.group.WORLD
def all_gather_cpu(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
cpu_group = _get_global_gloo_group()
buffer = io.BytesIO()
torch.save(data, buffer)
data_view = buffer.getbuffer()
device = "cuda" if cpu_group is None else "cpu"
tensor = torch.ByteTensor(data_view).to(device)
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long)
size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)]
if cpu_group is None:
dist.all_gather(size_list, local_size)
else:
print("gathering on cpu")
dist.all_gather(size_list, local_size, group=cpu_group)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
assert isinstance(local_size.item(), int)
local_size = int(local_size.item())
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device)
tensor = torch.cat((tensor, padding), dim=0)
if cpu_group is None:
dist.all_gather(tensor_list, tensor)
else:
dist.all_gather(tensor_list, tensor, group=cpu_group)
data_list = []
for size, tensor in zip(size_list, tensor_list, strict=False):
tensor = torch.split(tensor, [size, max_size - size], dim=0)[0]
buffer = io.BytesIO(tensor.cpu().numpy())
obj = torch.load(buffer)
data_list.append(obj)
return data_list
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
if os.getenv("CPU_REDUCE") == "1":
return all_gather_cpu(data)
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list, strict=False):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values, strict=False)}
return reduced_dict
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
# print(name, str(meter))
# import ipdb;ipdb.set_trace()
if meter.count > 0:
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None, logger=None):
if logger is None:
print_func = print
else:
print_func = logger.info
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
# import ipdb; ipdb.set_trace()
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print_func(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print_func(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print_func("{} Total time: {} ({:.4f} s / it)".format(header, total_time_str, total_time / len(iterable)))
def get_sha():
cwd = os.path.dirname(os.path.abspath(__file__))
def _run(command):
return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()
sha = "N/A"
diff = "clean"
branch = "N/A"
try:
sha = _run(["git", "rev-parse", "HEAD"])
subprocess.check_output(["git", "diff"], cwd=cwd)
diff = _run(["git", "diff-index", "HEAD"])
diff = "has uncommited changes" if diff else "clean"
branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
except Exception:
pass
message = f"sha: {sha}, status: {diff}, branch: {branch}"
return message
def collate_fn(batch):
# import ipdb; ipdb.set_trace()
batch = list(zip(*batch, strict=False))
batch[0] = nested_tensor_from_tensor_list(batch[0])
return tuple(batch)
def _max_by_axis(the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
class NestedTensor(object):
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
if mask == "auto":
self.mask = torch.zeros_like(tensors).to(tensors.device)
if self.mask.dim() == 3:
self.mask = self.mask.sum(0).to(bool)
elif self.mask.dim() == 4:
self.mask = self.mask.sum(1).to(bool)
else:
raise ValueError("tensors dim must be 3 or 4 but {}({})".format(self.tensors.dim(), self.tensors.shape))
def imgsize(self):
res = []
for i in range(self.tensors.shape[0]):
mask = self.mask[i]
maxH = (~mask).sum(0).max()
maxW = (~mask).sum(1).max()
res.append(torch.Tensor([maxH, maxW]))
return res
def to(self, device):
# type: (Device) -> NestedTensor # noqa
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
assert mask is not None
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def to_img_list_single(self, tensor, mask):
assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(tensor.dim())
maxH = (~mask).sum(0).max()
maxW = (~mask).sum(1).max()
img = tensor[:, :maxH, :maxW]
return img
def to_img_list(self):
"""remove the padding and convert to img list
Returns:
[type]: [description]
"""
if self.tensors.dim() == 3:
return self.to_img_list_single(self.tensors, self.mask)
else:
res = []
for i in range(self.tensors.shape[0]):
tensor_i = self.tensors[i]
mask_i = self.mask[i]
res.append(self.to_img_list_single(tensor_i, mask_i))
return res
@property
def device(self):
return self.tensors.device
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
@property
def shape(self):
return {"tensors.shape": self.tensors.shape, "mask.shape": self.mask.shape}
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
# TODO make this more general
if tensor_list[0].ndim == 3:
if torchvision._is_tracing():
# nested_tensor_from_tensor_list() does not export well to ONNX
# call _onnx_nested_tensor_from_tensor_list() instead
return _onnx_nested_tensor_from_tensor_list(tensor_list)
# TODO make it support different-sized images
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
batch_shape = [len(tensor_list)] + max_size
b, c, h, w = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask, strict=False):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
m[: img.shape[1], : img.shape[2]] = False
else:
raise ValueError("not supported")
return NestedTensor(tensor, mask)
# _onnx_nested_tensor_from_tensor_list() is an implementation of
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
max_size = []
for i in range(tensor_list[0].dim()):
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(torch.int64)
max_size.append(max_size_i)
max_size = tuple(max_size)
# work around for
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
# m[: img.shape[1], :img.shape[2]] = False
# which is not yet supported in onnx
padded_imgs = []
padded_masks = []
for img in tensor_list:
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape), strict=False)]
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
padded_imgs.append(padded_img)
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
padded_masks.append(padded_mask.to(torch.bool))
tensor = torch.stack(padded_imgs)
mask = torch.stack(padded_masks)
return NestedTensor(tensor, mask=mask)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if "WORLD_SIZE" in os.environ and os.environ["WORLD_SIZE"] != "": # 'RANK' in os.environ and
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = args.local_rank = int(os.environ["LOCAL_RANK"])
# launch by torch.distributed.launch
# Single node
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ...
# Multi nodes
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
# args.rank = int(os.environ.get('OMPI_COMM_WORLD_RANK'))
# local_world_size = int(os.environ['GPU_PER_NODE_COUNT'])
# args.world_size = args.world_size * local_world_size
# args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
# args.rank = args.rank * local_world_size + args.local_rank
print("world size: {}, rank: {}, local rank: {}".format(args.world_size, args.rank, args.local_rank))
print(json.dumps(dict(os.environ), indent=2))
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.local_rank = int(os.environ["SLURM_LOCALID"])
args.world_size = int(os.environ["SLURM_NPROCS"])
print(
"world size: {}, world rank: {}, local rank: {}, device_count: {}".format(
args.world_size, args.rank, args.local_rank, torch.cuda.device_count()
)
)
else:
print("Not using distributed mode")
args.distributed = False
args.world_size = 1
args.rank = 0
args.local_rank = 0
return
print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank))
args.distributed = True
torch.cuda.set_device(args.local_rank)
args.dist_backend = "nccl"
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend,
world_size=args.world_size,
rank=args.rank,
init_method=args.dist_url,
)
print("Before torch.distributed.barrier()")
torch.distributed.barrier()
print("End torch.distributed.barrier()")
setup_for_distributed(args.rank == 0)
@torch.no_grad()
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
if target.numel() == 0:
return [torch.zeros([], device=output.device)]
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
@torch.no_grad()
def accuracy_onehot(pred, gt):
"""_summary_
Args:
pred (_type_): n, c
gt (_type_): n, c
"""
tp = ((pred - gt).abs().sum(-1) < 1e-4).float().sum()
acc = tp / gt.shape[0] * 100
return acc
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
"""
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
This will eventually be supported natively by PyTorch, and this
class can go away.
"""
if __torchvision_need_compat_flag < 0.7:
if input.numel() > 0:
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners)
output_shape = _output_size(2, input, size, scale_factor)
output_shape = list(input.shape[:-2]) + list(output_shape)
return _new_empty_tensor(input, output_shape)
else:
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
class color_sys:
def __init__(self, num_colors) -> None:
self.num_colors = num_colors
colors = []
for i in np.arange(0.0, 360.0, 360.0 / num_colors):
hue = i / 360.0
lightness = (50 + np.random.rand() * 10) / 100.0
saturation = (90 + np.random.rand() * 10) / 100.0
colors.append(tuple([int(j * 255) for j in colorsys.hls_to_rgb(hue, lightness, saturation)]))
self.colors = colors
def __call__(self, idx):
return self.colors[idx]
def inverse_sigmoid(x, eps=1e-3):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
def clean_state_dict(state_dict):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k[:7] == "module.":
k = k[7:] # remove `module.`
new_state_dict[k] = v
return new_state_dict

View File

@ -0,0 +1,419 @@
# ==========================================================
# Modified from mmcv
# ==========================================================
import ast
import os.path as osp
import platform
import shutil
import sys
import tempfile
from argparse import Action
from importlib import import_module
from addict import Dict
from yapf.yapflib.yapf_api import FormatCode
BASE_KEY = "_base_"
DELETE_KEY = "_delete_"
RESERVED_KEYS = ["filename", "text", "pretty_text", "get", "dump", "merge_from_dict"]
def check_file_exist(filename, msg_tmpl='file "{}" does not exist'):
if not osp.isfile(filename):
raise FileNotFoundError(msg_tmpl.format(filename))
class ConfigDict(Dict):
def __missing__(self, name):
raise KeyError(name)
def __getattr__(self, name):
try:
value = super(ConfigDict, self).__getattr__(name)
except KeyError:
ex = AttributeError(f"'{self.__class__.__name__}' object has no " f"attribute '{name}'")
except Exception as e:
ex = e
else:
return value
raise ex
class SLConfig(object):
"""
config files.
only support .py file as config now.
ref: mmcv.utils.config
Example:
>>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
>>> cfg.a
1
>>> cfg.b
{'b1': [0, 1]}
>>> cfg.b.b1
[0, 1]
>>> cfg = Config.fromfile('tests/data/config/a.py')
>>> cfg.filename
"/home/kchen/projects/mmcv/tests/data/config/a.py"
>>> cfg.item4
'test'
>>> cfg
"Config [path: /home/kchen/projects/mmcv/tests/data/config/a.py]: "
"{'item1': [1, 2], 'item2': {'a': 0}, 'item3': True, 'item4': 'test'}"
"""
@staticmethod
def _validate_py_syntax(filename):
with open(filename) as f:
content = f.read()
try:
ast.parse(content)
except SyntaxError:
raise SyntaxError("There are syntax errors in config " f"file {filename}")
@staticmethod
def _file2dict(filename):
filename = osp.abspath(osp.expanduser(filename))
check_file_exist(filename)
if filename.lower().endswith(".py"):
with tempfile.TemporaryDirectory() as temp_config_dir:
temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=".py")
temp_config_name = osp.basename(temp_config_file.name)
if platform.system() == "Windows":
temp_config_file.close()
shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name))
temp_module_name = osp.splitext(temp_config_name)[0]
sys.path.insert(0, temp_config_dir)
SLConfig._validate_py_syntax(filename)
mod = import_module(temp_module_name)
sys.path.pop(0)
cfg_dict = {name: value for name, value in mod.__dict__.items() if not name.startswith("__")}
# delete imported module
del sys.modules[temp_module_name]
# close temp file
temp_config_file.close()
elif filename.lower().endswith((".yml", ".yaml", ".json")):
from .slio import slload
cfg_dict = slload(filename)
else:
raise IOError("Only py/yml/yaml/json type are supported now!")
cfg_text = filename + "\n"
with open(filename, "r") as f:
cfg_text += f.read()
# parse the base file
if BASE_KEY in cfg_dict:
cfg_dir = osp.dirname(filename)
base_filename = cfg_dict.pop(BASE_KEY)
base_filename = base_filename if isinstance(base_filename, list) else [base_filename]
cfg_dict_list = list()
cfg_text_list = list()
for f in base_filename:
_cfg_dict, _cfg_text = SLConfig._file2dict(osp.join(cfg_dir, f))
cfg_dict_list.append(_cfg_dict)
cfg_text_list.append(_cfg_text)
base_cfg_dict = dict()
for c in cfg_dict_list:
if len(base_cfg_dict.keys() & c.keys()) > 0:
raise KeyError("Duplicate key is not allowed among bases")
# TODO Allow the duplicate key while warnning user
base_cfg_dict.update(c)
base_cfg_dict = SLConfig._merge_a_into_b(cfg_dict, base_cfg_dict)
cfg_dict = base_cfg_dict
# merge cfg_text
cfg_text_list.append(cfg_text)
cfg_text = "\n".join(cfg_text_list)
return cfg_dict, cfg_text
@staticmethod
def _merge_a_into_b(a, b):
"""merge dict `a` into dict `b` (non-inplace).
values in `a` will overwrite `b`.
copy first to avoid inplace modification
Args:
a ([type]): [description]
b ([type]): [description]
Returns:
[dict]: [description]
"""
# import ipdb; ipdb.set_trace()
if not isinstance(a, dict):
return a
b = b.copy()
for k, v in a.items():
if isinstance(v, dict) and k in b and not v.pop(DELETE_KEY, False):
if not isinstance(b[k], dict) and not isinstance(b[k], list):
# if :
# import ipdb; ipdb.set_trace()
raise TypeError(
f"{k}={v} in child config cannot inherit from base "
f"because {k} is a dict in the child config but is of "
f"type {type(b[k])} in base config. You may set "
f"`{DELETE_KEY}=True` to ignore the base config"
)
b[k] = SLConfig._merge_a_into_b(v, b[k])
elif isinstance(b, list):
try:
_ = int(k)
except:
raise TypeError(f"b is a list, " f"index {k} should be an int when input but {type(k)}")
b[int(k)] = SLConfig._merge_a_into_b(v, b[int(k)])
else:
b[k] = v
return b
@staticmethod
def fromfile(filename):
cfg_dict, cfg_text = SLConfig._file2dict(filename)
return SLConfig(cfg_dict, cfg_text=cfg_text, filename=filename)
def __init__(self, cfg_dict=None, cfg_text=None, filename=None):
if cfg_dict is None:
cfg_dict = dict()
elif not isinstance(cfg_dict, dict):
raise TypeError("cfg_dict must be a dict, but " f"got {type(cfg_dict)}")
for key in cfg_dict:
if key in RESERVED_KEYS:
raise KeyError(f"{key} is reserved for config file")
super(SLConfig, self).__setattr__("_cfg_dict", ConfigDict(cfg_dict))
super(SLConfig, self).__setattr__("_filename", filename)
if cfg_text:
text = cfg_text
elif filename:
with open(filename, "r") as f:
text = f.read()
else:
text = ""
super(SLConfig, self).__setattr__("_text", text)
@property
def filename(self):
return self._filename
@property
def text(self):
return self._text
@property
def pretty_text(self):
indent = 4
def _indent(s_, num_spaces):
s = s_.split("\n")
if len(s) == 1:
return s_
first = s.pop(0)
s = [(num_spaces * " ") + line for line in s]
s = "\n".join(s)
s = first + "\n" + s
return s
def _format_basic_types(k, v, use_mapping=False):
if isinstance(v, str):
v_str = f"'{v}'"
else:
v_str = str(v)
if use_mapping:
k_str = f"'{k}'" if isinstance(k, str) else str(k)
attr_str = f"{k_str}: {v_str}"
else:
attr_str = f"{str(k)}={v_str}"
attr_str = _indent(attr_str, indent)
return attr_str
def _format_list(k, v, use_mapping=False):
# check if all items in the list are dict
if all(isinstance(_, dict) for _ in v):
v_str = "[\n"
v_str += "\n".join(f"dict({_indent(_format_dict(v_), indent)})," for v_ in v).rstrip(",")
if use_mapping:
k_str = f"'{k}'" if isinstance(k, str) else str(k)
attr_str = f"{k_str}: {v_str}"
else:
attr_str = f"{str(k)}={v_str}"
attr_str = _indent(attr_str, indent) + "]"
else:
attr_str = _format_basic_types(k, v, use_mapping)
return attr_str
def _contain_invalid_identifier(dict_str):
contain_invalid_identifier = False
for key_name in dict_str:
contain_invalid_identifier |= not str(key_name).isidentifier()
return contain_invalid_identifier
def _format_dict(input_dict, outest_level=False):
r = ""
s = []
use_mapping = _contain_invalid_identifier(input_dict)
if use_mapping:
r += "{"
for idx, (k, v) in enumerate(input_dict.items()):
is_last = idx >= len(input_dict) - 1
end = "" if outest_level or is_last else ","
if isinstance(v, dict):
v_str = "\n" + _format_dict(v)
if use_mapping:
k_str = f"'{k}'" if isinstance(k, str) else str(k)
attr_str = f"{k_str}: dict({v_str}"
else:
attr_str = f"{str(k)}=dict({v_str}"
attr_str = _indent(attr_str, indent) + ")" + end
elif isinstance(v, list):
attr_str = _format_list(k, v, use_mapping) + end
else:
attr_str = _format_basic_types(k, v, use_mapping) + end
s.append(attr_str)
r += "\n".join(s)
if use_mapping:
r += "}"
return r
cfg_dict = self._cfg_dict.to_dict()
text = _format_dict(cfg_dict, outest_level=True)
# copied from setup.cfg
yapf_style = dict(
based_on_style="pep8",
blank_line_before_nested_class_or_def=True,
split_before_expression_after_opening_paren=True,
)
text, _ = FormatCode(text, style_config=yapf_style, verify=True)
return text
def __repr__(self):
return f"Config (path: {self.filename}): {self._cfg_dict.__repr__()}"
def __len__(self):
return len(self._cfg_dict)
def __getattr__(self, name):
# # debug
# print('+'*15)
# print('name=%s' % name)
# print("addr:", id(self))
# # print('type(self):', type(self))
# print(self.__dict__)
# print('+'*15)
# if self.__dict__ == {}:
# raise ValueError
return getattr(self._cfg_dict, name)
def __getitem__(self, name):
return self._cfg_dict.__getitem__(name)
def __setattr__(self, name, value):
if isinstance(value, dict):
value = ConfigDict(value)
self._cfg_dict.__setattr__(name, value)
def __setitem__(self, name, value):
if isinstance(value, dict):
value = ConfigDict(value)
self._cfg_dict.__setitem__(name, value)
def __iter__(self):
return iter(self._cfg_dict)
def dump(self, file=None):
# import ipdb; ipdb.set_trace()
if file is None:
return self.pretty_text
else:
with open(file, "w") as f:
f.write(self.pretty_text)
def merge_from_dict(self, options):
"""Merge list into cfg_dict
Merge the dict parsed by MultipleKVAction into this cfg.
Examples:
>>> options = {'model.backbone.depth': 50,
... 'model.backbone.with_cp':True}
>>> cfg = Config(dict(model=dict(backbone=dict(type='ResNet'))))
>>> cfg.merge_from_dict(options)
>>> cfg_dict = super(Config, self).__getattribute__('_cfg_dict')
>>> assert cfg_dict == dict(
... model=dict(backbone=dict(depth=50, with_cp=True)))
Args:
options (dict): dict of configs to merge from.
"""
option_cfg_dict = {}
for full_key, v in options.items():
d = option_cfg_dict
key_list = full_key.split(".")
for subkey in key_list[:-1]:
d.setdefault(subkey, ConfigDict())
d = d[subkey]
subkey = key_list[-1]
d[subkey] = v
cfg_dict = super(SLConfig, self).__getattribute__("_cfg_dict")
super(SLConfig, self).__setattr__("_cfg_dict", SLConfig._merge_a_into_b(option_cfg_dict, cfg_dict))
# for multiprocess
def __setstate__(self, state):
self.__init__(state)
def copy(self):
return SLConfig(self._cfg_dict.copy())
def deepcopy(self):
return SLConfig(self._cfg_dict.deepcopy())
class DictAction(Action):
"""
argparse action to split an argument into KEY=VALUE form
on the first = and append to a dictionary. List options should
be passed as comma separated values, i.e KEY=V1,V2,V3
"""
@staticmethod
def _parse_int_float_bool(val):
try:
return int(val)
except ValueError:
pass
try:
return float(val)
except ValueError:
pass
if val.lower() in ["true", "false"]:
return True if val.lower() == "true" else False
if val.lower() in ["none", "null"]:
return None
return val
def __call__(self, parser, namespace, values, option_string=None):
options = {}
for kv in values:
key, val = kv.split("=", maxsplit=1)
val = [self._parse_int_float_bool(v) for v in val.split(",")]
if len(val) == 1:
val = val[0]
options[key] = val
setattr(namespace, self.dest, options)

View File

@ -0,0 +1,178 @@
# ==========================================================
# Modified from mmcv
# ==========================================================
import json
import pickle
from abc import ABCMeta, abstractmethod
from pathlib import Path
import yaml
try:
from yaml import CDumper as Dumper
from yaml import CLoader as Loader
except ImportError:
from yaml import Dumper, Loader
# ===========================
# Rigister handler
# ===========================
class BaseFileHandler(metaclass=ABCMeta):
@abstractmethod
def load_from_fileobj(self, file, **kwargs):
pass
@abstractmethod
def dump_to_fileobj(self, obj, file, **kwargs):
pass
@abstractmethod
def dump_to_str(self, obj, **kwargs):
pass
def load_from_path(self, filepath, mode="r", **kwargs):
with open(filepath, mode) as f:
return self.load_from_fileobj(f, **kwargs)
def dump_to_path(self, obj, filepath, mode="w", **kwargs):
with open(filepath, mode) as f:
self.dump_to_fileobj(obj, f, **kwargs)
class JsonHandler(BaseFileHandler):
def load_from_fileobj(self, file):
return json.load(file)
def dump_to_fileobj(self, obj, file, **kwargs):
json.dump(obj, file, **kwargs)
def dump_to_str(self, obj, **kwargs):
return json.dumps(obj, **kwargs)
class PickleHandler(BaseFileHandler):
def load_from_fileobj(self, file, **kwargs):
return pickle.load(file, **kwargs)
def load_from_path(self, filepath, **kwargs):
return super(PickleHandler, self).load_from_path(filepath, mode="rb", **kwargs)
def dump_to_str(self, obj, **kwargs):
kwargs.setdefault("protocol", 2)
return pickle.dumps(obj, **kwargs)
def dump_to_fileobj(self, obj, file, **kwargs):
kwargs.setdefault("protocol", 2)
pickle.dump(obj, file, **kwargs)
def dump_to_path(self, obj, filepath, **kwargs):
super(PickleHandler, self).dump_to_path(obj, filepath, mode="wb", **kwargs)
class YamlHandler(BaseFileHandler):
def load_from_fileobj(self, file, **kwargs):
kwargs.setdefault("Loader", Loader)
return yaml.load(file, **kwargs)
def dump_to_fileobj(self, obj, file, **kwargs):
kwargs.setdefault("Dumper", Dumper)
yaml.dump(obj, file, **kwargs)
def dump_to_str(self, obj, **kwargs):
kwargs.setdefault("Dumper", Dumper)
return yaml.dump(obj, **kwargs)
file_handlers = {
"json": JsonHandler(),
"yaml": YamlHandler(),
"yml": YamlHandler(),
"pickle": PickleHandler(),
"pkl": PickleHandler(),
}
# ===========================
# load and dump
# ===========================
def is_str(x):
"""Whether the input is an string instance.
Note: This method is deprecated since python 2 is no longer supported.
"""
return isinstance(x, str)
def slload(file, file_format=None, **kwargs):
"""Load data from json/yaml/pickle files.
This method provides a unified api for loading data from serialized files.
Args:
file (str or :obj:`Path` or file-like object): Filename or a file-like
object.
file_format (str, optional): If not specified, the file format will be
inferred from the file extension, otherwise use the specified one.
Currently supported formats include "json", "yaml/yml" and
"pickle/pkl".
Returns:
The content from the file.
"""
if isinstance(file, Path):
file = str(file)
if file_format is None and is_str(file):
file_format = file.split(".")[-1]
if file_format not in file_handlers:
raise TypeError(f"Unsupported format: {file_format}")
handler = file_handlers[file_format]
if is_str(file):
obj = handler.load_from_path(file, **kwargs)
elif hasattr(file, "read"):
obj = handler.load_from_fileobj(file, **kwargs)
else:
raise TypeError('"file" must be a filepath str or a file-object')
return obj
def sldump(obj, file=None, file_format=None, **kwargs):
"""Dump data to json/yaml/pickle strings or files.
This method provides a unified api for dumping data as strings or to files,
and also supports custom arguments for each file format.
Args:
obj (any): The python object to be dumped.
file (str or :obj:`Path` or file-like object, optional): If not
specified, then the object is dump to a str, otherwise to a file
specified by the filename or file-like object.
file_format (str, optional): Same as :func:`load`.
Returns:
bool: True for success, False otherwise.
"""
if isinstance(file, Path):
file = str(file)
if file_format is None:
if is_str(file):
file_format = file.split(".")[-1]
elif file is None:
raise ValueError("file_format must be specified since file is None")
if file_format not in file_handlers:
raise TypeError(f"Unsupported format: {file_format}")
handler = file_handlers[file_format]
if file is None:
return handler.dump_to_str(obj, **kwargs)
elif is_str(file):
handler.dump_to_path(obj, file, **kwargs)
elif hasattr(file, "write"):
handler.dump_to_fileobj(obj, file, **kwargs)
else:
raise TypeError('"file" must be a filename str or a file-object')

View File

@ -0,0 +1,62 @@
import json
import time
class TimeCounter:
def __init__(self) -> None:
pass
def clear(self):
self.timedict = {}
self.basetime = time.perf_counter()
def timeit(self, name):
nowtime = time.perf_counter() - self.basetime
self.timedict[name] = nowtime
self.basetime = time.perf_counter()
class TimeHolder:
def __init__(self) -> None:
self.timedict = {}
def update(self, _timedict: dict):
for k, v in _timedict.items():
if k not in self.timedict:
self.timedict[k] = AverageMeter(name=k, val_only=True)
self.timedict[k].update(val=v)
def final_res(self):
return {k: v.avg for k, v in self.timedict.items()}
def __str__(self):
return json.dumps(self.final_res(), indent=2)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f", val_only=False):
self.name = name
self.fmt = fmt
self.val_only = val_only
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
if self.val_only:
fmtstr = "{name} {val" + self.fmt + "}"
else:
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)

View File

@ -0,0 +1,598 @@
import argparse
import json
import warnings
from collections import OrderedDict
from copy import deepcopy
from typing import Any, Dict, List
import numpy as np
import torch
from transformers import AutoTokenizer
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.slconfig import SLConfig
def slprint(x, name="x"):
if isinstance(x, (torch.Tensor, np.ndarray)):
print(f"{name}.shape:", x.shape)
elif isinstance(x, (tuple, list)):
print("type x:", type(x))
for i in range(min(10, len(x))):
slprint(x[i], f"{name}[{i}]")
elif isinstance(x, dict):
for k, v in x.items():
slprint(v, f"{name}[{k}]")
else:
print(f"{name}.type:", type(x))
def clean_state_dict(state_dict):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k[:7] == "module.":
k = k[7:] # remove `module.`
new_state_dict[k] = v
return new_state_dict
def renorm(img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) -> torch.FloatTensor:
# img: tensor(3,H,W) or tensor(B,3,H,W)
# return: same as img
assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
if img.dim() == 3:
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
img.size(0),
str(img.size()),
)
img_perm = img.permute(1, 2, 0)
mean = torch.Tensor(mean)
std = torch.Tensor(std)
img_res = img_perm * std + mean
return img_res.permute(2, 0, 1)
else: # img.dim() == 4
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
img.size(1),
str(img.size()),
)
img_perm = img.permute(0, 2, 3, 1)
mean = torch.Tensor(mean)
std = torch.Tensor(std)
img_res = img_perm * std + mean
return img_res.permute(0, 3, 1, 2)
class CocoClassMapper:
def __init__(self) -> None:
self.category_map_str = {
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"5": 5,
"6": 6,
"7": 7,
"8": 8,
"9": 9,
"10": 10,
"11": 11,
"13": 12,
"14": 13,
"15": 14,
"16": 15,
"17": 16,
"18": 17,
"19": 18,
"20": 19,
"21": 20,
"22": 21,
"23": 22,
"24": 23,
"25": 24,
"27": 25,
"28": 26,
"31": 27,
"32": 28,
"33": 29,
"34": 30,
"35": 31,
"36": 32,
"37": 33,
"38": 34,
"39": 35,
"40": 36,
"41": 37,
"42": 38,
"43": 39,
"44": 40,
"46": 41,
"47": 42,
"48": 43,
"49": 44,
"50": 45,
"51": 46,
"52": 47,
"53": 48,
"54": 49,
"55": 50,
"56": 51,
"57": 52,
"58": 53,
"59": 54,
"60": 55,
"61": 56,
"62": 57,
"63": 58,
"64": 59,
"65": 60,
"67": 61,
"70": 62,
"72": 63,
"73": 64,
"74": 65,
"75": 66,
"76": 67,
"77": 68,
"78": 69,
"79": 70,
"80": 71,
"81": 72,
"82": 73,
"84": 74,
"85": 75,
"86": 76,
"87": 77,
"88": 78,
"89": 79,
"90": 80,
}
self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()}
self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()}
def origin2compact(self, idx):
return self.origin2compact_mapper[int(idx)]
def compact2origin(self, idx):
return self.compact2origin_mapper[int(idx)]
def to_device(item, device):
if isinstance(item, torch.Tensor):
return item.to(device)
elif isinstance(item, list):
return [to_device(i, device) for i in item]
elif isinstance(item, dict):
return {k: to_device(v, device) for k, v in item.items()}
else:
raise NotImplementedError("Call Shilong if you use other containers! type: {}".format(type(item)))
#
def get_gaussian_mean(x, axis, other_axis, softmax=True):
"""
Args:
x (float): Input images(BxCxHxW)
axis (int): The index for weighted mean
other_axis (int): The other index
Returns: weighted index for axis, BxC
"""
mat2line = torch.sum(x, axis=other_axis)
# mat2line = mat2line / mat2line.mean() * 10
if softmax:
u = torch.softmax(mat2line, axis=2)
else:
u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6)
size = x.shape[axis]
ind = torch.linspace(0, 1, size).to(x.device)
batch = x.shape[0]
channel = x.shape[1]
index = ind.repeat([batch, channel, 1])
mean_position = torch.sum(index * u, dim=2)
return mean_position
def get_expected_points_from_map(hm, softmax=True):
"""get_gaussian_map_from_points
B,C,H,W -> B,N,2 float(0, 1) float(0, 1)
softargmax function
Args:
hm (float): Input images(BxCxHxW)
Returns:
weighted index for axis, BxCx2. float between 0 and 1.
"""
# hm = 10*hm
B, C, H, W = hm.shape
y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C
x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C
# return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2)
return torch.stack([x_mean, y_mean], dim=2)
# Positional encoding (section 5.1)
# borrow from nerf
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs["input_dims"]
out_dim = 0
if self.kwargs["include_input"]:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs["max_freq_log2"]
N_freqs = self.kwargs["num_freqs"]
if self.kwargs["log_sampling"]:
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs["periodic_fns"]:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, i=0):
import torch.nn as nn
if i == -1:
return nn.Identity(), 3
embed_kwargs = {
"include_input": True,
"input_dims": 3,
"max_freq_log2": multires - 1,
"num_freqs": multires,
"log_sampling": True,
"periodic_fns": [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj: eo.embed(x)
return embed, embedder_obj.out_dim
class APOPMeter:
def __init__(self) -> None:
self.tp = 0
self.fp = 0
self.tn = 0
self.fn = 0
def update(self, pred, gt):
"""
Input:
pred, gt: Tensor()
"""
assert pred.shape == gt.shape
self.tp += torch.logical_and(pred == 1, gt == 1).sum().item()
self.fp += torch.logical_and(pred == 1, gt == 0).sum().item()
self.tn += torch.logical_and(pred == 0, gt == 0).sum().item()
self.tn += torch.logical_and(pred == 1, gt == 0).sum().item()
def update_cm(self, tp, fp, tn, fn):
self.tp += tp
self.fp += fp
self.tn += tn
self.tn += fn
def inverse_sigmoid(x, eps=1e-5):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
def get_raw_dict(args):
"""
return the dicf contained in args.
e.g:
>>> with open(path, 'w') as f:
json.dump(get_raw_dict(args), f, indent=2)
"""
if isinstance(args, argparse.Namespace):
return vars(args)
elif isinstance(args, dict):
return args
elif isinstance(args, SLConfig):
return args._cfg_dict
else:
raise NotImplementedError("Unknown type {}".format(type(args)))
def stat_tensors(tensor):
assert tensor.dim() == 1
tensor_sm = tensor.softmax(0)
entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum()
return {
"max": tensor.max(),
"min": tensor.min(),
"mean": tensor.mean(),
"var": tensor.var(),
"std": tensor.var() ** 0.5,
"entropy": entropy,
}
class NiceRepr:
"""Inherit from this class and define ``__nice__`` to "nicely" print your
objects.
Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function
Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``.
If the inheriting class has a ``__len__``, method then the default
``__nice__`` method will return its length.
Example:
>>> class Foo(NiceRepr):
... def __nice__(self):
... return 'info'
>>> foo = Foo()
>>> assert str(foo) == '<Foo(info)>'
>>> assert repr(foo).startswith('<Foo(info) at ')
Example:
>>> class Bar(NiceRepr):
... pass
>>> bar = Bar()
>>> import pytest
>>> with pytest.warns(None) as record:
>>> assert 'object at' in str(bar)
>>> assert 'object at' in repr(bar)
Example:
>>> class Baz(NiceRepr):
... def __len__(self):
... return 5
>>> baz = Baz()
>>> assert str(baz) == '<Baz(5)>'
"""
def __nice__(self):
"""str: a "nice" summary string describing this module"""
if hasattr(self, "__len__"):
# It is a common pattern for objects to use __len__ in __nice__
# As a convenience we define a default __nice__ for these objects
return str(len(self))
else:
# In all other cases force the subclass to overload __nice__
raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}")
def __repr__(self):
"""str: the string of the module"""
try:
nice = self.__nice__()
classname = self.__class__.__name__
return f"<{classname}({nice}) at {hex(id(self))}>"
except NotImplementedError as ex:
warnings.warn(str(ex), category=RuntimeWarning)
return object.__repr__(self)
def __str__(self):
"""str: the string of the module"""
try:
classname = self.__class__.__name__
nice = self.__nice__()
return f"<{classname}({nice})>"
except NotImplementedError as ex:
warnings.warn(str(ex), category=RuntimeWarning)
return object.__repr__(self)
def ensure_rng(rng=None):
"""Coerces input into a random number generator.
If the input is None, then a global random state is returned.
If the input is a numeric value, then that is used as a seed to construct a
random state. Otherwise the input is returned as-is.
Adapted from [1]_.
Args:
rng (int | numpy.random.RandomState | None):
if None, then defaults to the global rng. Otherwise this can be an
integer or a RandomState class
Returns:
(numpy.random.RandomState) : rng -
a numpy random number generator
References:
.. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501
"""
if rng is None:
rng = np.random.mtrand._rand
elif isinstance(rng, int):
rng = np.random.RandomState(rng)
else:
rng = rng
return rng
def random_boxes(num=1, scale=1, rng=None):
"""Simple version of ``kwimage.Boxes.random``
Returns:
Tensor: shape (n, 4) in x1, y1, x2, y2 format.
References:
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
Example:
>>> num = 3
>>> scale = 512
>>> rng = 0
>>> boxes = random_boxes(num, scale, rng)
>>> print(boxes)
tensor([[280.9925, 278.9802, 308.6148, 366.1769],
[216.9113, 330.6978, 224.0446, 456.5878],
[405.3632, 196.3221, 493.3953, 270.7942]])
"""
rng = ensure_rng(rng)
tlbr = rng.rand(num, 4).astype(np.float32)
tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
tlbr[:, 0] = tl_x * scale
tlbr[:, 1] = tl_y * scale
tlbr[:, 2] = br_x * scale
tlbr[:, 3] = br_y * scale
boxes = torch.from_numpy(tlbr)
return boxes
class ModelEma(torch.nn.Module):
def __init__(self, model, decay=0.9997, device=None):
super(ModelEma, self).__init__()
# make a copy of the model for accumulating moving average of weights
self.module = deepcopy(model)
self.module.eval()
# import ipdb; ipdb.set_trace()
self.decay = decay
self.device = device # perform ema on different device from model if set
if self.device is not None:
self.module.to(device=device)
def _update(self, model, update_fn):
with torch.no_grad():
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()):
if self.device is not None:
model_v = model_v.to(device=self.device)
ema_v.copy_(update_fn(ema_v, model_v))
def update(self, model):
self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m)
def set(self, model):
self._update(model, update_fn=lambda e, m: m)
class BestMetricSingle:
def __init__(self, init_res=0.0, better="large") -> None:
self.init_res = init_res
self.best_res = init_res
self.best_ep = -1
self.better = better
assert better in ["large", "small"]
def isbetter(self, new_res, old_res):
if self.better == "large":
return new_res > old_res
if self.better == "small":
return new_res < old_res
def update(self, new_res, ep):
if self.isbetter(new_res, self.best_res):
self.best_res = new_res
self.best_ep = ep
return True
return False
def __str__(self) -> str:
return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep)
def __repr__(self) -> str:
return self.__str__()
def summary(self) -> dict:
return {
"best_res": self.best_res,
"best_ep": self.best_ep,
}
class BestMetricHolder:
def __init__(self, init_res=0.0, better="large", use_ema=False) -> None:
self.best_all = BestMetricSingle(init_res, better)
self.use_ema = use_ema
if use_ema:
self.best_ema = BestMetricSingle(init_res, better)
self.best_regular = BestMetricSingle(init_res, better)
def update(self, new_res, epoch, is_ema=False):
"""
return if the results is the best.
"""
if not self.use_ema:
return self.best_all.update(new_res, epoch)
else:
if is_ema:
self.best_ema.update(new_res, epoch)
return self.best_all.update(new_res, epoch)
else:
self.best_regular.update(new_res, epoch)
return self.best_all.update(new_res, epoch)
def summary(self):
if not self.use_ema:
return self.best_all.summary()
res = {}
res.update({f"all_{k}": v for k, v in self.best_all.summary().items()})
res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()})
res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()})
return res
def __repr__(self) -> str:
return json.dumps(self.summary(), indent=2)
def __str__(self) -> str:
return self.__repr__()
def targets_to(targets: List[Dict[str, Any]], device):
"""Moves the target dicts to the given device."""
excluded_keys = [
"questionId",
"tokens_positive",
"strings_positive",
"tokens",
"dataset_name",
"sentence_id",
"original_img_id",
"nb_eval",
"task_id",
"original_id",
"token_span",
"caption",
"dataset_type",
]
return [{k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets]
def get_phrases_from_posmap(posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer):
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
if posmap.dim() == 1:
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
return tokenizer.decode(token_ids)
else:
raise NotImplementedError("posmap must be 1-dim")

View File

@ -0,0 +1,309 @@
# -*- coding: utf-8 -*-
"""
@File : visualizer.py
@Time : 2022/04/05 11:39:33
@Author : Shilong Liu
@Contact : slongliu86@gmail.com
"""
import datetime
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib import transforms
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
from pycocotools import mask as maskUtils
def renorm(img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) -> torch.FloatTensor:
# img: tensor(3,H,W) or tensor(B,3,H,W)
# return: same as img
assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
if img.dim() == 3:
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
img.size(0),
str(img.size()),
)
img_perm = img.permute(1, 2, 0)
mean = torch.Tensor(mean)
std = torch.Tensor(std)
img_res = img_perm * std + mean
return img_res.permute(2, 0, 1)
else: # img.dim() == 4
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
img.size(1),
str(img.size()),
)
img_perm = img.permute(0, 2, 3, 1)
mean = torch.Tensor(mean)
std = torch.Tensor(std)
img_res = img_perm * std + mean
return img_res.permute(0, 3, 1, 2)
class ColorMap:
def __init__(self, basergb=[255, 255, 0]):
self.basergb = np.array(basergb)
def __call__(self, attnmap):
# attnmap: h, w. np.uint8.
# return: h, w, 4. np.uint8.
assert attnmap.dtype == np.uint8
h, w = attnmap.shape
res = self.basergb.copy()
res = res[None][None].repeat(h, 0).repeat(w, 1) # h, w, 3
attn1 = attnmap.copy()[..., None] # h, w, 1
res = np.concatenate((res, attn1), axis=-1).astype(np.uint8)
return res
def rainbow_text(x, y, ls, lc, **kw):
"""
Take a list of strings ``ls`` and colors ``lc`` and place them next to each
other, with text ls[i] being shown in color lc[i].
This example shows how to do both vertical and horizontal text, and will
pass all keyword arguments to plt.text, so you can set the font size,
family, etc.
"""
t = plt.gca().transData
fig = plt.gcf()
plt.show()
# horizontal version
for s, c in zip(ls, lc):
text = plt.text(x, y, " " + s + " ", color=c, transform=t, **kw)
text.draw(fig.canvas.get_renderer())
ex = text.get_window_extent()
t = transforms.offset_copy(text._transform, x=ex.width, units="dots")
# #vertical version
# for s,c in zip(ls,lc):
# text = plt.text(x,y," "+s+" ",color=c, transform=t,
# rotation=90,va='bottom',ha='center',**kw)
# text.draw(fig.canvas.get_renderer())
# ex = text.get_window_extent()
# t = transforms.offset_copy(text._transform, y=ex.height, units='dots')
class COCOVisualizer:
def __init__(self, coco=None, tokenlizer=None) -> None:
self.coco = coco
def visualize(self, img, tgt, caption=None, dpi=180, savedir="vis"):
"""
img: tensor(3, H, W)
tgt: make sure they are all on cpu.
must have items: 'image_id', 'boxes', 'size'
"""
plt.figure(dpi=dpi)
plt.rcParams["font.size"] = "5"
ax = plt.gca()
img = renorm(img).permute(1, 2, 0)
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
ax.imshow(img)
self.addtgt(tgt)
if tgt is None:
image_id = 0
elif "image_id" not in tgt:
image_id = 0
else:
image_id = tgt["image_id"]
if caption is None:
savename = "{}/{}-{}.png".format(savedir, int(image_id), str(datetime.datetime.now()).replace(" ", "-"))
else:
savename = "{}/{}-{}-{}.png".format(
savedir, caption, int(image_id), str(datetime.datetime.now()).replace(" ", "-")
)
print("savename: {}".format(savename))
os.makedirs(os.path.dirname(savename), exist_ok=True)
plt.savefig(savename)
plt.close()
def addtgt(self, tgt):
""" """
if tgt is None or not "boxes" in tgt:
ax = plt.gca()
if "caption" in tgt:
ax.set_title(tgt["caption"], wrap=True)
ax.set_axis_off()
return
ax = plt.gca()
H, W = tgt["size"]
numbox = tgt["boxes"].shape[0]
color = []
polygons = []
boxes = []
for box in tgt["boxes"].cpu():
unnormbbox = box * torch.Tensor([W, H, W, H])
unnormbbox[:2] -= unnormbbox[2:] / 2
[bbox_x, bbox_y, bbox_w, bbox_h] = unnormbbox.tolist()
boxes.append([bbox_x, bbox_y, bbox_w, bbox_h])
poly = [
[bbox_x, bbox_y],
[bbox_x, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y],
]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
color.append(c)
p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.1)
ax.add_collection(p)
p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
ax.add_collection(p)
if "strings_positive" in tgt and len(tgt["strings_positive"]) > 0:
assert len(tgt["strings_positive"]) == numbox, f"{len(tgt['strings_positive'])} = {numbox}, "
for idx, strlist in enumerate(tgt["strings_positive"]):
cate_id = int(tgt["labels"][idx])
_string = str(cate_id) + ":" + " ".join(strlist)
bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
# ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
ax.text(
bbox_x,
bbox_y,
_string,
color="black",
bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
)
if "box_label" in tgt:
assert len(tgt["box_label"]) == numbox, f"{len(tgt['box_label'])} = {numbox}, "
for idx, bl in enumerate(tgt["box_label"]):
_string = str(bl)
bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
# ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
ax.text(
bbox_x,
bbox_y,
_string,
color="black",
bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
)
if "caption" in tgt:
ax.set_title(tgt["caption"], wrap=True)
# plt.figure()
# rainbow_text(0.0,0.0,"all unicorns poop rainbows ! ! !".split(),
# ['red', 'orange', 'brown', 'green', 'blue', 'purple', 'black'])
if "attn" in tgt:
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
if isinstance(tgt["attn"], tuple):
tgt["attn"] = [tgt["attn"]]
for item in tgt["attn"]:
attn_map, basergb = item
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min() + 1e-3)
attn_map = (attn_map * 255).astype(np.uint8)
cm = ColorMap(basergb)
heatmap = cm(attn_map)
ax.imshow(heatmap)
ax.set_axis_off()
def showAnns(self, anns, draw_bbox=False):
"""
Display the specified annotations.
:param anns (array of object): annotations to display
:return: None
"""
if len(anns) == 0:
return 0
if "segmentation" in anns[0] or "keypoints" in anns[0]:
datasetType = "instances"
elif "caption" in anns[0]:
datasetType = "captions"
else:
raise Exception("datasetType not supported")
if datasetType == "instances":
ax = plt.gca()
ax.set_autoscale_on(False)
polygons = []
color = []
for ann in anns:
c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
if "segmentation" in ann:
if type(ann["segmentation"]) == list:
# polygon
for seg in ann["segmentation"]:
poly = np.array(seg).reshape((int(len(seg) / 2), 2))
polygons.append(Polygon(poly))
color.append(c)
else:
# mask
t = self.imgs[ann["image_id"]]
if type(ann["segmentation"]["counts"]) == list:
rle = maskUtils.frPyObjects([ann["segmentation"]], t["height"], t["width"])
else:
rle = [ann["segmentation"]]
m = maskUtils.decode(rle)
img = np.ones((m.shape[0], m.shape[1], 3))
if ann["iscrowd"] == 1:
color_mask = np.array([2.0, 166.0, 101.0]) / 255
if ann["iscrowd"] == 0:
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:, :, i] = color_mask[i]
ax.imshow(np.dstack((img, m * 0.5)))
if "keypoints" in ann and type(ann["keypoints"]) == list:
# turn skeleton into zero-based index
sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1
kp = np.array(ann["keypoints"])
x = kp[0::3]
y = kp[1::3]
v = kp[2::3]
for sk in sks:
if np.all(v[sk] > 0):
plt.plot(x[sk], y[sk], linewidth=3, color=c)
plt.plot(
x[v > 0],
y[v > 0],
"o",
markersize=8,
markerfacecolor=c,
markeredgecolor="k",
markeredgewidth=2,
)
plt.plot(
x[v > 1],
y[v > 1],
"o",
markersize=8,
markerfacecolor=c,
markeredgecolor=c,
markeredgewidth=2,
)
if draw_bbox:
[bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"]
poly = [
[bbox_x, bbox_y],
[bbox_x, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y],
]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
color.append(c)
# p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
# ax.add_collection(p)
p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
ax.add_collection(p)
elif datasetType == "captions":
for ann in anns:
print(ann["caption"])

View File

@ -0,0 +1,100 @@
import os
import random
from typing import List
import torch
def create_positive_map_from_span(tokenized, token_span, max_text_len=256):
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j
Input:
- tokenized:
- input_ids: Tensor[1, ntokens]
- attention_mask: Tensor[1, ntokens]
- token_span: list with length num_boxes.
- each item: [start_idx, end_idx]
"""
positive_map = torch.zeros((len(token_span), max_text_len), dtype=torch.float)
for j, tok_list in enumerate(token_span):
for beg, end in tok_list:
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
if os.environ.get("SHILONG_DEBUG_ONLY_ONE_POS", None) == "TRUE":
positive_map[j, beg_pos] = 1
break
else:
positive_map[j, beg_pos : end_pos + 1].fill_(1)
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)
def build_captions_and_token_span(cat_list, force_lowercase):
"""
Return:
captions: str
cat2tokenspan: dict
{
'dog': [[0, 2]],
...
}
"""
cat2tokenspan = {}
captions = ""
for catname in cat_list:
class_name = catname
if force_lowercase:
class_name = class_name.lower()
if "/" in class_name:
class_name_list: List = class_name.strip().split("/")
class_name_list.append(class_name)
class_name: str = random.choice(class_name_list)
tokens_positive_i = []
subnamelist = [i.strip() for i in class_name.strip().split(" ")]
for subname in subnamelist:
if len(subname) == 0:
continue
if len(captions) > 0:
captions = captions + " "
strat_idx = len(captions)
end_idx = strat_idx + len(subname)
tokens_positive_i.append([strat_idx, end_idx])
captions = captions + subname
if len(tokens_positive_i) > 0:
captions = captions + " ."
cat2tokenspan[class_name] = tokens_positive_i
return captions, cat2tokenspan
def build_id2posspan_and_caption(category_dict: dict):
"""Build id2pos_span and caption from category_dict
Args:
category_dict (dict): category_dict
"""
cat_list = [item["name"].lower() for item in category_dict]
id2catname = {item["id"]: item["name"].lower() for item in category_dict}
caption, cat2posspan = build_captions_and_token_span(cat_list, force_lowercase=True)
id2posspan = {catid: cat2posspan[catname] for catid, catname in id2catname.items()}
return id2posspan, caption

View File

@ -0,0 +1 @@
__version__ = "0.1.0"

View File

@ -0,0 +1,102 @@
import pathlib
from typing import Any, Dict, List, Optional
import numpy as np
import supervision as sv
import torch
import torchvision
from PIL import Image
from invokeai.backend.image_util.grounding_segment_anything.groundingdino.util.inference import Model
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.build_sam import sam_model_registry
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.predictor import SamPredictor
class GroundingSegmentAnythingDetector:
def __init__(self, grounding_dino_model: Model, segment_anything_model: SamPredictor) -> None:
self.grounding_dino_model: Optional[Model] = grounding_dino_model
self.segment_anything_model: Optional[SamPredictor] = segment_anything_model
@staticmethod
def build_grounding_dino(grounding_dino_state_dict: Dict[str, torch.Tensor], device: torch.device):
grounding_dino_config = pathlib.Path(
"./invokeai/backend/image_util/grounding_segment_anything/groundingdino/config/GroundingDINO_SwinT_OGC.py"
)
return Model(
model_state_dict=grounding_dino_state_dict,
model_config_path=grounding_dino_config.as_posix(),
device=device.type,
)
@staticmethod
def build_segment_anything(segment_anything_state_dict: Dict[str, torch.Tensor], device: torch.device):
sam = sam_model_registry["vit_h"](checkpoint=segment_anything_state_dict)
sam.to(device=device)
return SamPredictor(sam)
def detect_objects(
self,
image: np.ndarray[Any, Any],
prompts: List[str],
box_threshold: float = 0.5,
text_threshold: float = 0.5,
nms_threshold: float = 0.8,
):
if not self.grounding_dino_model:
raise RuntimeError("GroundingDINO model could not load.")
detections = self.grounding_dino_model.predict_with_classes(
image=image, classes=prompts, box_threshold=box_threshold, text_threshold=text_threshold
)
nms_idx = (
torchvision.ops.nms(
torch.from_numpy(detections.xyxy), torch.from_numpy(detections.confidence), nms_threshold
)
.numpy()
.tolist()
)
detections.xyxy = detections.xyxy[nms_idx]
detections.confidence = detections.confidence[nms_idx]
detections.class_id = detections.class_id[nms_idx]
return detections
def segment_detections(
self, image: np.ndarray[Any, Any], detections: sv.Detections, prompts: List[str]
) -> Dict[str, np.ndarray[Any, Any]]:
if not self.segment_anything_model:
raise RuntimeError("Segment Anything model could not be loaded")
self.segment_anything_model.set_image(image)
result_masks = {}
for box, class_id in zip(detections.xyxy, detections.class_id):
masks, scores, logits = self.segment_anything_model.predict(box=box, multimask_output=True)
index = np.argmax(scores)
result_masks.update({prompts[class_id]: masks[index]})
return result_masks
def predict(
self,
image: Image.Image,
prompt: str,
box_threshold: float = 0.5,
text_threshold: float = 0.5,
nms_threshold: float = 0.8,
):
open_cv_image = np.array(image)
open_cv_image = open_cv_image[:, :, ::-1].copy()
prompts = prompt.split(",")
detections = self.detect_objects(open_cv_image, prompts, box_threshold, text_threshold, nms_threshold)
segments = self.segment_detections(open_cv_image, detections, prompts)
if len(segments) > 0:
combined_mask = np.zeros_like(list(segments.values())[0])
for mask in list(segments.values()):
combined_mask = np.logical_or(combined_mask, mask)
mask_preview = (combined_mask * 255).astype(np.uint8)
else:
mask_preview = np.zeros(open_cv_image.shape, np.uint8)
return Image.fromarray(mask_preview)

View File

@ -0,0 +1,25 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.automatic_mask_generator import (
SamAutomaticMaskGenerator,
) # noqa
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.build_sam import ( # noqa
build_sam,
build_sam_vit_b,
build_sam_vit_h,
build_sam_vit_l,
sam_model_registry,
)
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.build_sam_hq import ( # noqa
build_sam_hq,
build_sam_hq_vit_b,
build_sam_hq_vit_h,
build_sam_hq_vit_l,
sam_hq_model_registry,
)
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.predictor import SamPredictor # noqa

View File

@ -0,0 +1,368 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import torch
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling import Sam
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.predictor import SamPredictor
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.utils.amg import (
MaskData,
area_from_rle,
batch_iterator,
batched_mask_to_box,
box_xyxy_to_xywh,
build_all_layer_point_grids,
calculate_stability_score,
coco_encode_rle,
generate_crop_boxes,
is_box_near_crop_edge,
mask_to_rle_pytorch,
remove_small_regions,
rle_to_mask,
uncrop_boxes_xyxy,
uncrop_masks,
uncrop_points,
)
class SamAutomaticMaskGenerator:
def __init__(
self,
model: Sam,
points_per_side: Optional[int] = 32,
points_per_batch: int = 64,
pred_iou_thresh: float = 0.88,
stability_score_thresh: float = 0.95,
stability_score_offset: float = 1.0,
box_nms_thresh: float = 0.7,
crop_n_layers: int = 0,
crop_nms_thresh: float = 0.7,
crop_overlap_ratio: float = 512 / 1500,
crop_n_points_downscale_factor: int = 1,
point_grids: Optional[List[np.ndarray]] = None,
min_mask_region_area: int = 0,
output_mode: str = "binary_mask",
) -> None:
"""
Using a SAM model, generates masks for the entire image.
Generates a grid of point prompts over the image, then filters
low quality and duplicate masks. The default settings are chosen
for SAM with a ViT-H backbone.
Arguments:
model (Sam): The SAM model to use for mask prediction.
points_per_side (int or None): The number of points to be sampled
along one side of the image. The total number of points is
points_per_side**2. If None, 'point_grids' must provide explicit
point sampling.
points_per_batch (int): Sets the number of points run simultaneously
by the model. Higher numbers may be faster but use more GPU memory.
pred_iou_thresh (float): A filtering threshold in [0,1], using the
model's predicted mask quality.
stability_score_thresh (float): A filtering threshold in [0,1], using
the stability of the mask under changes to the cutoff used to binarize
the model's mask predictions.
stability_score_offset (float): The amount to shift the cutoff when
calculated the stability score.
box_nms_thresh (float): The box IoU cutoff used by non-maximal
suppression to filter duplicate masks.
crops_n_layers (int): If >0, mask prediction will be run again on
crops of the image. Sets the number of layers to run, where each
layer has 2**i_layer number of image crops.
crops_nms_thresh (float): The box IoU cutoff used by non-maximal
suppression to filter duplicate masks between different crops.
crop_overlap_ratio (float): Sets the degree to which crops overlap.
In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
crop_n_points_downscale_factor (int): The number of points-per-side
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
point_grids (list(np.ndarray) or None): A list over explicit grids
of points used for sampling, normalized to [0,1]. The nth grid in the
list is used in the nth crop layer. Exclusive with points_per_side.
min_mask_region_area (int): If >0, postprocessing will be applied
to remove disconnected regions and holes in masks with area smaller
than min_mask_region_area. Requires opencv.
output_mode (str): The form masks are returned in. Can be 'binary_mask',
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
For large resolutions, 'binary_mask' may consume large amounts of
memory.
"""
assert (points_per_side is None) != (
point_grids is None
), "Exactly one of points_per_side or point_grid must be provided."
if points_per_side is not None:
self.point_grids = build_all_layer_point_grids(
points_per_side,
crop_n_layers,
crop_n_points_downscale_factor,
)
elif point_grids is not None:
self.point_grids = point_grids
else:
raise ValueError("Can't have both points_per_side and point_grid be None.")
assert output_mode in [
"binary_mask",
"uncompressed_rle",
"coco_rle",
], f"Unknown output_mode {output_mode}."
if output_mode == "coco_rle":
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
if min_mask_region_area > 0:
import cv2 # type: ignore # noqa: F401
self.predictor = SamPredictor(model)
self.points_per_batch = points_per_batch
self.pred_iou_thresh = pred_iou_thresh
self.stability_score_thresh = stability_score_thresh
self.stability_score_offset = stability_score_offset
self.box_nms_thresh = box_nms_thresh
self.crop_n_layers = crop_n_layers
self.crop_nms_thresh = crop_nms_thresh
self.crop_overlap_ratio = crop_overlap_ratio
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
self.min_mask_region_area = min_mask_region_area
self.output_mode = output_mode
@torch.no_grad()
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
"""
Generates masks for the given image.
Arguments:
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
Returns:
list(dict(str, any)): A list over records for masks. Each record is
a dict containing the following keys:
segmentation (dict(str, any) or np.ndarray): The mask. If
output_mode='binary_mask', is an array of shape HW. Otherwise,
is a dictionary containing the RLE.
bbox (list(float)): The box around the mask, in XYWH format.
area (int): The area in pixels of the mask.
predicted_iou (float): The model's own prediction of the mask's
quality. This is filtered by the pred_iou_thresh parameter.
point_coords (list(list(float))): The point coordinates input
to the model to generate this mask.
stability_score (float): A measure of the mask's quality. This
is filtered on using the stability_score_thresh parameter.
crop_box (list(float)): The crop of the image used to generate
the mask, given in XYWH format.
"""
# Generate masks
mask_data = self._generate_masks(image)
# Filter small disconnected regions and holes in masks
if self.min_mask_region_area > 0:
mask_data = self.postprocess_small_regions(
mask_data,
self.min_mask_region_area,
max(self.box_nms_thresh, self.crop_nms_thresh),
)
# Encode masks
if self.output_mode == "coco_rle":
mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
elif self.output_mode == "binary_mask":
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
else:
mask_data["segmentations"] = mask_data["rles"]
# Write mask records
curr_anns = []
for idx in range(len(mask_data["segmentations"])):
ann = {
"segmentation": mask_data["segmentations"][idx],
"area": area_from_rle(mask_data["rles"][idx]),
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
"predicted_iou": mask_data["iou_preds"][idx].item(),
"point_coords": [mask_data["points"][idx].tolist()],
"stability_score": mask_data["stability_score"][idx].item(),
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
}
curr_anns.append(ann)
return curr_anns
def _generate_masks(self, image: np.ndarray) -> MaskData:
orig_size = image.shape[:2]
crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)
# Iterate over image crops
data = MaskData()
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
data.cat(crop_data)
# Remove duplicate masks between crops
if len(crop_boxes) > 1:
# Prefer masks from smaller crops
scores = 1 / box_area(data["crop_boxes"])
scores = scores.to(data["boxes"].device)
keep_by_nms = batched_nms(
data["boxes"].float(),
scores,
torch.zeros(len(data["boxes"])), # categories
iou_threshold=self.crop_nms_thresh,
)
data.filter(keep_by_nms)
data.to_numpy()
return data
def _process_crop(
self,
image: np.ndarray,
crop_box: List[int],
crop_layer_idx: int,
orig_size: Tuple[int, ...],
) -> MaskData:
# Crop the image and calculate embeddings
x0, y0, x1, y1 = crop_box
cropped_im = image[y0:y1, x0:x1, :]
cropped_im_size = cropped_im.shape[:2]
self.predictor.set_image(cropped_im)
# Get points for this crop
points_scale = np.array(cropped_im_size)[None, ::-1]
points_for_image = self.point_grids[crop_layer_idx] * points_scale
# Generate masks for this crop in batches
data = MaskData()
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
data.cat(batch_data)
del batch_data
self.predictor.reset_image()
# Remove duplicates within this crop.
keep_by_nms = batched_nms(
data["boxes"].float(),
data["iou_preds"],
torch.zeros(len(data["boxes"])), # categories
iou_threshold=self.box_nms_thresh,
)
data.filter(keep_by_nms)
# Return to the original image frame
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
data["points"] = uncrop_points(data["points"], crop_box)
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
return data
def _process_batch(
self,
points: np.ndarray,
im_size: Tuple[int, ...],
crop_box: List[int],
orig_size: Tuple[int, ...],
) -> MaskData:
orig_h, orig_w = orig_size
# Run model on this batch
transformed_points = self.predictor.transform.apply_coords(points, im_size)
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
masks, iou_preds, _ = self.predictor.predict_torch(
in_points[:, None, :],
in_labels[:, None],
multimask_output=True,
return_logits=True,
)
# Serialize predictions and store in MaskData
data = MaskData(
masks=masks.flatten(0, 1),
iou_preds=iou_preds.flatten(0, 1),
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
)
del masks
# Filter by predicted IoU
if self.pred_iou_thresh > 0.0:
keep_mask = data["iou_preds"] > self.pred_iou_thresh
data.filter(keep_mask)
# Calculate stability score
data["stability_score"] = calculate_stability_score(
data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
)
if self.stability_score_thresh > 0.0:
keep_mask = data["stability_score"] >= self.stability_score_thresh
data.filter(keep_mask)
# Threshold masks and calculate boxes
data["masks"] = data["masks"] > self.predictor.model.mask_threshold
data["boxes"] = batched_mask_to_box(data["masks"])
# Filter boxes that touch crop boundaries
keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
if not torch.all(keep_mask):
data.filter(keep_mask)
# Compress to RLE
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
data["rles"] = mask_to_rle_pytorch(data["masks"])
del data["masks"]
return data
@staticmethod
def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData:
"""
Removes small disconnected regions and holes in masks, then reruns
box NMS to remove any new duplicates.
Edits mask_data in place.
Requires open-cv as a dependency.
"""
if len(mask_data["rles"]) == 0:
return mask_data
# Filter small disconnected regions and holes
new_masks = []
scores = []
for rle in mask_data["rles"]:
mask = rle_to_mask(rle)
mask, changed = remove_small_regions(mask, min_area, mode="holes")
unchanged = not changed
mask, changed = remove_small_regions(mask, min_area, mode="islands")
unchanged = unchanged and not changed
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
# Give score=0 to changed masks and score=1 to unchanged masks
# so NMS will prefer ones that didn't need postprocessing
scores.append(float(unchanged))
# Recalculate boxes and remove any new duplicates
masks = torch.cat(new_masks, dim=0)
boxes = batched_mask_to_box(masks)
keep_by_nms = batched_nms(
boxes.float(),
torch.as_tensor(scores),
torch.zeros(len(boxes)), # categories
iou_threshold=nms_thresh,
)
# Only recalculate RLEs for masks that have changed
for i_mask in keep_by_nms:
if scores[i_mask] == 0.0:
mask_torch = masks[i_mask].unsqueeze(0)
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
mask_data.filter(keep_by_nms)
return mask_data

View File

@ -0,0 +1,111 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
import torch
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling import (
ImageEncoderViT,
MaskDecoder,
PromptEncoder,
Sam,
TwoWayTransformer,
)
def build_sam_vit_h(checkpoint=None):
return _build_sam(
encoder_embed_dim=1280,
encoder_depth=32,
encoder_num_heads=16,
encoder_global_attn_indexes=[7, 15, 23, 31],
checkpoint=checkpoint,
)
build_sam = build_sam_vit_h
def build_sam_vit_l(checkpoint=None):
return _build_sam(
encoder_embed_dim=1024,
encoder_depth=24,
encoder_num_heads=16,
encoder_global_attn_indexes=[5, 11, 17, 23],
checkpoint=checkpoint,
)
def build_sam_vit_b(checkpoint=None):
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
sam_model_registry = {
"default": build_sam,
"vit_h": build_sam,
"vit_l": build_sam_vit_l,
"vit_b": build_sam_vit_b,
}
def _build_sam(
encoder_embed_dim,
encoder_depth,
encoder_num_heads,
encoder_global_attn_indexes,
checkpoint=None,
):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
sam = Sam(
image_encoder=ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
),
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
sam.eval()
if checkpoint is not None:
sam.load_state_dict(checkpoint)
return sam

View File

@ -0,0 +1,126 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
import torch
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling import (
ImageEncoderViT,
MaskDecoderHQ,
PromptEncoder,
Sam,
TwoWayTransformer,
)
def build_sam_hq_vit_h(checkpoint=None):
return _build_sam(
encoder_embed_dim=1280,
encoder_depth=32,
encoder_num_heads=16,
encoder_global_attn_indexes=[7, 15, 23, 31],
checkpoint=checkpoint,
)
build_sam_hq = build_sam_hq_vit_h
def build_sam_hq_vit_l(checkpoint=None):
return _build_sam(
encoder_embed_dim=1024,
encoder_depth=24,
encoder_num_heads=16,
encoder_global_attn_indexes=[5, 11, 17, 23],
checkpoint=checkpoint,
)
def build_sam_hq_vit_b(checkpoint=None):
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
sam_hq_model_registry = {
"default": build_sam_hq_vit_h,
"vit_h": build_sam_hq_vit_h,
"vit_l": build_sam_hq_vit_l,
"vit_b": build_sam_hq_vit_b,
}
def _build_sam(
encoder_embed_dim,
encoder_depth,
encoder_num_heads,
encoder_global_attn_indexes,
checkpoint=None,
):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
sam = Sam(
image_encoder=ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
),
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoderHQ(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
vit_dim=encoder_embed_dim,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
# sam.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
device = "cuda" if torch.cuda.is_available() else "cpu"
state_dict = torch.load(f, map_location=device)
info = sam.load_state_dict(state_dict, strict=False)
print(info)
for n, p in sam.named_parameters():
if (
"hf_token" not in n
and "hf_mlp" not in n
and "compress_vit_feat" not in n
and "embedding_encoder" not in n
and "embedding_maskfeature" not in n
):
p.requires_grad = False
return sam

View File

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.image_encoder import (
ImageEncoderViT,
)
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.mask_decoder import MaskDecoder
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.mask_decoder_hq import (
MaskDecoderHQ,
)
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.prompt_encoder import (
PromptEncoder,
)
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.sam import Sam
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.transformer import (
TwoWayTransformer,
)

View File

@ -0,0 +1,43 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Type
import torch
import torch.nn as nn
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x

View File

@ -0,0 +1,395 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Tuple, Type
import torch
import torch.nn as nn
import torch.nn.functional as F
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.common import (
LayerNorm2d,
MLPBlock,
)
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
class ImageEncoderViT(nn.Module):
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
global_attn_indexes (list): Indexes for blocks using global attention.
"""
super().__init__()
self.img_size = img_size
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
self.pos_embed: Optional[nn.Parameter] = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + self.pos_embed
interm_embeddings = []
for blk in self.blocks:
x = blk(x)
if blk.window_size == 0:
interm_embeddings.append(x)
x = self.neck(x.permute(0, 3, 1, 2))
return x, interm_embeddings
class Block(nn.Module):
"""Transformer blocks with support of window attention and residual propagation blocks"""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then
use global attention.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size, window_size),
)
self.norm2 = norm_layer(dim)
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
self.window_size = window_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x = shortcut + x
x = x + self.mlp(self.norm2(x))
return x
class Attention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
assert input_size is not None, "Input size must be provided if using relative positional encoding."
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
attn = attn.softmax(dim=-1)
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
x = self.proj(x)
return x
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows, (Hp, Wp)
def window_unpartition(
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
) -> torch.Tensor:
"""
Window unpartition into original sequences and removing padding.
Args:
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
pad_hw (Tuple): padded height and width (Hp, Wp).
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
Hp, Wp = pad_hw
H, W = hw
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W:
x = x[:, :H, :W, :].contiguous()
return x
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int): size of query q.
k_size (int): size of key k.
rel_pos (Tensor): relative position embeddings (L, C).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos(
attn: torch.Tensor,
q: torch.Tensor,
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> torch.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
Args:
attn (Tensor): attention map.
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
q_h, q_w = q_size
k_h, k_w = k_size
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape(B, q_h, q_w, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
B, q_h * q_w, k_h * k_w
)
return attn
class PatchEmbed(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
kernel_size: Tuple[int, int] = (16, 16),
stride: Tuple[int, int] = (16, 16),
padding: Tuple[int, int] = (0, 0),
in_chans: int = 3,
embed_dim: int = 768,
) -> None:
"""
Args:
kernel_size (Tuple): kernel size of the projection layer.
stride (Tuple): stride of the projection layer.
padding (Tuple): padding size of the projection layer.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
"""
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
# B C H W -> B H W C
x = x.permute(0, 2, 3, 1)
return x

View File

@ -0,0 +1,171 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Tuple, Type
import torch
from torch import nn
from torch.nn import functional as F
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.common import LayerNorm2d
class MaskDecoder(nn.Module):
def __init__(
self,
*,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a
transformer architecture.
Arguments:
transformer_dim (int): the channel dimension of the transformer
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict
when disambiguating masks
activation (nn.Module): the type of activation to use when
upscaling masks
iou_head_depth (int): the depth of the MLP used to predict
mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP
used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
self.output_upscaling = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
activation(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
activation(),
)
self.output_hypernetworks_mlps = nn.ModuleList(
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)]
)
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
hq_token_only: bool,
interm_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Arguments:
image_embeddings (torch.Tensor): the embeddings from the image encoder
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single
mask.
Returns:
torch.Tensor: batched predicted masks
torch.Tensor: batched predictions of mask quality
"""
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
if multimask_output:
mask_slice = slice(1, None)
else:
mask_slice = slice(0, 1)
masks = masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
# Prepare output
return masks, iou_pred
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
upscaled_embedding = self.output_upscaling(src)
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x

View File

@ -0,0 +1,233 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# Modified by HQ-SAM team
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Tuple, Type
import torch
from torch import nn
from torch.nn import functional as F
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.common import LayerNorm2d
class MaskDecoderHQ(nn.Module):
def __init__(
self,
*,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
vit_dim: int = 1024,
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a
transformer architecture.
Arguments:
transformer_dim (int): the channel dimension of the transformer
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict
when disambiguating masks
activation (nn.Module): the type of activation to use when
upscaling masks
iou_head_depth (int): the depth of the MLP used to predict
mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP
used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
self.output_upscaling = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
activation(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
activation(),
)
self.output_hypernetworks_mlps = nn.ModuleList(
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)]
)
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
# HQ-SAM parameters
self.hf_token = nn.Embedding(1, transformer_dim) # HQ-Ouptput-Token
self.hf_mlp = MLP(
transformer_dim, transformer_dim, transformer_dim // 8, 3
) # corresponding new MLP layer for HQ-Ouptput-Token
self.num_mask_tokens = self.num_mask_tokens + 1
# three conv fusion layers for obtaining HQ-Feature
self.compress_vit_feat = nn.Sequential(
nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim),
nn.GELU(),
nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2),
)
self.embedding_encoder = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
nn.GELU(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
)
self.embedding_maskfeature = nn.Sequential(
nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1),
LayerNorm2d(transformer_dim // 4),
nn.GELU(),
nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1),
)
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
hq_token_only: bool,
interm_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Arguments:
image_embeddings (torch.Tensor): the embeddings from the ViT image encoder
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single
mask.
Returns:
torch.Tensor: batched predicted masks
torch.Tensor: batched predictions of mask quality
"""
vit_features = interm_embeddings[0].permute(
0, 3, 1, 2
) # early-layer ViT feature, after 1st global attention block in ViT
hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features)
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
hq_features=hq_features,
)
# Select the correct mask or masks for output
if multimask_output:
# mask with highest score
mask_slice = slice(1, self.num_mask_tokens - 1)
iou_pred = iou_pred[:, mask_slice]
iou_pred, max_iou_idx = torch.max(iou_pred, dim=1)
iou_pred = iou_pred.unsqueeze(1)
masks_multi = masks[:, mask_slice, :, :]
masks_sam = masks_multi[torch.arange(masks_multi.size(0)), max_iou_idx].unsqueeze(1)
else:
# singale mask output, default
mask_slice = slice(0, 1)
iou_pred = iou_pred[:, mask_slice]
masks_sam = masks[:, mask_slice]
masks_hq = masks[:, slice(self.num_mask_tokens - 1, self.num_mask_tokens)]
if hq_token_only:
masks = masks_hq
else:
masks = masks_sam + masks_hq
# Prepare output
return masks, iou_pred
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
hq_features: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
upscaled_embedding_sam = self.output_upscaling(src)
upscaled_embedding_hq = self.embedding_maskfeature(upscaled_embedding_sam) + hq_features.repeat(b, 1, 1, 1)
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
if i < self.num_mask_tokens - 1:
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
else:
hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding_sam.shape
masks_sam = (hyper_in[:, : self.num_mask_tokens - 1] @ upscaled_embedding_sam.view(b, c, h * w)).view(
b, -1, h, w
)
masks_sam_hq = (hyper_in[:, self.num_mask_tokens - 1 :] @ upscaled_embedding_hq.view(b, c, h * w)).view(
b, -1, h, w
)
masks = torch.cat([masks_sam, masks_sam_hq], dim=1)
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x

View File

@ -0,0 +1,212 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Optional, Tuple, Type
import numpy as np
import torch
from torch import nn
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.common import LayerNorm2d
class PromptEncoder(nn.Module):
def __init__(
self,
embed_dim: int,
image_embedding_size: Tuple[int, int],
input_image_size: Tuple[int, int],
mask_in_chans: int,
activation: Type[nn.Module] = nn.GELU,
) -> None:
"""
Encodes prompts for input to SAM's mask decoder.
Arguments:
embed_dim (int): The prompts' embedding dimension
image_embedding_size (tuple(int, int)): The spatial size of the
image embedding, as (H, W).
input_image_size (int): The padded size of the image as input
to the image encoder, as (H, W).
mask_in_chans (int): The number of hidden channels used for
encoding input masks.
activation (nn.Module): The activation to use when encoding
input masks.
"""
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
self.point_embeddings = nn.ModuleList(point_embeddings)
self.not_a_point_embed = nn.Embedding(1, embed_dim)
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
self.mask_downscaling = nn.Sequential(
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans // 4),
activation(),
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans),
activation(),
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
)
self.no_mask_embed = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
"""
Returns the positional encoding used to encode point prompts,
applied to a dense set of points the shape of the image encoding.
Returns:
torch.Tensor: Positional encoding with shape
1x(embed_dim)x(embedding_h)x(embedding_w)
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(
self,
points: torch.Tensor,
labels: torch.Tensor,
pad: bool,
) -> torch.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
points = torch.cat([points, padding_point], dim=1)
labels = torch.cat([labels, padding_label], dim=1)
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
point_embedding[labels == -1] = 0.0
point_embedding[labels == -1] += self.not_a_point_embed.weight
point_embedding[labels == 0] += self.point_embeddings[0].weight
point_embedding[labels == 1] += self.point_embeddings[1].weight
return point_embedding
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
"""Embeds box prompts."""
boxes = boxes + 0.5 # Shift to center of pixel
coords = boxes.reshape(-1, 2, 2)
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
return corner_embedding
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
"""Embeds mask inputs."""
mask_embedding = self.mask_downscaling(masks)
return mask_embedding
def _get_batch_size(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> int:
"""
Gets the batch size of the output given the batch size of the input prompts.
"""
if points is not None:
return points[0].shape[0]
elif boxes is not None:
return boxes.shape[0]
elif masks is not None:
return masks.shape[0]
else:
return 1
def _get_device(self) -> torch.device:
return self.point_embeddings[0].weight.device
def forward(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Embeds different types of prompts, returning both sparse and dense
embeddings.
Arguments:
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
and labels to embed.
boxes (torch.Tensor or none): boxes to embed
masks (torch.Tensor or none): masks to embed
Returns:
torch.Tensor: sparse embeddings for the points and boxes, with shape
BxNx(embed_dim), where N is determined by the number of input points
and boxes.
torch.Tensor: dense embeddings for the masks, in the shape
Bx(embed_dim)x(embed_H)x(embed_W)
"""
bs = self._get_batch_size(points, boxes, masks)
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
if points is not None:
coords, labels = points
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
if boxes is not None:
box_embeddings = self._embed_boxes(boxes)
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
if masks is not None:
dense_embeddings = self._embed_masks(masks)
else:
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
)
return sparse_embeddings, dense_embeddings
class PositionEmbeddingRandom(nn.Module):
"""
Positional encoding using random spatial frequencies.
"""
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
super().__init__()
if scale is None or scale <= 0.0:
scale = 1.0
self.register_buffer(
"positional_encoding_gaussian_matrix",
scale * torch.randn((2, num_pos_feats)),
)
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
"""Positionally encode points that are normalized to [0,1]."""
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
# outputs d_1 x ... x d_n x C shape
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
"""Generate positional encoding for a grid of the specified size."""
h, w = size
device: Any = self.positional_encoding_gaussian_matrix.device
grid = torch.ones((h, w), device=device, dtype=torch.float32)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
return pe.permute(2, 0, 1) # C x H x W
def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
"""Positionally encode points that are not normalized to [0,1]."""
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
return self._pe_encoding(coords.to(torch.float)) # B x N x C

View File

@ -0,0 +1,178 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, List, Tuple
import torch
from torch import nn
from torch.nn import functional as F
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.image_encoder import (
ImageEncoderViT,
)
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.mask_decoder import MaskDecoder
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.prompt_encoder import (
PromptEncoder,
)
class Sam(nn.Module):
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder: ImageEncoderViT,
prompt_encoder: PromptEncoder,
mask_decoder: MaskDecoder,
pixel_mean: List[float] = [123.675, 116.28, 103.53],
pixel_std: List[float] = [58.395, 57.12, 57.375],
) -> None:
"""
SAM predicts object masks from an image and input prompts.
Arguments:
image_encoder (ImageEncoderViT): The backbone used to encode the
image into image embeddings that allow for efficient mask prediction.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
and encoded prompts.
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
pixel_std (list(float)): Std values for normalizing pixels in the input image.
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
@property
def device(self) -> Any:
return self.pixel_mean.device
@torch.no_grad()
def forward(
self,
batched_input: List[Dict[str, Any]],
multimask_output: bool,
) -> List[Dict[str, torch.Tensor]]:
"""
Predicts masks end-to-end from provided images and prompts.
If prompts are not known in advance, using SamPredictor is
recommended over calling the model directly.
Arguments:
batched_input (list(dict)): A list over input images, each a
dictionary with the following keys. A prompt key can be
excluded if it is not present.
'image': The image as a torch tensor in 3xHxW format,
already transformed for input to the model.
'original_size': (tuple(int, int)) The original size of
the image before transformation, as (H, W).
'point_coords': (torch.Tensor) Batched point prompts for
this image, with shape BxNx2. Already transformed to the
input frame of the model.
'point_labels': (torch.Tensor) Batched labels for point prompts,
with shape BxN.
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
Already transformed to the input frame of the model.
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
in the form Bx1xHxW.
multimask_output (bool): Whether the model should predict multiple
disambiguating masks, or return a single mask.
Returns:
(list(dict)): A list over input images, where each element is
as dictionary with the following keys.
'masks': (torch.Tensor) Batched binary mask predictions,
with shape BxCxHxW, where B is the number of input promts,
C is determiend by multimask_output, and (H, W) is the
original size of the image.
'iou_predictions': (torch.Tensor) The model's predictions
of mask quality, in shape BxC.
'low_res_logits': (torch.Tensor) Low resolution logits with
shape BxCxHxW, where H=W=256. Can be passed as mask input
to subsequent iterations of prediction.
"""
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
image_embeddings = self.image_encoder(input_images)
outputs = []
for image_record, curr_embedding in zip(batched_input, image_embeddings, strict=False):
if "point_coords" in image_record:
points = (image_record["point_coords"], image_record["point_labels"])
else:
points = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=image_record.get("boxes", None),
masks=image_record.get("mask_inputs", None),
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
masks = self.postprocess_masks(
low_res_masks,
input_size=image_record["image"].shape[-2:],
original_size=image_record["original_size"],
)
masks = masks > self.mask_threshold
outputs.append(
{
"masks": masks,
"iou_predictions": iou_predictions,
"low_res_logits": low_res_masks,
}
)
return outputs
def postprocess_masks(
self,
masks: torch.Tensor,
input_size: Tuple[int, ...],
original_size: Tuple[int, ...],
) -> torch.Tensor:
"""
Remove padding and upscale masks to the original image size.
Arguments:
masks (torch.Tensor): Batched masks from the mask_decoder,
in BxCxHxW format.
input_size (tuple(int, int)): The size of the image input to the
model, in (H, W) format. Used to remove padding.
original_size (tuple(int, int)): The original size of the image
before resizing for input to the model, in (H, W) format.
Returns:
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
is given by original_size.
"""
masks = F.interpolate(
masks,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
align_corners=False,
)
masks = masks[..., : input_size[0], : input_size[1]]
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
return masks
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - self.pixel_mean) / self.pixel_std
# Pad
h, w = x.shape[-2:]
padh = self.image_encoder.img_size - h
padw = self.image_encoder.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x

View File

@ -0,0 +1,232 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Tuple, Type
import torch
from torch import Tensor, nn
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling.common import MLPBlock
class TwoWayTransformer(nn.Module):
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None:
"""
A transformer decoder that attends to an input image using
queries whose positional embedding is supplied.
Args:
depth (int): number of layers in the transformer
embedding_dim (int): the channel dimension for the input embeddings
num_heads (int): the number of heads for multihead attention. Must
divide embedding_dim
mlp_dim (int): the channel dimension internal to the MLP block
activation (nn.Module): the activation to use in the MLP block
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0),
)
)
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
self,
image_embedding: Tensor,
image_pe: Tensor,
point_embedding: Tensor,
) -> Tuple[Tensor, Tensor]:
"""
Args:
image_embedding (torch.Tensor): image to attend to. Should be shape
B x embedding_dim x h x w for any h and w.
image_pe (torch.Tensor): the positional encoding to add to the image. Must
have the same shape as image_embedding.
point_embedding (torch.Tensor): the embedding to add to the query points.
Must have shape B x N_points x embedding_dim for any N_points.
Returns:
torch.Tensor: the processed point_embedding
torch.Tensor: the processed image_embedding
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
bs, c, h, w = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding,
key_pe=image_pe,
)
# Apply the final attenion layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
class TwoWayAttentionBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""
A transformer block with four layers: (1) self-attention of sparse
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
block on sparse inputs, and (4) cross attention of dense inputs to sparse
inputs.
Arguments:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
skip_first_layer_pe (bool): skip the PE on the first layer
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, tokens attending to image embedding
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
class Attention(nn.Module):
"""
An attention layer that allows for downscaling the size of the embedding
after projection to queries, keys, and values.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
def _recombine_heads(self, x: Tensor) -> Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
out = self.out_proj(out)
return out

View File

@ -0,0 +1,271 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Tuple
import numpy as np
import torch
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.modeling import Sam
from invokeai.backend.image_util.grounding_segment_anything.segment_anything.utils.transforms import ResizeLongestSide
class SamPredictor:
def __init__(
self,
sam_model: Sam,
) -> None:
"""
Uses SAM to calculate the image embedding for an image, and then
allow repeated, efficient mask prediction given prompts.
Arguments:
sam_model (Sam): The model to use for mask prediction.
"""
super().__init__()
self.model = sam_model
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
self.reset_image()
def set_image(
self,
image: np.ndarray,
image_format: str = "RGB",
) -> None:
"""
Calculates the image embeddings for the provided image, allowing
masks to be predicted with the 'predict' method.
Arguments:
image (np.ndarray): The image for calculating masks. Expects an
image in HWC uint8 format, with pixel values in [0, 255].
image_format (str): The color format of the image, in ['RGB', 'BGR'].
"""
assert image_format in [
"RGB",
"BGR",
], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
# import pdb;pdb.set_trace()
if image_format != self.model.image_format:
image = image[..., ::-1]
# Transform the image to the form expected by the model
# import pdb;pdb.set_trace()
input_image = self.transform.apply_image(image)
input_image_torch = torch.as_tensor(input_image, device=self.device)
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
self.set_torch_image(input_image_torch, image.shape[:2])
@torch.no_grad()
def set_torch_image(
self,
transformed_image: torch.Tensor,
original_image_size: Tuple[int, ...],
) -> None:
"""
Calculates the image embeddings for the provided image, allowing
masks to be predicted with the 'predict' method. Expects the input
image to be already transformed to the format expected by the model.
Arguments:
transformed_image (torch.Tensor): The input image, with shape
1x3xHxW, which has been transformed with ResizeLongestSide.
original_image_size (tuple(int, int)): The size of the image
before transformation, in (H, W) format.
"""
assert (
len(transformed_image.shape) == 4
and transformed_image.shape[1] == 3
and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
self.reset_image()
self.original_size = original_image_size
self.input_size = tuple(transformed_image.shape[-2:])
input_image = self.model.preprocess(transformed_image)
self.features, self.interm_features = self.model.image_encoder(input_image)
self.is_image_set = True
def predict(
self,
point_coords: Optional[np.ndarray] = None,
point_labels: Optional[np.ndarray] = None,
box: Optional[np.ndarray] = None,
mask_input: Optional[np.ndarray] = None,
multimask_output: bool = True,
return_logits: bool = False,
hq_token_only: bool = False,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Predict masks for the given input prompts, using the currently set image.
Arguments:
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
model. Each point is in (X,Y) in pixels.
point_labels (np.ndarray or None): A length N array of labels for the
point prompts. 1 indicates a foreground point and 0 indicates a
background point.
box (np.ndarray or None): A length 4 array given a box prompt to the
model, in XYXY format.
mask_input (np.ndarray): A low resolution mask input to the model, typically
coming from a previous prediction iteration. Has form 1xHxW, where
for SAM, H=W=256.
multimask_output (bool): If true, the model will return three masks.
For ambiguous input prompts (such as a single click), this will often
produce better masks than a single prediction. If only a single
mask is needed, the model's predicted quality score can be used
to select the best mask. For non-ambiguous prompts, such as multiple
input prompts, multimask_output=False can give better results.
return_logits (bool): If true, returns un-thresholded masks logits
instead of a binary mask.
Returns:
(np.ndarray): The output masks in CxHxW format, where C is the
number of masks, and (H, W) is the original image size.
(np.ndarray): An array of length C containing the model's
predictions for the quality of each mask.
(np.ndarray): An array of shape CxHxW, where C is the number
of masks and H=W=256. These low resolution logits can be passed to
a subsequent iteration as mask input.
"""
if not self.is_image_set:
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
# Transform input prompts
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
if point_coords is not None:
assert point_labels is not None, "point_labels must be supplied if point_coords is supplied."
point_coords = self.transform.apply_coords(point_coords, self.original_size)
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
if box is not None:
box = self.transform.apply_boxes(box, self.original_size)
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
box_torch = box_torch[None, :]
if mask_input is not None:
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
mask_input_torch = mask_input_torch[None, :, :, :]
masks, iou_predictions, low_res_masks = self.predict_torch(
coords_torch,
labels_torch,
box_torch,
mask_input_torch,
multimask_output,
return_logits=return_logits,
hq_token_only=hq_token_only,
)
masks_np = masks[0].detach().cpu().numpy()
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
return masks_np, iou_predictions_np, low_res_masks_np
@torch.no_grad()
def predict_torch(
self,
point_coords: Optional[torch.Tensor],
point_labels: Optional[torch.Tensor],
boxes: Optional[torch.Tensor] = None,
mask_input: Optional[torch.Tensor] = None,
multimask_output: bool = True,
return_logits: bool = False,
hq_token_only: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Predict masks for the given input prompts, using the currently set image.
Input prompts are batched torch tensors and are expected to already be
transformed to the input frame using ResizeLongestSide.
Arguments:
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
model. Each point is in (X,Y) in pixels.
point_labels (torch.Tensor or None): A BxN array of labels for the
point prompts. 1 indicates a foreground point and 0 indicates a
background point.
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
model, in XYXY format.
mask_input (np.ndarray): A low resolution mask input to the model, typically
coming from a previous prediction iteration. Has form Bx1xHxW, where
for SAM, H=W=256. Masks returned by a previous iteration of the
predict method do not need further transformation.
multimask_output (bool): If true, the model will return three masks.
For ambiguous input prompts (such as a single click), this will often
produce better masks than a single prediction. If only a single
mask is needed, the model's predicted quality score can be used
to select the best mask. For non-ambiguous prompts, such as multiple
input prompts, multimask_output=False can give better results.
return_logits (bool): If true, returns un-thresholded masks logits
instead of a binary mask.
Returns:
(torch.Tensor): The output masks in BxCxHxW format, where C is the
number of masks, and (H, W) is the original image size.
(torch.Tensor): An array of shape BxC containing the model's
predictions for the quality of each mask.
(torch.Tensor): An array of shape BxCxHxW, where C is the number
of masks and H=W=256. These low res logits can be passed to
a subsequent iteration as mask input.
"""
if not self.is_image_set:
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
if point_coords is not None:
points = (point_coords, point_labels)
else:
points = None
# Embed prompts
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
points=points,
boxes=boxes,
masks=mask_input,
)
# Predict masks
low_res_masks, iou_predictions = self.model.mask_decoder(
image_embeddings=self.features,
image_pe=self.model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
hq_token_only=hq_token_only,
interm_embeddings=self.interm_features,
)
# Upscale the masks to the original image resolution
masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
if not return_logits:
masks = masks > self.model.mask_threshold
return masks, iou_predictions, low_res_masks
def get_image_embedding(self) -> torch.Tensor:
"""
Returns the image embeddings for the currently set image, with
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
the embedding spatial dimension of SAM (typically C=256, H=W=64).
"""
if not self.is_image_set:
raise RuntimeError("An image must be set with .set_image(...) to generate an embedding.")
assert self.features is not None, "Features must exist if an image has been set."
return self.features
@property
def device(self) -> torch.device:
return self.model.device
def reset_image(self) -> None:
"""Resets the currently set image."""
self.is_image_set = False
self.features = None
self.orig_h = None
self.orig_w = None
self.input_h = None
self.input_w = None

View File

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

View File

@ -0,0 +1,330 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from copy import deepcopy
from itertools import product
from typing import Any, Dict, Generator, ItemsView, List, Tuple
import numpy as np
import torch
class MaskData:
"""
A structure for storing masks and their related data in batched format.
Implements basic filtering and concatenation.
"""
def __init__(self, **kwargs) -> None:
for v in kwargs.values():
assert isinstance(
v, (list, np.ndarray, torch.Tensor)
), "MaskData only supports list, numpy arrays, and torch tensors."
self._stats = dict(**kwargs)
def __setitem__(self, key: str, item: Any) -> None:
assert isinstance(
item, (list, np.ndarray, torch.Tensor)
), "MaskData only supports list, numpy arrays, and torch tensors."
self._stats[key] = item
def __delitem__(self, key: str) -> None:
del self._stats[key]
def __getitem__(self, key: str) -> Any:
return self._stats[key]
def items(self) -> ItemsView[str, Any]:
return self._stats.items()
def filter(self, keep: torch.Tensor) -> None:
for k, v in self._stats.items():
if v is None:
self._stats[k] = None
elif isinstance(v, torch.Tensor):
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
elif isinstance(v, np.ndarray):
self._stats[k] = v[keep.detach().cpu().numpy()]
elif isinstance(v, list) and keep.dtype == torch.bool:
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
elif isinstance(v, list):
self._stats[k] = [v[i] for i in keep]
else:
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
def cat(self, new_stats: "MaskData") -> None:
for k, v in new_stats.items():
if k not in self._stats or self._stats[k] is None:
self._stats[k] = deepcopy(v)
elif isinstance(v, torch.Tensor):
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
elif isinstance(v, np.ndarray):
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
elif isinstance(v, list):
self._stats[k] = self._stats[k] + deepcopy(v)
else:
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
def to_numpy(self) -> None:
for k, v in self._stats.items():
if isinstance(v, torch.Tensor):
self._stats[k] = v.detach().cpu().numpy()
def is_box_near_crop_edge(
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
) -> torch.Tensor:
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
return torch.any(near_crop_edge, dim=1)
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
box_xywh = deepcopy(box_xyxy)
box_xywh[2] = box_xywh[2] - box_xywh[0]
box_xywh[3] = box_xywh[3] - box_xywh[1]
return box_xywh
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
assert len(args) > 0 and all(
len(a) == len(args[0]) for a in args
), "Batched iteration must have inputs of all the same size."
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
for b in range(n_batches):
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
"""
Encodes masks to an uncompressed RLE, in the format expected by
pycoco tools.
"""
# Put in fortran order and flatten h,w
b, h, w = tensor.shape
tensor = tensor.permute(0, 2, 1).flatten(1)
# Compute change indices
diff = tensor[:, 1:] ^ tensor[:, :-1]
change_indices = diff.nonzero()
# Encode run length
out = []
for i in range(b):
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
cur_idxs = torch.cat(
[
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
cur_idxs + 1,
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
]
)
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
counts = [] if tensor[i, 0] == 0 else [0]
counts.extend(btw_idxs.detach().cpu().tolist())
out.append({"size": [h, w], "counts": counts})
return out
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
"""Compute a binary mask from an uncompressed RLE."""
h, w = rle["size"]
mask = np.empty(h * w, dtype=bool)
idx = 0
parity = False
for count in rle["counts"]:
mask[idx : idx + count] = parity
idx += count
parity ^= True
mask = mask.reshape(w, h)
return mask.transpose() # Put in C order
def area_from_rle(rle: Dict[str, Any]) -> int:
return sum(rle["counts"][1::2])
def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
"""
Computes the stability score for a batch of masks. The stability
score is the IoU between the binary masks obtained by thresholding
the predicted mask logits at high and low values.
"""
# One mask is always contained inside the other.
# Save memory by preventing unnecesary cast to torch.int64
intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
return intersections / unions
def build_point_grid(n_per_side: int) -> np.ndarray:
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
offset = 1 / (2 * n_per_side)
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
return points
def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
"""Generates point grids for all crop layers."""
points_by_layer = []
for i in range(n_layers + 1):
n_points = int(n_per_side / (scale_per_layer**i))
points_by_layer.append(build_point_grid(n_points))
return points_by_layer
def generate_crop_boxes(
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
) -> Tuple[List[List[int]], List[int]]:
"""
Generates a list of crop boxes of different sizes. Each layer
has (2**i)**2 boxes for the ith layer.
"""
crop_boxes, layer_idxs = [], []
im_h, im_w = im_size
short_side = min(im_h, im_w)
# Original image
crop_boxes.append([0, 0, im_w, im_h])
layer_idxs.append(0)
def crop_len(orig_len, n_crops, overlap):
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
for i_layer in range(n_layers):
n_crops_per_side = 2 ** (i_layer + 1)
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
crop_w = crop_len(im_w, n_crops_per_side, overlap)
crop_h = crop_len(im_h, n_crops_per_side, overlap)
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
# Crops in XYWH format
for x0, y0 in product(crop_box_x0, crop_box_y0):
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
crop_boxes.append(box)
layer_idxs.append(i_layer + 1)
return crop_boxes, layer_idxs
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
x0, y0, _, _ = crop_box
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
# Check if boxes has a channel dimension
if len(boxes.shape) == 3:
offset = offset.unsqueeze(1)
return boxes + offset
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
x0, y0, _, _ = crop_box
offset = torch.tensor([[x0, y0]], device=points.device)
# Check if points has a channel dimension
if len(points.shape) == 3:
offset = offset.unsqueeze(1)
return points + offset
def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
x0, y0, x1, y1 = crop_box
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
return masks
# Coordinate transform masks
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
pad = (x0, pad_x - x0, y0, pad_y - y0)
return torch.nn.functional.pad(masks, pad, value=0)
def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
"""
Removes small disconnected regions and holes in a mask. Returns the
mask and an indicator of if the mask has been modified.
"""
import cv2 # type: ignore
assert mode in ["holes", "islands"]
correct_holes = mode == "holes"
working_mask = (correct_holes ^ mask).astype(np.uint8)
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
sizes = stats[:, -1][1:] # Row 0 is background label
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
if len(small_regions) == 0:
return mask, False
fill_labels = [0] + small_regions
if not correct_holes:
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
# If every region is below threshold, keep largest
if len(fill_labels) == 0:
fill_labels = [int(np.argmax(sizes)) + 1]
mask = np.isin(regions, fill_labels)
return mask, True
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
from pycocotools import mask as mask_utils # type: ignore
h, w = uncompressed_rle["size"]
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
return rle
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
"""
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
"""
# torch.max below raises an error on empty inputs, just skip in this case
if torch.numel(masks) == 0:
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
# Normalize shape to CxHxW
shape = masks.shape
h, w = shape[-2:]
if len(shape) > 2:
masks = masks.flatten(0, -3)
else:
masks = masks.unsqueeze(0)
# Get top and bottom edges
in_height, _ = torch.max(masks, dim=-1)
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
in_height_coords = in_height_coords + h * (~in_height)
top_edges, _ = torch.min(in_height_coords, dim=-1)
# Get left and right edges
in_width, _ = torch.max(masks, dim=-2)
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
right_edges, _ = torch.max(in_width_coords, dim=-1)
in_width_coords = in_width_coords + w * (~in_width)
left_edges, _ = torch.min(in_width_coords, dim=-1)
# If the mask is empty the right edge will be to the left of the left edge.
# Replace these boxes with [0, 0, 0, 0]
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
out = out * (~empty_filter).unsqueeze(-1)
# Return to original shape
if len(shape) > 2:
out = out.reshape(*shape[:-2], 4)
else:
out = out[0]
return out

View File

@ -0,0 +1,92 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from copy import deepcopy
from typing import Tuple
import numpy as np
import torch
from torch.nn import functional as F
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
class ResizeLongestSide:
"""
Resizes images to longest side 'target_length', as well as provides
methods for resizing coordinates and boxes. Provides methods for
transforming both numpy array and batched torch tensors.
"""
def __init__(self, target_length: int) -> None:
self.target_length = target_length
def apply_image(self, image: np.ndarray) -> np.ndarray:
"""
Expects a numpy array with shape HxWxC in uint8 format.
"""
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
return np.array(resize(to_pil_image(image), target_size))
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
"""
Expects a numpy array of length 2 in the final dimension. Requires the
original image size in (H, W) format.
"""
old_h, old_w = original_size
new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
coords = deepcopy(coords).astype(float)
coords[..., 0] = coords[..., 0] * (new_w / old_w)
coords[..., 1] = coords[..., 1] * (new_h / old_h)
return coords
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
"""
Expects a numpy array shape Bx4. Requires the original image size
in (H, W) format.
"""
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
return boxes.reshape(-1, 4)
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
"""
Expects batched images with shape BxCxHxW and float format. This
transformation may not exactly match apply_image. apply_image is
the transformation expected by the model.
"""
# Expects an image in BCHW format. May not exactly match apply_image.
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
return F.interpolate(image, target_size, mode="bilinear", align_corners=False, antialias=True)
def apply_coords_torch(self, coords: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
"""
Expects a torch tensor with length 2 in the last dimension. Requires the
original image size in (H, W) format.
"""
old_h, old_w = original_size
new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
coords = deepcopy(coords).to(torch.float)
coords[..., 0] = coords[..., 0] * (new_w / old_w)
coords[..., 1] = coords[..., 1] * (new_h / old_h)
return coords
def apply_boxes_torch(self, boxes: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
"""
Expects a torch tensor with shape Bx4. Requires the original image
size in (H, W) format.
"""
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
return boxes.reshape(-1, 4)
@staticmethod
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
"""
Compute the output size given input size and target long side length.
"""
scale = long_side_length * 1.0 / max(oldh, oldw)
newh, neww = oldh * scale, oldw * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
return (newh, neww)

View File

@ -74,12 +74,13 @@ dependencies = [
"easing-functions",
"einops",
"facexlib",
"matplotlib", # needed for plotting of Penner easing functions
"matplotlib", # needed for plotting of Penner easing functions
"npyscreen",
"omegaconf",
"picklescan",
"pillow",
"prompt-toolkit",
"pycocotools",
"pympler~=1.0.1",
"pypatchmatch",
'pyperclip',
@ -90,6 +91,7 @@ dependencies = [
"scikit-image~=0.21.0",
"semver~=3.0.1",
"send2trash",
"supervision",
"test-tube~=0.7.5",
"windows-curses; sys_platform=='win32'",
]