mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge remote-tracking branch 'upstream/development' into development
This commit is contained in:
commit
09bf6dd7c1
134
README.md
134
README.md
@ -1,21 +1,36 @@
|
|||||||
<h1 align='center'><b>Stable Diffusion Dream Script</b></h1>
|
<div align="center">
|
||||||
|
|
||||||
<p align='center'>
|
# Stable Diffusion Dream Script
|
||||||
<img src="docs/assets/logo.png"/>
|
|
||||||
</p>
|
|
||||||
|
|
||||||
<p align="center">
|
![project logo](docs/assets/logo.png)
|
||||||
<a href="https://github.com/lstein/stable-diffusion/releases"><img src="https://flat.badgen.net/github/release/lstein/stable-diffusion/development?icon=github" alt="release"/></a>
|
|
||||||
<a href="https://github.com/lstein/stable-diffusion/stargazers"><img src="https://flat.badgen.net/github/stars/lstein/stable-diffusion?icon=github" alt="stars"/></a>
|
[![discord badge]][discord link]
|
||||||
<a href="https://useful-forks.github.io/?repo=lstein%2Fstable-diffusion"><img src="https://flat.badgen.net/github/forks/lstein/stable-diffusion?icon=github" alt="forks"/></a>
|
|
||||||
<br />
|
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
|
||||||
<a href="https://github.com/lstein/stable-diffusion/actions/workflows/test-dream-conda.yml"><img src="https://flat.badgen.net/github/checks/lstein/stable-diffusion/main?label=CI%20status%20on%20main&cache=900&icon=github" alt="CI status on main"/></a>
|
|
||||||
<a href="https://github.com/lstein/stable-diffusion/actions/workflows/test-dream-conda.yml"><img src="https://flat.badgen.net/github/checks/lstein/stable-diffusion/development?label=CI%20status%20on%20dev&cache=900&icon=github" alt="CI status on dev"/></a>
|
[![CI checks on main badge]][CI checks on main link] [![CI checks on dev badge]][CI checks on dev link] [![latest commit to dev badge]][latest commit to dev link]
|
||||||
<a href="https://github.com/lstein/stable-diffusion/commits/development"><img src="https://flat.badgen.net/github/last-commit/lstein/stable-diffusion/development?icon=github&color=yellow&label=last%20dev%20commit&cache=900" alt="last-dev-commit"/></a>
|
|
||||||
<br />
|
[![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link]
|
||||||
<a href="https://github.com/lstein/stable-diffusion/issues?q=is%3Aissue+is%3Aopen"><img src="https://flat.badgen.net/github/open-issues/lstein/stable-diffusion?icon=github" alt="open-issues"/></a>
|
|
||||||
<a href="https://github.com/lstein/stable-diffusion/pulls?q=is%3Apr+is%3Aopen"><img src="https://flat.badgen.net/github/open-prs/lstein/stable-diffusion?icon=github" alt="open-prs"/></a>
|
[CI checks on dev badge]: https://flat.badgen.net/github/checks/lstein/stable-diffusion/development?label=CI%20status%20on%20dev&cache=900&icon=github
|
||||||
</p>
|
[CI checks on dev link]: https://github.com/lstein/stable-diffusion/actions?query=branch%3Adevelopment
|
||||||
|
[CI checks on main badge]: https://flat.badgen.net/github/checks/lstein/stable-diffusion/main?label=CI%20status%20on%20main&cache=900&icon=github
|
||||||
|
[CI checks on main link]: https://github.com/lstein/stable-diffusion/actions/workflows/test-dream-conda.yml
|
||||||
|
[discord badge]: https://flat.badgen.net/discord/members/htRgbc7e?icon=discord
|
||||||
|
[discord link]: https://discord.com/invite/htRgbc7e
|
||||||
|
[github forks badge]: https://flat.badgen.net/github/forks/lstein/stable-diffusion?icon=github
|
||||||
|
[github forks link]: https://useful-forks.github.io/?repo=lstein%2Fstable-diffusion
|
||||||
|
[github open issues badge]: https://flat.badgen.net/github/open-issues/lstein/stable-diffusion?icon=github
|
||||||
|
[github open issues link]: https://github.com/lstein/stable-diffusion/issues?q=is%3Aissue+is%3Aopen
|
||||||
|
[github open prs badge]: https://flat.badgen.net/github/open-prs/lstein/stable-diffusion?icon=github
|
||||||
|
[github open prs link]: https://github.com/lstein/stable-diffusion/pulls?q=is%3Apr+is%3Aopen
|
||||||
|
[github stars badge]: https://flat.badgen.net/github/stars/lstein/stable-diffusion?icon=github
|
||||||
|
[github stars link]: https://github.com/lstein/stable-diffusion/stargazers
|
||||||
|
[latest commit to dev badge]: https://flat.badgen.net/github/last-commit/lstein/stable-diffusion/development?icon=github&color=yellow&label=last%20dev%20commit&cache=900
|
||||||
|
[latest commit to dev link]: https://github.com/lstein/stable-diffusion/commits/development
|
||||||
|
[latest release badge]: https://flat.badgen.net/github/release/lstein/stable-diffusion/development?icon=github
|
||||||
|
[latest release link]: https://github.com/lstein/stable-diffusion/releases
|
||||||
|
</div>
|
||||||
|
|
||||||
This is a fork of [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion), the open
|
This is a fork of [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion), the open
|
||||||
source text-to-image generator. It provides a streamlined process with various new features and
|
source text-to-image generator. It provides a streamlined process with various new features and
|
||||||
@ -26,7 +41,7 @@ _Note: This fork is rapidly evolving. Please use the
|
|||||||
[Issues](https://github.com/lstein/stable-diffusion/issues) tab to report bugs and make feature
|
[Issues](https://github.com/lstein/stable-diffusion/issues) tab to report bugs and make feature
|
||||||
requests. Be sure to use the provided templates. They will help aid diagnose issues faster._
|
requests. Be sure to use the provided templates. They will help aid diagnose issues faster._
|
||||||
|
|
||||||
**Table of Contents**
|
## Table of Contents
|
||||||
|
|
||||||
1. [Installation](#installation)
|
1. [Installation](#installation)
|
||||||
2. [Hardware Requirements](#hardware-requirements)
|
2. [Hardware Requirements](#hardware-requirements)
|
||||||
@ -38,38 +53,38 @@ requests. Be sure to use the provided templates. They will help aid diagnose iss
|
|||||||
8. [Support](#support)
|
8. [Support](#support)
|
||||||
9. [Further Reading](#further-reading)
|
9. [Further Reading](#further-reading)
|
||||||
|
|
||||||
## Installation
|
### Installation
|
||||||
|
|
||||||
This fork is supported across multiple platforms. You can find individual installation instructions
|
This fork is supported across multiple platforms. You can find individual installation instructions
|
||||||
below.
|
below.
|
||||||
|
|
||||||
- ### [Linux](docs/installation/INSTALL_LINUX.md)
|
- #### [Linux](docs/installation/INSTALL_LINUX.md)
|
||||||
|
|
||||||
- ### [Windows](docs/installation/INSTALL_WINDOWS.md)
|
- #### [Windows](docs/installation/INSTALL_WINDOWS.md)
|
||||||
|
|
||||||
- ### [Macintosh](docs/installation/INSTALL_MAC.md)
|
- #### [Macintosh](docs/installation/INSTALL_MAC.md)
|
||||||
|
|
||||||
## Hardware Requirements
|
### Hardware Requirements
|
||||||
|
|
||||||
**System**
|
#### System
|
||||||
|
|
||||||
You wil need one of the following:
|
You wil need one of the following:
|
||||||
|
|
||||||
- An NVIDIA-based graphics card with 4 GB or more VRAM memory.
|
- An NVIDIA-based graphics card with 4 GB or more VRAM memory.
|
||||||
- An Apple computer with an M1 chip.
|
- An Apple computer with an M1 chip.
|
||||||
|
|
||||||
**Memory**
|
#### Memory
|
||||||
|
|
||||||
- At least 12 GB Main Memory RAM.
|
- At least 12 GB Main Memory RAM.
|
||||||
|
|
||||||
**Disk**
|
#### Disk
|
||||||
|
|
||||||
- At least 6 GB of free disk space for the machine learning model, Python, and all its dependencies.
|
- At least 6 GB of free disk space for the machine learning model, Python, and all its dependencies.
|
||||||
|
|
||||||
**Note**
|
> Note
|
||||||
|
>
|
||||||
If you are have a Nvidia 10xx series card (e.g. the 1080ti), please run the dream script in
|
> If you have an Nvidia 10xx series card (e.g. the 1080ti), please run the dream script in
|
||||||
full-precision mode as shown below.
|
> full-precision mode as shown below.
|
||||||
|
|
||||||
Similarly, specify full-precision mode on Apple M1 hardware.
|
Similarly, specify full-precision mode on Apple M1 hardware.
|
||||||
|
|
||||||
@ -79,43 +94,30 @@ To run in full-precision mode, start `dream.py` with the `--full_precision` flag
|
|||||||
(ldm) ~/stable-diffusion$ python scripts/dream.py --full_precision
|
(ldm) ~/stable-diffusion$ python scripts/dream.py --full_precision
|
||||||
```
|
```
|
||||||
|
|
||||||
## Features
|
### Features
|
||||||
|
|
||||||
### Major Features
|
#### Major Features
|
||||||
|
|
||||||
- #### [Interactive Command Line Interface](docs/features/CLI.md)
|
- [Interactive Command Line Interface](docs/features/CLI.md)
|
||||||
|
- [Image To Image](docs/features/IMG2IMG.md)
|
||||||
|
- [Inpainting Support](docs/features/INPAINTING.md)
|
||||||
|
- [GFPGAN and Real-ESRGAN Support](docs/features/UPSCALE.md)
|
||||||
|
- [Seamless Tiling](docs/features/OTHER.md#seamless-tiling)
|
||||||
|
- [Google Colab](docs/features/OTHER.md#google-colab)
|
||||||
|
- [Web Server](docs/features/WEB.md)
|
||||||
|
- [Reading Prompts From File](docs/features/OTHER.md#reading-prompts-from-a-file)
|
||||||
|
- [Shortcut: Reusing Seeds](docs/features/OTHER.md#shortcuts-reusing-seeds)
|
||||||
|
- [Weighted Prompts](docs/features/OTHER.md#weighted-prompts)
|
||||||
|
- [Variations](docs/features/VARIATIONS.md)
|
||||||
|
- [Personalizing Text-to-Image Generation](docs/features/TEXTUAL_INVERSION.md)
|
||||||
|
- [Simplified API for text to image generation](docs/features/OTHER.md#simplified-api)
|
||||||
|
|
||||||
- #### [Image To Image](docs/features/IMG2IMG.md)
|
#### Other Features
|
||||||
|
|
||||||
- #### [Inpainting Support](docs/features/INPAINTING.md)
|
- [Creating Transparent Regions for Inpainting](docs/features/INPAINTING.md#creating-transparent-regions-for-inpainting)
|
||||||
|
- [Preload Models](docs/features/OTHER.md#preload-models)
|
||||||
|
|
||||||
- #### [GFPGAN and Real-ESRGAN Support](docs/features/UPSCALE.md)
|
### Latest Changes
|
||||||
|
|
||||||
- #### [Seamless Tiling](docs/features/OTHER.md#seamless-tiling)
|
|
||||||
|
|
||||||
- #### [Google Colab](docs/features/OTHER.md#google-colab)
|
|
||||||
|
|
||||||
- #### [Web Server](docs/features/WEB.md)
|
|
||||||
|
|
||||||
- #### [Reading Prompts From File](docs/features/OTHER.md#reading-prompts-from-a-file)
|
|
||||||
|
|
||||||
- #### [Shortcut: Reusing Seeds](docs/features/OTHER.md#shortcuts-reusing-seeds)
|
|
||||||
|
|
||||||
- #### [Weighted Prompts](docs/features/OTHER.md#weighted-prompts)
|
|
||||||
|
|
||||||
- #### [Variations](docs/features/VARIATIONS.md)
|
|
||||||
|
|
||||||
- #### [Personalizing Text-to-Image Generation](docs/features/TEXTUAL_INVERSION.md)
|
|
||||||
|
|
||||||
- #### [Simplified API for text to image generation](docs/features/OTHER.md#simplified-api)
|
|
||||||
|
|
||||||
### Other Features
|
|
||||||
|
|
||||||
- #### [Creating Transparent Regions for Inpainting](docs/features/INPAINTING.md#creating-transparent-regions-for-inpainting)
|
|
||||||
|
|
||||||
- #### [Preload Models](docs/features/OTHER.md#preload-models)
|
|
||||||
|
|
||||||
## Latest Changes
|
|
||||||
|
|
||||||
- v1.14 (11 September 2022)
|
- v1.14 (11 September 2022)
|
||||||
|
|
||||||
@ -147,12 +149,12 @@ To run in full-precision mode, start `dream.py` with the `--full_precision` flag
|
|||||||
|
|
||||||
For older changelogs, please visit the **[CHANGELOG](docs/features/CHANGELOG.md)**.
|
For older changelogs, please visit the **[CHANGELOG](docs/features/CHANGELOG.md)**.
|
||||||
|
|
||||||
## Troubleshooting
|
### Troubleshooting
|
||||||
|
|
||||||
Please check out our **[Q&A](docs/help/TROUBLESHOOT.md)** to get solutions for common installation
|
Please check out our **[Q&A](docs/help/TROUBLESHOOT.md)** to get solutions for common installation
|
||||||
problems and other issues.
|
problems and other issues.
|
||||||
|
|
||||||
## Contributing
|
### Contributing
|
||||||
|
|
||||||
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
|
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
|
||||||
cleanup, testing, or code reviews, is very much encouraged to do so. If you are unfamiliar with how
|
cleanup, testing, or code reviews, is very much encouraged to do so. If you are unfamiliar with how
|
||||||
@ -164,13 +166,13 @@ important thing is to **make your pull request against the "development" branch*
|
|||||||
"main". This will help keep public breakage to a minimum and will allow you to propose more radical
|
"main". This will help keep public breakage to a minimum and will allow you to propose more radical
|
||||||
changes.
|
changes.
|
||||||
|
|
||||||
## Contributors
|
### Contributors
|
||||||
|
|
||||||
This fork is a combined effort of various people from across the world.
|
This fork is a combined effort of various people from across the world.
|
||||||
[Check out the list of all these amazing people](docs/other/CONTRIBUTORS.md). We thank them for
|
[Check out the list of all these amazing people](docs/other/CONTRIBUTORS.md). We thank them for
|
||||||
their time, hard work and effort.
|
their time, hard work and effort.
|
||||||
|
|
||||||
## Support
|
### Support
|
||||||
|
|
||||||
For support, please use this repository's GitHub Issues tracking service. Feel free to send me an
|
For support, please use this repository's GitHub Issues tracking service. Feel free to send me an
|
||||||
email if you use and like the script.
|
email if you use and like the script.
|
||||||
@ -178,7 +180,7 @@ email if you use and like the script.
|
|||||||
Original portions of the software are Copyright (c) 2020
|
Original portions of the software are Copyright (c) 2020
|
||||||
[Lincoln D. Stein](https://github.com/lstein)
|
[Lincoln D. Stein](https://github.com/lstein)
|
||||||
|
|
||||||
## Further Reading
|
### Further Reading
|
||||||
|
|
||||||
Please see the original README for more information on this software and underlying algorithm,
|
Please see the original README for more information on this software and underlying algorithm,
|
||||||
located in the file [README-CompViz.md](docs/other/README-CompViz.md).
|
located in the file [README-CompViz.md](docs/other/README-CompViz.md).
|
||||||
|
@ -21,7 +21,7 @@ dependencies:
|
|||||||
- test-tube>=0.7.5
|
- test-tube>=0.7.5
|
||||||
- streamlit==1.12.0
|
- streamlit==1.12.0
|
||||||
- send2trash==1.8.0
|
- send2trash==1.8.0
|
||||||
- pillow==6.2.0
|
- pillow==9.2.0
|
||||||
- einops==0.3.0
|
- einops==0.3.0
|
||||||
- torch-fidelity==0.3.0
|
- torch-fidelity==0.3.0
|
||||||
- transformers==4.19.2
|
- transformers==4.19.2
|
||||||
|
@ -2,7 +2,10 @@
|
|||||||
|
|
||||||
The Args class parses both the command line (shell) arguments, as well as the
|
The Args class parses both the command line (shell) arguments, as well as the
|
||||||
command string passed at the dream> prompt. It serves as the definitive repository
|
command string passed at the dream> prompt. It serves as the definitive repository
|
||||||
of all the arguments used by Generate and their default values.
|
of all the arguments used by Generate and their default values, and implements the
|
||||||
|
preliminary metadata standards discussed here:
|
||||||
|
|
||||||
|
https://github.com/lstein/stable-diffusion/issues/266
|
||||||
|
|
||||||
To use:
|
To use:
|
||||||
opt = Args()
|
opt = Args()
|
||||||
@ -52,15 +55,38 @@ you wish to apply logic as to which one to use. For example:
|
|||||||
To add new attributes, edit the _create_arg_parser() and
|
To add new attributes, edit the _create_arg_parser() and
|
||||||
_create_dream_cmd_parser() methods.
|
_create_dream_cmd_parser() methods.
|
||||||
|
|
||||||
We also export the function build_metadata
|
**Generating and retrieving sd-metadata**
|
||||||
|
|
||||||
|
To generate a dict representing RFC266 metadata:
|
||||||
|
|
||||||
|
metadata = metadata_dumps(opt,<seeds,model_hash,postprocesser>)
|
||||||
|
|
||||||
|
This will generate an RFC266 dictionary that can then be turned into a JSON
|
||||||
|
and written to the PNG file. The optional seeds, weights, model_hash and
|
||||||
|
postprocesser arguments are not available to the opt object and so must be
|
||||||
|
provided externally. See how dream.py does it.
|
||||||
|
|
||||||
|
Note that this function was originally called format_metadata() and a wrapper
|
||||||
|
is provided that issues a deprecation notice.
|
||||||
|
|
||||||
|
To retrieve a (series of) opt objects corresponding to the metadata, do this:
|
||||||
|
|
||||||
|
opt_list = metadata_loads(metadata)
|
||||||
|
|
||||||
|
The metadata should be pulled out of the PNG image. pngwriter has a method
|
||||||
|
retrieve_metadata that will do this.
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
from argparse import Namespace
|
||||||
import shlex
|
import shlex
|
||||||
import json
|
import json
|
||||||
import hashlib
|
import hashlib
|
||||||
import os
|
import os
|
||||||
import copy
|
import copy
|
||||||
|
import base64
|
||||||
from ldm.dream.conditioning import split_weighted_subprompts
|
from ldm.dream.conditioning import split_weighted_subprompts
|
||||||
|
|
||||||
SAMPLER_CHOICES = [
|
SAMPLER_CHOICES = [
|
||||||
@ -142,7 +168,7 @@ class Args(object):
|
|||||||
a = vars(self)
|
a = vars(self)
|
||||||
a.update(kwargs)
|
a.update(kwargs)
|
||||||
switches = list()
|
switches = list()
|
||||||
switches.append(f'"{a["prompt"]}')
|
switches.append(f'"{a["prompt"]}"')
|
||||||
switches.append(f'-s {a["steps"]}')
|
switches.append(f'-s {a["steps"]}')
|
||||||
switches.append(f'-W {a["width"]}')
|
switches.append(f'-W {a["width"]}')
|
||||||
switches.append(f'-H {a["height"]}')
|
switches.append(f'-H {a["height"]}')
|
||||||
@ -151,15 +177,13 @@ class Args(object):
|
|||||||
switches.append(f'-S {a["seed"]}')
|
switches.append(f'-S {a["seed"]}')
|
||||||
if a['grid']:
|
if a['grid']:
|
||||||
switches.append('--grid')
|
switches.append('--grid')
|
||||||
if a['iterations'] and a['iterations']>0:
|
|
||||||
switches.append(f'-n {a["iterations"]}')
|
|
||||||
if a['seamless']:
|
if a['seamless']:
|
||||||
switches.append('--seamless')
|
switches.append('--seamless')
|
||||||
if a['init_img'] and len(a['init_img'])>0:
|
if a['init_img'] and len(a['init_img'])>0:
|
||||||
switches.append(f'-I {a["init_img"]}')
|
switches.append(f'-I {a["init_img"]}')
|
||||||
if a['fit']:
|
if a['fit']:
|
||||||
switches.append(f'--fit')
|
switches.append(f'--fit')
|
||||||
if a['strength'] and a['strength']>0:
|
if a['init_img'] and a['strength'] and a['strength']>0:
|
||||||
switches.append(f'-f {a["strength"]}')
|
switches.append(f'-f {a["strength"]}')
|
||||||
if a['gfpgan_strength']:
|
if a['gfpgan_strength']:
|
||||||
switches.append(f'-G {a["gfpgan_strength"]}')
|
switches.append(f'-G {a["gfpgan_strength"]}')
|
||||||
@ -541,17 +565,20 @@ class Args(object):
|
|||||||
)
|
)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
# very partial implementation of https://github.com/lstein/stable-diffusion/issues/266
|
def format_metadata(**kwargs):
|
||||||
# it does not write all the required top-level metadata, writes too much image
|
print(f'format_metadata() is deprecated. Please use metadata_dumps()')
|
||||||
# data, and doesn't support grids yet. But you gotta start somewhere, no?
|
return metadata_dumps(kwargs)
|
||||||
def format_metadata(opt,
|
|
||||||
seeds=[],
|
def metadata_dumps(opt,
|
||||||
weights=None,
|
seeds=[],
|
||||||
model_hash=None,
|
model_hash=None,
|
||||||
postprocessing=None):
|
postprocessing=None):
|
||||||
'''
|
'''
|
||||||
Given an Args object, returns a partial implementation of
|
Given an Args object, returns a dict containing the keys and
|
||||||
the stable diffusion metadata standard
|
structure of the proposed stable diffusion metadata standard
|
||||||
|
https://github.com/lstein/stable-diffusion/discussions/392
|
||||||
|
This is intended to be turned into JSON and stored in the
|
||||||
|
"sd
|
||||||
'''
|
'''
|
||||||
# add some RFC266 fields that are generated internally, and not as
|
# add some RFC266 fields that are generated internally, and not as
|
||||||
# user args
|
# user args
|
||||||
@ -593,12 +620,15 @@ def format_metadata(opt,
|
|||||||
if opt.init_img:
|
if opt.init_img:
|
||||||
rfc_dict['type'] = 'img2img'
|
rfc_dict['type'] = 'img2img'
|
||||||
rfc_dict['strength_steps'] = rfc_dict.pop('strength')
|
rfc_dict['strength_steps'] = rfc_dict.pop('strength')
|
||||||
rfc_dict['orig_hash'] = sha256(image_dict['init_img'])
|
rfc_dict['orig_hash'] = calculate_init_img_hash(opt.init_img)
|
||||||
rfc_dict['sampler'] = 'ddim' # FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
|
rfc_dict['sampler'] = 'ddim' # FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
|
||||||
else:
|
else:
|
||||||
rfc_dict['type'] = 'txt2img'
|
rfc_dict['type'] = 'txt2img'
|
||||||
|
|
||||||
images = []
|
images = []
|
||||||
|
if len(seeds)==0 and opt.seed:
|
||||||
|
seeds=[seed]
|
||||||
|
|
||||||
for seed in seeds:
|
for seed in seeds:
|
||||||
rfc_dict['seed'] = seed
|
rfc_dict['seed'] = seed
|
||||||
images.append(copy.copy(rfc_dict))
|
images.append(copy.copy(rfc_dict))
|
||||||
@ -612,6 +642,44 @@ def format_metadata(opt,
|
|||||||
'images' : images,
|
'images' : images,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def metadata_loads(metadata):
|
||||||
|
'''
|
||||||
|
Takes the dictionary corresponding to RFC266 (https://github.com/lstein/stable-diffusion/issues/266)
|
||||||
|
and returns a series of opt objects for each of the images described in the dictionary.
|
||||||
|
'''
|
||||||
|
results = []
|
||||||
|
try:
|
||||||
|
images = metadata['sd-metadata']['images']
|
||||||
|
for image in images:
|
||||||
|
# repack the prompt and variations
|
||||||
|
image['prompt'] = ','.join([':'.join([x['prompt'], str(x['weight'])]) for x in image['prompt']])
|
||||||
|
image['variations'] = ','.join([':'.join([str(x['seed']),str(x['weight'])]) for x in image['variations']])
|
||||||
|
opt = Args()
|
||||||
|
opt._cmd_switches = Namespace(**image)
|
||||||
|
results.append(opt)
|
||||||
|
except KeyError as e:
|
||||||
|
import sys, traceback
|
||||||
|
print('>> badly-formatted metadata',file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
return results
|
||||||
|
|
||||||
|
# image can either be a file path on disk or a base64-encoded
|
||||||
|
# representation of the file's contents
|
||||||
|
def calculate_init_img_hash(image_string):
|
||||||
|
prefix = 'data:image/png;base64,'
|
||||||
|
hash = None
|
||||||
|
if image_string.startswith(prefix):
|
||||||
|
imagebase64 = image_string[len(prefix):]
|
||||||
|
imagedata = base64.b64decode(imagebase64)
|
||||||
|
with open('outputs/test.png','wb') as file:
|
||||||
|
file.write(imagedata)
|
||||||
|
sha = hashlib.sha256()
|
||||||
|
sha.update(imagedata)
|
||||||
|
hash = sha.hexdigest()
|
||||||
|
else:
|
||||||
|
hash = sha256(image_string)
|
||||||
|
return hash
|
||||||
|
|
||||||
# Bah. This should be moved somewhere else...
|
# Bah. This should be moved somewhere else...
|
||||||
def sha256(path):
|
def sha256(path):
|
||||||
sha = hashlib.sha256()
|
sha = hashlib.sha256()
|
||||||
|
@ -4,7 +4,7 @@ import copy
|
|||||||
import base64
|
import base64
|
||||||
import mimetypes
|
import mimetypes
|
||||||
import os
|
import os
|
||||||
from ldm.dream.args import Args, format_metadata
|
from ldm.dream.args import Args, metadata_dumps
|
||||||
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
|
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
|
||||||
from ldm.dream.pngwriter import PngWriter
|
from ldm.dream.pngwriter import PngWriter
|
||||||
from threading import Event
|
from threading import Event
|
||||||
@ -76,7 +76,7 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
self.send_response(200)
|
self.send_response(200)
|
||||||
self.send_header("Content-type", "text/html")
|
self.send_header("Content-type", "text/html")
|
||||||
self.end_headers()
|
self.end_headers()
|
||||||
with open("./static/dream_web/index.html", "rb") as content:
|
with open("./static/legacy_web/index.html", "rb") as content:
|
||||||
self.wfile.write(content.read())
|
self.wfile.write(content.read())
|
||||||
elif self.path == "/config.js":
|
elif self.path == "/config.js":
|
||||||
# unfortunately this import can't be at the top level, since that would cause a circular import
|
# unfortunately this import can't be at the top level, since that would cause a circular import
|
||||||
@ -94,7 +94,7 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
self.end_headers()
|
self.end_headers()
|
||||||
output = []
|
output = []
|
||||||
|
|
||||||
log_file = os.path.join(self.outdir, "dream_web_log.txt")
|
log_file = os.path.join(self.outdir, "legacy_web_log.txt")
|
||||||
if os.path.exists(log_file):
|
if os.path.exists(log_file):
|
||||||
with open(log_file, "r") as log:
|
with open(log_file, "r") as log:
|
||||||
for line in log:
|
for line in log:
|
||||||
@ -114,7 +114,7 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
else:
|
else:
|
||||||
path_dir = os.path.dirname(self.path)
|
path_dir = os.path.dirname(self.path)
|
||||||
out_dir = os.path.realpath(self.outdir.rstrip('/'))
|
out_dir = os.path.realpath(self.outdir.rstrip('/'))
|
||||||
if self.path.startswith('/static/dream_web/'):
|
if self.path.startswith('/static/legacy_web/'):
|
||||||
path = '.' + self.path
|
path = '.' + self.path
|
||||||
elif out_dir.replace('\\', '/').endswith(path_dir):
|
elif out_dir.replace('\\', '/').endswith(path_dir):
|
||||||
file = os.path.basename(self.path)
|
file = os.path.basename(self.path)
|
||||||
@ -145,7 +145,6 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
opt = build_opt(post_data, self.model.seed, gfpgan_model_exists)
|
opt = build_opt(post_data, self.model.seed, gfpgan_model_exists)
|
||||||
|
|
||||||
self.canceled.clear()
|
self.canceled.clear()
|
||||||
print(f">> Request to generate with prompt: {opt.prompt}")
|
|
||||||
# In order to handle upscaled images, the PngWriter needs to maintain state
|
# In order to handle upscaled images, the PngWriter needs to maintain state
|
||||||
# across images generated by each call to prompt2img(), so we define it in
|
# across images generated by each call to prompt2img(), so we define it in
|
||||||
# the outer scope of image_done()
|
# the outer scope of image_done()
|
||||||
@ -176,10 +175,9 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
path = pngwriter.save_image_and_prompt_to_png(
|
path = pngwriter.save_image_and_prompt_to_png(
|
||||||
image,
|
image,
|
||||||
dream_prompt = formatted_prompt,
|
dream_prompt = formatted_prompt,
|
||||||
metadata = format_metadata(iter_opt,
|
metadata = metadata_dumps(iter_opt,
|
||||||
seeds = [seed],
|
seeds = [seed],
|
||||||
weights = self.model.weights,
|
model_hash = self.model.model_hash
|
||||||
model_hash = self.model.model_hash
|
|
||||||
),
|
),
|
||||||
name = name,
|
name = name,
|
||||||
)
|
)
|
||||||
@ -188,7 +186,7 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
config['seed'] = seed
|
config['seed'] = seed
|
||||||
# Append post_data to log, but only once!
|
# Append post_data to log, but only once!
|
||||||
if not upscaled:
|
if not upscaled:
|
||||||
with open(os.path.join(self.outdir, "dream_web_log.txt"), "a") as log:
|
with open(os.path.join(self.outdir, "legacy_web_log.txt"), "a") as log:
|
||||||
log.write(f"{path}: {json.dumps(config)}\n")
|
log.write(f"{path}: {json.dumps(config)}\n")
|
||||||
|
|
||||||
self.wfile.write(bytes(json.dumps(
|
self.wfile.write(bytes(json.dumps(
|
||||||
|
@ -90,7 +90,7 @@ class LinearAttention(nn.Module):
|
|||||||
b, c, h, w = x.shape
|
b, c, h, w = x.shape
|
||||||
qkv = self.to_qkv(x)
|
qkv = self.to_qkv(x)
|
||||||
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
||||||
k = k.softmax(dim=-1)
|
k = k.softmax(dim=-1)
|
||||||
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
||||||
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
||||||
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
||||||
@ -167,101 +167,85 @@ class CrossAttention(nn.Module):
|
|||||||
nn.Linear(inner_dim, query_dim),
|
nn.Linear(inner_dim, query_dim),
|
||||||
nn.Dropout(dropout)
|
nn.Dropout(dropout)
|
||||||
)
|
)
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
self.einsum_op = self.einsum_op_cuda
|
|
||||||
else:
|
|
||||||
self.mem_total = psutil.virtual_memory().total / (1024**3)
|
|
||||||
self.einsum_op = self.einsum_op_mps_v1 if self.mem_total >= 32 else self.einsum_op_mps_v2
|
|
||||||
|
|
||||||
def einsum_op_compvis(self, q, k, v, r1):
|
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
|
||||||
s1 = einsum('b i d, b j d -> b i j', q, k) * self.scale # faster
|
|
||||||
s2 = s1.softmax(dim=-1, dtype=q.dtype)
|
|
||||||
del s1
|
|
||||||
r1 = einsum('b i j, b j d -> b i d', s2, v)
|
|
||||||
del s2
|
|
||||||
return r1
|
|
||||||
|
|
||||||
def einsum_op_mps_v1(self, q, k, v, r1):
|
def einsum_op_compvis(self, q, k, v):
|
||||||
|
s = einsum('b i d, b j d -> b i j', q, k)
|
||||||
|
s = s.softmax(dim=-1, dtype=s.dtype)
|
||||||
|
return einsum('b i j, b j d -> b i d', s, v)
|
||||||
|
|
||||||
|
def einsum_op_slice_0(self, q, k, v, slice_size):
|
||||||
|
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||||
|
for i in range(0, q.shape[0], slice_size):
|
||||||
|
end = i + slice_size
|
||||||
|
r[i:end] = self.einsum_op_compvis(q[i:end], k[i:end], v[i:end])
|
||||||
|
return r
|
||||||
|
|
||||||
|
def einsum_op_slice_1(self, q, k, v, slice_size):
|
||||||
|
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||||
|
for i in range(0, q.shape[1], slice_size):
|
||||||
|
end = i + slice_size
|
||||||
|
r[:, i:end] = self.einsum_op_compvis(q[:, i:end], k, v)
|
||||||
|
return r
|
||||||
|
|
||||||
|
def einsum_op_mps_v1(self, q, k, v):
|
||||||
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
||||||
r1 = self.einsum_op_compvis(q, k, v, r1)
|
return self.einsum_op_compvis(q, k, v)
|
||||||
else:
|
else:
|
||||||
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
||||||
for i in range(0, q.shape[1], slice_size):
|
return self.einsum_op_slice_1(q, k, v, slice_size)
|
||||||
end = i + slice_size
|
|
||||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
|
|
||||||
s2 = s1.softmax(dim=-1, dtype=r1.dtype)
|
|
||||||
del s1
|
|
||||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
|
||||||
del s2
|
|
||||||
return r1
|
|
||||||
|
|
||||||
def einsum_op_mps_v2(self, q, k, v, r1):
|
def einsum_op_mps_v2(self, q, k, v):
|
||||||
if self.mem_total >= 8 and q.shape[1] <= 4096:
|
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
|
||||||
r1 = self.einsum_op_compvis(q, k, v, r1)
|
return self.einsum_op_compvis(q, k, v)
|
||||||
else:
|
else:
|
||||||
slice_size = 1
|
return self.einsum_op_slice_0(q, k, v, 1)
|
||||||
for i in range(0, q.shape[0], slice_size):
|
|
||||||
end = min(q.shape[0], i + slice_size)
|
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
|
||||||
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
|
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
|
||||||
s1 *= self.scale
|
if size_mb <= max_tensor_mb:
|
||||||
s2 = s1.softmax(dim=-1, dtype=r1.dtype)
|
return self.einsum_op_compvis(q, k, v)
|
||||||
del s1
|
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
|
||||||
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
|
if div <= q.shape[0]:
|
||||||
del s2
|
return self.einsum_op_slice_0(q, k, v, q.shape[0] // div)
|
||||||
return r1
|
return self.einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
|
||||||
|
|
||||||
def einsum_op_cuda(self, q, k, v, r1):
|
def einsum_op_cuda(self, q, k, v):
|
||||||
stats = torch.cuda.memory_stats(q.device)
|
stats = torch.cuda.memory_stats(q.device)
|
||||||
mem_active = stats['active_bytes.all.current']
|
mem_active = stats['active_bytes.all.current']
|
||||||
mem_reserved = stats['reserved_bytes.all.current']
|
mem_reserved = stats['reserved_bytes.all.current']
|
||||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
|
||||||
mem_free_torch = mem_reserved - mem_active
|
mem_free_torch = mem_reserved - mem_active
|
||||||
mem_free_total = mem_free_cuda + mem_free_torch
|
mem_free_total = mem_free_cuda + mem_free_torch
|
||||||
|
# Divide factor of safety as there's copying and fragmentation
|
||||||
|
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
|
||||||
|
|
||||||
gb = 1024 ** 3
|
def einsum_op(self, q, k, v):
|
||||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * 4
|
if q.device.type == 'cuda':
|
||||||
mem_required = tensor_size * 2.5
|
return self.einsum_op_cuda(q, k, v)
|
||||||
steps = 1
|
|
||||||
|
|
||||||
if mem_required > mem_free_total:
|
if q.device.type == 'mps':
|
||||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
if self.mem_total_gb >= 32:
|
||||||
|
return self.einsum_op_mps_v1(q, k, v)
|
||||||
|
return self.einsum_op_mps_v2(q, k, v)
|
||||||
|
|
||||||
if steps > 64:
|
# Smaller slices are faster due to L2/L3/SLC caches.
|
||||||
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
# Tested on i7 with 8MB L3 cache.
|
||||||
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
return self.einsum_op_tensor_mem(q, k, v, 32)
|
||||||
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
|
|
||||||
|
|
||||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
|
||||||
for i in range(0, q.shape[1], slice_size):
|
|
||||||
end = min(q.shape[1], i + slice_size)
|
|
||||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
|
|
||||||
s2 = s1.softmax(dim=-1, dtype=r1.dtype)
|
|
||||||
del s1
|
|
||||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
|
||||||
del s2
|
|
||||||
return r1
|
|
||||||
|
|
||||||
def forward(self, x, context=None, mask=None):
|
def forward(self, x, context=None, mask=None):
|
||||||
h = self.heads
|
h = self.heads
|
||||||
|
|
||||||
q_in = self.to_q(x)
|
q = self.to_q(x)
|
||||||
context = default(context, x)
|
context = default(context, x)
|
||||||
k_in = self.to_k(context)
|
k = self.to_k(context) * self.scale
|
||||||
v_in = self.to_v(context)
|
v = self.to_v(context)
|
||||||
device_type = 'mps' if x.device.type == 'mps' else 'cuda'
|
|
||||||
del context, x
|
del context, x
|
||||||
|
|
||||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||||
del q_in, k_in, v_in
|
r = self.einsum_op(q, k, v)
|
||||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
|
||||||
r1 = self.einsum_op(q, k, v, r1)
|
|
||||||
del q, k, v
|
|
||||||
|
|
||||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
|
||||||
del r1
|
|
||||||
|
|
||||||
return self.to_out(r2)
|
|
||||||
|
|
||||||
|
|
||||||
class BasicTransformerBlock(nn.Module):
|
class BasicTransformerBlock(nn.Module):
|
||||||
|
@ -3,6 +3,7 @@ import gc
|
|||||||
import math
|
import math
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from torch.nn.functional import silu
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
|
|
||||||
@ -32,11 +33,6 @@ def get_timestep_embedding(timesteps, embedding_dim):
|
|||||||
return emb
|
return emb
|
||||||
|
|
||||||
|
|
||||||
def nonlinearity(x):
|
|
||||||
# swish
|
|
||||||
return x*torch.sigmoid(x)
|
|
||||||
|
|
||||||
|
|
||||||
def Normalize(in_channels, num_groups=32):
|
def Normalize(in_channels, num_groups=32):
|
||||||
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||||
|
|
||||||
@ -122,14 +118,14 @@ class ResnetBlock(nn.Module):
|
|||||||
|
|
||||||
def forward(self, x, temb):
|
def forward(self, x, temb):
|
||||||
h = self.norm1(x)
|
h = self.norm1(x)
|
||||||
h = nonlinearity(h)
|
h = silu(h)
|
||||||
h = self.conv1(h)
|
h = self.conv1(h)
|
||||||
|
|
||||||
if temb is not None:
|
if temb is not None:
|
||||||
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
h = h + self.temb_proj(silu(temb))[:,:,None,None]
|
||||||
|
|
||||||
h = self.norm2(h)
|
h = self.norm2(h)
|
||||||
h = nonlinearity(h)
|
h = silu(h)
|
||||||
h = self.dropout(h)
|
h = self.dropout(h)
|
||||||
h = self.conv2(h)
|
h = self.conv2(h)
|
||||||
|
|
||||||
@ -368,7 +364,7 @@ class Model(nn.Module):
|
|||||||
assert t is not None
|
assert t is not None
|
||||||
temb = get_timestep_embedding(t, self.ch)
|
temb = get_timestep_embedding(t, self.ch)
|
||||||
temb = self.temb.dense[0](temb)
|
temb = self.temb.dense[0](temb)
|
||||||
temb = nonlinearity(temb)
|
temb = silu(temb)
|
||||||
temb = self.temb.dense[1](temb)
|
temb = self.temb.dense[1](temb)
|
||||||
else:
|
else:
|
||||||
temb = None
|
temb = None
|
||||||
@ -402,7 +398,7 @@ class Model(nn.Module):
|
|||||||
|
|
||||||
# end
|
# end
|
||||||
h = self.norm_out(h)
|
h = self.norm_out(h)
|
||||||
h = nonlinearity(h)
|
h = silu(h)
|
||||||
h = self.conv_out(h)
|
h = self.conv_out(h)
|
||||||
return h
|
return h
|
||||||
|
|
||||||
@ -499,7 +495,7 @@ class Encoder(nn.Module):
|
|||||||
|
|
||||||
# end
|
# end
|
||||||
h = self.norm_out(h)
|
h = self.norm_out(h)
|
||||||
h = nonlinearity(h)
|
h = silu(h)
|
||||||
h = self.conv_out(h)
|
h = self.conv_out(h)
|
||||||
return h
|
return h
|
||||||
|
|
||||||
@ -611,7 +607,7 @@ class Decoder(nn.Module):
|
|||||||
return h
|
return h
|
||||||
|
|
||||||
h = self.norm_out(h)
|
h = self.norm_out(h)
|
||||||
h = nonlinearity(h)
|
h = silu(h)
|
||||||
h = self.conv_out(h)
|
h = self.conv_out(h)
|
||||||
if self.tanh_out:
|
if self.tanh_out:
|
||||||
h = torch.tanh(h)
|
h = torch.tanh(h)
|
||||||
@ -649,7 +645,7 @@ class SimpleDecoder(nn.Module):
|
|||||||
x = layer(x)
|
x = layer(x)
|
||||||
|
|
||||||
h = self.norm_out(x)
|
h = self.norm_out(x)
|
||||||
h = nonlinearity(h)
|
h = silu(h)
|
||||||
x = self.conv_out(h)
|
x = self.conv_out(h)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@ -697,7 +693,7 @@ class UpsampleDecoder(nn.Module):
|
|||||||
if i_level != self.num_resolutions - 1:
|
if i_level != self.num_resolutions - 1:
|
||||||
h = self.upsample_blocks[k](h)
|
h = self.upsample_blocks[k](h)
|
||||||
h = self.norm_out(h)
|
h = self.norm_out(h)
|
||||||
h = nonlinearity(h)
|
h = silu(h)
|
||||||
h = self.conv_out(h)
|
h = self.conv_out(h)
|
||||||
return h
|
return h
|
||||||
|
|
||||||
@ -873,7 +869,7 @@ class FirstStagePostProcessor(nn.Module):
|
|||||||
z_fs = self.encode_with_pretrained(x)
|
z_fs = self.encode_with_pretrained(x)
|
||||||
z = self.proj_norm(z_fs)
|
z = self.proj_norm(z_fs)
|
||||||
z = self.proj(z)
|
z = self.proj(z)
|
||||||
z = nonlinearity(z)
|
z = silu(z)
|
||||||
|
|
||||||
for submodel, downmodel in zip(self.model,self.downsampler):
|
for submodel, downmodel in zip(self.model,self.downsampler):
|
||||||
z = submodel(z,temb=None)
|
z = submodel(z,temb=None)
|
||||||
|
@ -252,12 +252,6 @@ def normalization(channels):
|
|||||||
return GroupNorm32(32, channels)
|
return GroupNorm32(32, channels)
|
||||||
|
|
||||||
|
|
||||||
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
|
||||||
class SiLU(nn.Module):
|
|
||||||
def forward(self, x):
|
|
||||||
return x * torch.sigmoid(x)
|
|
||||||
|
|
||||||
|
|
||||||
class GroupNorm32(nn.GroupNorm):
|
class GroupNorm32(nn.GroupNorm):
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return super().forward(x.float()).type(x.dtype)
|
return super().forward(x.float()).type(x.dtype)
|
||||||
|
@ -8,7 +8,7 @@ import copy
|
|||||||
import warnings
|
import warnings
|
||||||
import time
|
import time
|
||||||
import ldm.dream.readline
|
import ldm.dream.readline
|
||||||
from ldm.dream.args import Args, format_metadata
|
from ldm.dream.args import Args, metadata_dumps
|
||||||
from ldm.dream.pngwriter import PngWriter
|
from ldm.dream.pngwriter import PngWriter
|
||||||
from ldm.dream.server import DreamServer, ThreadingDreamServer
|
from ldm.dream.server import DreamServer, ThreadingDreamServer
|
||||||
from ldm.dream.image_util import make_grid
|
from ldm.dream.image_util import make_grid
|
||||||
@ -218,10 +218,14 @@ def main_loop(gen, opt, infile):
|
|||||||
file_writer = PngWriter(current_outdir)
|
file_writer = PngWriter(current_outdir)
|
||||||
prefix = file_writer.unique_prefix()
|
prefix = file_writer.unique_prefix()
|
||||||
results = [] # list of filename, prompt pairs
|
results = [] # list of filename, prompt pairs
|
||||||
grid_images = dict() # seed -> Image, only used if `opt.grid`
|
grid_images = dict() # seed -> Image, only used if `opt.grid`
|
||||||
|
prior_variations = opt.with_variations or []
|
||||||
|
first_seed = opt.seed
|
||||||
|
|
||||||
def image_writer(image, seed, upscaled=False):
|
def image_writer(image, seed, upscaled=False):
|
||||||
path = None
|
path = None
|
||||||
|
nonlocal first_seed
|
||||||
|
nonlocal prior_variations
|
||||||
if opt.grid:
|
if opt.grid:
|
||||||
grid_images[seed] = image
|
grid_images[seed] = image
|
||||||
else:
|
else:
|
||||||
@ -229,29 +233,21 @@ def main_loop(gen, opt, infile):
|
|||||||
filename = f'{prefix}.{seed}.postprocessed.png'
|
filename = f'{prefix}.{seed}.postprocessed.png'
|
||||||
else:
|
else:
|
||||||
filename = f'{prefix}.{seed}.png'
|
filename = f'{prefix}.{seed}.png'
|
||||||
# the handling of variations is probably broken
|
|
||||||
# Also, given the ability to add stuff to the dream_prompt_str, it isn't
|
|
||||||
# necessary to make a copy of the opt option just to change its attributes
|
|
||||||
if opt.variation_amount > 0:
|
if opt.variation_amount > 0:
|
||||||
iter_opt = copy.copy(opt)
|
first_seed = first_seed or seed
|
||||||
this_variation = [[seed, opt.variation_amount]]
|
this_variation = [[seed, opt.variation_amount]]
|
||||||
if opt.with_variations is None:
|
opt.with_variations = prior_variations + this_variation
|
||||||
iter_opt.with_variations = this_variation
|
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
|
||||||
else:
|
elif len(prior_variations) > 0:
|
||||||
iter_opt.with_variations = opt.with_variations + this_variation
|
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
|
||||||
iter_opt.variation_amount = 0
|
|
||||||
formatted_dream_prompt = iter_opt.dream_prompt_str(seed=seed)
|
|
||||||
elif opt.with_variations is not None:
|
|
||||||
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
|
|
||||||
else:
|
else:
|
||||||
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
|
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
|
||||||
path = file_writer.save_image_and_prompt_to_png(
|
path = file_writer.save_image_and_prompt_to_png(
|
||||||
image = image,
|
image = image,
|
||||||
dream_prompt = formatted_dream_prompt,
|
dream_prompt = formatted_dream_prompt,
|
||||||
metadata = format_metadata(
|
metadata = metadata_dumps(
|
||||||
opt,
|
opt,
|
||||||
seeds = [seed],
|
seeds = [seed],
|
||||||
weights = gen.weights,
|
|
||||||
model_hash = gen.model_hash,
|
model_hash = gen.model_hash,
|
||||||
),
|
),
|
||||||
name = filename,
|
name = filename,
|
||||||
@ -275,7 +271,7 @@ def main_loop(gen, opt, infile):
|
|||||||
filename = f'{prefix}.{first_seed}.png'
|
filename = f'{prefix}.{first_seed}.png'
|
||||||
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,grid=True,iterations=len(grid_images))
|
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,grid=True,iterations=len(grid_images))
|
||||||
formatted_dream_prompt += f' # {grid_seeds}'
|
formatted_dream_prompt += f' # {grid_seeds}'
|
||||||
metadata = format_metadata(
|
metadata = metadata.dumps(
|
||||||
opt,
|
opt,
|
||||||
seeds = grid_seeds,
|
seeds = grid_seeds,
|
||||||
weights = gen.weights,
|
weights = gen.weights,
|
||||||
|
BIN
static/legacy_web/favicon.ico
Normal file
BIN
static/legacy_web/favicon.ico
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.1 KiB |
152
static/legacy_web/index.css
Normal file
152
static/legacy_web/index.css
Normal file
@ -0,0 +1,152 @@
|
|||||||
|
* {
|
||||||
|
font-family: 'Arial';
|
||||||
|
font-size: 100%;
|
||||||
|
}
|
||||||
|
body {
|
||||||
|
font-size: 1em;
|
||||||
|
}
|
||||||
|
textarea {
|
||||||
|
font-size: 0.95em;
|
||||||
|
}
|
||||||
|
header, form, #progress-section {
|
||||||
|
margin-left: auto;
|
||||||
|
margin-right: auto;
|
||||||
|
max-width: 1024px;
|
||||||
|
text-align: center;
|
||||||
|
}
|
||||||
|
fieldset {
|
||||||
|
border: none;
|
||||||
|
line-height: 2.2em;
|
||||||
|
}
|
||||||
|
select, input {
|
||||||
|
margin-right: 10px;
|
||||||
|
padding: 2px;
|
||||||
|
}
|
||||||
|
input[type=submit] {
|
||||||
|
background-color: #666;
|
||||||
|
color: white;
|
||||||
|
}
|
||||||
|
input[type=checkbox] {
|
||||||
|
margin-right: 0px;
|
||||||
|
width: 20px;
|
||||||
|
height: 20px;
|
||||||
|
vertical-align: middle;
|
||||||
|
}
|
||||||
|
input#seed {
|
||||||
|
margin-right: 0px;
|
||||||
|
}
|
||||||
|
div {
|
||||||
|
padding: 10px 10px 10px 10px;
|
||||||
|
}
|
||||||
|
header {
|
||||||
|
margin-bottom: 16px;
|
||||||
|
}
|
||||||
|
header h1 {
|
||||||
|
margin-bottom: 0;
|
||||||
|
font-size: 2em;
|
||||||
|
}
|
||||||
|
#search-box {
|
||||||
|
display: flex;
|
||||||
|
}
|
||||||
|
#scaling-inprocess-message {
|
||||||
|
font-weight: bold;
|
||||||
|
font-style: italic;
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
#prompt {
|
||||||
|
flex-grow: 1;
|
||||||
|
padding: 5px 10px 5px 10px;
|
||||||
|
border: 1px solid #999;
|
||||||
|
outline: none;
|
||||||
|
}
|
||||||
|
#submit {
|
||||||
|
padding: 5px 10px 5px 10px;
|
||||||
|
border: 1px solid #999;
|
||||||
|
}
|
||||||
|
#reset-all, #remove-image {
|
||||||
|
margin-top: 12px;
|
||||||
|
font-size: 0.8em;
|
||||||
|
background-color: pink;
|
||||||
|
border: 1px solid #999;
|
||||||
|
border-radius: 4px;
|
||||||
|
}
|
||||||
|
#results {
|
||||||
|
text-align: center;
|
||||||
|
margin: auto;
|
||||||
|
padding-top: 10px;
|
||||||
|
}
|
||||||
|
#results figure {
|
||||||
|
display: inline-block;
|
||||||
|
margin: 10px;
|
||||||
|
}
|
||||||
|
#results figcaption {
|
||||||
|
font-size: 0.8em;
|
||||||
|
padding: 3px;
|
||||||
|
color: #888;
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
||||||
|
#results img {
|
||||||
|
border-radius: 5px;
|
||||||
|
object-fit: cover;
|
||||||
|
}
|
||||||
|
#fieldset-config {
|
||||||
|
line-height:2em;
|
||||||
|
background-color: #F0F0F0;
|
||||||
|
}
|
||||||
|
input[type="number"] {
|
||||||
|
width: 60px;
|
||||||
|
}
|
||||||
|
#seed {
|
||||||
|
width: 150px;
|
||||||
|
}
|
||||||
|
button#reset-seed {
|
||||||
|
font-size: 1.7em;
|
||||||
|
background: #efefef;
|
||||||
|
border: 1px solid #999;
|
||||||
|
border-radius: 4px;
|
||||||
|
line-height: 0.8;
|
||||||
|
margin: 0 10px 0 0;
|
||||||
|
padding: 0 5px 3px;
|
||||||
|
vertical-align: middle;
|
||||||
|
}
|
||||||
|
label {
|
||||||
|
white-space: nowrap;
|
||||||
|
}
|
||||||
|
#progress-section {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
#progress-image {
|
||||||
|
width: 30vh;
|
||||||
|
height: 30vh;
|
||||||
|
}
|
||||||
|
#cancel-button {
|
||||||
|
cursor: pointer;
|
||||||
|
color: red;
|
||||||
|
}
|
||||||
|
#basic-parameters {
|
||||||
|
background-color: #EEEEEE;
|
||||||
|
}
|
||||||
|
#txt2img {
|
||||||
|
background-color: #DCDCDC;
|
||||||
|
}
|
||||||
|
#variations {
|
||||||
|
background-color: #EEEEEE;
|
||||||
|
}
|
||||||
|
#img2img {
|
||||||
|
background-color: #DCDCDC;
|
||||||
|
}
|
||||||
|
#gfpgan {
|
||||||
|
background-color: #EEEEEE;
|
||||||
|
}
|
||||||
|
#progress-section {
|
||||||
|
background-color: #F5F5F5;
|
||||||
|
}
|
||||||
|
.section-header {
|
||||||
|
text-align: left;
|
||||||
|
font-weight: bold;
|
||||||
|
padding: 0 0 0 0;
|
||||||
|
}
|
||||||
|
#no-results-message:not(:only-child) {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
129
static/legacy_web/index.html
Normal file
129
static/legacy_web/index.html
Normal file
@ -0,0 +1,129 @@
|
|||||||
|
<html lang="en">
|
||||||
|
<head>
|
||||||
|
<title>Stable Diffusion Dream Server</title>
|
||||||
|
<meta charset="utf-8">
|
||||||
|
<link rel="icon" type="image/x-icon" href="static/legacy_web/favicon.ico" />
|
||||||
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||||
|
<link rel="stylesheet" href="static/legacy_web/index.css">
|
||||||
|
<script src="config.js"></script>
|
||||||
|
<script src="static/legacy_web/index.js"></script>
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
<header>
|
||||||
|
<h1>Stable Diffusion Dream Server</h1>
|
||||||
|
<div id="about">
|
||||||
|
For news and support for this web service, visit our <a href="http://github.com/lstein/stable-diffusion">GitHub site</a>
|
||||||
|
</div>
|
||||||
|
</header>
|
||||||
|
|
||||||
|
<main>
|
||||||
|
<form id="generate-form" method="post" action="#">
|
||||||
|
<fieldset id="txt2img">
|
||||||
|
<div id="search-box">
|
||||||
|
<textarea rows="3" id="prompt" name="prompt"></textarea>
|
||||||
|
<input type="submit" id="submit" value="Generate">
|
||||||
|
</div>
|
||||||
|
</fieldset>
|
||||||
|
<fieldset id="fieldset-config">
|
||||||
|
<div class="section-header">Basic options</div>
|
||||||
|
<label for="iterations">Images to generate:</label>
|
||||||
|
<input value="1" type="number" id="iterations" name="iterations" size="4">
|
||||||
|
<label for="steps">Steps:</label>
|
||||||
|
<input value="50" type="number" id="steps" name="steps">
|
||||||
|
<label for="cfg_scale">Cfg Scale:</label>
|
||||||
|
<input value="7.5" type="number" id="cfg_scale" name="cfg_scale" step="any">
|
||||||
|
<label for="sampler_name">Sampler:</label>
|
||||||
|
<select id="sampler_name" name="sampler_name" value="k_lms">
|
||||||
|
<option value="ddim">DDIM</option>
|
||||||
|
<option value="plms">PLMS</option>
|
||||||
|
<option value="k_lms" selected>KLMS</option>
|
||||||
|
<option value="k_dpm_2">KDPM_2</option>
|
||||||
|
<option value="k_dpm_2_a">KDPM_2A</option>
|
||||||
|
<option value="k_euler">KEULER</option>
|
||||||
|
<option value="k_euler_a">KEULER_A</option>
|
||||||
|
<option value="k_heun">KHEUN</option>
|
||||||
|
</select>
|
||||||
|
<input type="checkbox" name="seamless" id="seamless">
|
||||||
|
<label for="seamless">Seamless circular tiling</label>
|
||||||
|
<br>
|
||||||
|
<label title="Set to multiple of 64" for="width">Width:</label>
|
||||||
|
<select id="width" name="width" value="512">
|
||||||
|
<option value="64">64</option> <option value="128">128</option>
|
||||||
|
<option value="192">192</option> <option value="256">256</option>
|
||||||
|
<option value="320">320</option> <option value="384">384</option>
|
||||||
|
<option value="448">448</option> <option value="512" selected>512</option>
|
||||||
|
<option value="576">576</option> <option value="640">640</option>
|
||||||
|
<option value="704">704</option> <option value="768">768</option>
|
||||||
|
<option value="832">832</option> <option value="896">896</option>
|
||||||
|
<option value="960">960</option> <option value="1024">1024</option>
|
||||||
|
</select>
|
||||||
|
<label title="Set to multiple of 64" for="height">Height:</label>
|
||||||
|
<select id="height" name="height" value="512">
|
||||||
|
<option value="64">64</option> <option value="128">128</option>
|
||||||
|
<option value="192">192</option> <option value="256">256</option>
|
||||||
|
<option value="320">320</option> <option value="384">384</option>
|
||||||
|
<option value="448">448</option> <option value="512" selected>512</option>
|
||||||
|
<option value="576">576</option> <option value="640">640</option>
|
||||||
|
<option value="704">704</option> <option value="768">768</option>
|
||||||
|
<option value="832">832</option> <option value="896">896</option>
|
||||||
|
<option value="960">960</option> <option value="1024">1024</option>
|
||||||
|
</select>
|
||||||
|
<label title="Set to -1 for random seed" for="seed">Seed:</label>
|
||||||
|
<input value="-1" type="number" id="seed" name="seed">
|
||||||
|
<button type="button" id="reset-seed">↺</button>
|
||||||
|
<input type="checkbox" name="progress_images" id="progress_images">
|
||||||
|
<label for="progress_images">Display in-progress images (slower)</label>
|
||||||
|
<button type="button" id="reset-all">Reset to Defaults</button>
|
||||||
|
<span id="variations">
|
||||||
|
<label title="If > 0, generates variations on the initial seed instead of random seeds per iteration. Must be between 0 and 1. Higher values will be more different." for="variation_amount">Variation amount (0 to disable):</label>
|
||||||
|
<input value="0" type="number" id="variation_amount" name="variation_amount" step="0.01" min="0" max="1">
|
||||||
|
<label title="list of variations to apply, in the format `seed:weight,seed:weight,..." for="with_variations">With variations (seed:weight,seed:weight,...):</label>
|
||||||
|
<input value="" type="text" id="with_variations" name="with_variations">
|
||||||
|
</span>
|
||||||
|
</fieldset>
|
||||||
|
<fieldset id="img2img">
|
||||||
|
<div class="section-header">Image-to-image options</div>
|
||||||
|
<label title="Upload an image to use img2img" for="initimg">Initial image:</label>
|
||||||
|
<input type="file" id="initimg" name="initimg" accept=".jpg, .jpeg, .png">
|
||||||
|
<button type="button" id="remove-image">Remove Image</button>
|
||||||
|
<br>
|
||||||
|
<label for="strength">Img2Img Strength:</label>
|
||||||
|
<input value="0.75" type="number" id="strength" name="strength" step="0.01" min="0" max="1">
|
||||||
|
<input type="checkbox" id="fit" name="fit" checked>
|
||||||
|
<label title="Rescale image to fit within requested width and height" for="fit">Fit to width/height</label>
|
||||||
|
</fieldset>
|
||||||
|
<fieldset id="gfpgan">
|
||||||
|
<div class="section-header">Post-processing options</div>
|
||||||
|
<label title="Strength of the gfpgan (face fixing) algorithm." for="gfpgan_strength">GPFGAN Strength (0 to disable):</label>
|
||||||
|
<input value="0.0" min="0" max="1" type="number" id="gfpgan_strength" name="gfpgan_strength" step="0.1">
|
||||||
|
<label title="Upscaling to perform using ESRGAN." for="upscale_level">Upscaling Level</label>
|
||||||
|
<select id="upscale_level" name="upscale_level" value="">
|
||||||
|
<option value="" selected>None</option>
|
||||||
|
<option value="2">2x</option>
|
||||||
|
<option value="4">4x</option>
|
||||||
|
</select>
|
||||||
|
<label title="Strength of the esrgan (upscaling) algorithm." for="upscale_strength">Upscale Strength:</label>
|
||||||
|
<input value="0.75" min="0" max="1" type="number" id="upscale_strength" name="upscale_strength" step="0.05">
|
||||||
|
</fieldset>
|
||||||
|
</form>
|
||||||
|
<br>
|
||||||
|
<section id="progress-section">
|
||||||
|
<div id="progress-container">
|
||||||
|
<progress id="progress-bar" value="0" max="1"></progress>
|
||||||
|
<span id="cancel-button" title="Cancel">✖</span>
|
||||||
|
<br>
|
||||||
|
<img id="progress-image" src='data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg"/>'>
|
||||||
|
<div id="scaling-inprocess-message">
|
||||||
|
<i><span>Postprocessing...</span><span id="processing_cnt">1/3</span></i>
|
||||||
|
</div>
|
||||||
|
</span>
|
||||||
|
</section>
|
||||||
|
|
||||||
|
<div id="results">
|
||||||
|
<div id="no-results-message">
|
||||||
|
<i><p>No results...</p></i>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</main>
|
||||||
|
</body>
|
||||||
|
</html>
|
213
static/legacy_web/index.js
Normal file
213
static/legacy_web/index.js
Normal file
@ -0,0 +1,213 @@
|
|||||||
|
function toBase64(file) {
|
||||||
|
return new Promise((resolve, reject) => {
|
||||||
|
const r = new FileReader();
|
||||||
|
r.readAsDataURL(file);
|
||||||
|
r.onload = () => resolve(r.result);
|
||||||
|
r.onerror = (error) => reject(error);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
function appendOutput(src, seed, config) {
|
||||||
|
let outputNode = document.createElement("figure");
|
||||||
|
|
||||||
|
let variations = config.with_variations;
|
||||||
|
if (config.variation_amount > 0) {
|
||||||
|
variations = (variations ? variations + ',' : '') + seed + ':' + config.variation_amount;
|
||||||
|
}
|
||||||
|
let baseseed = (config.with_variations || config.variation_amount > 0) ? config.seed : seed;
|
||||||
|
let altText = baseseed + ' | ' + (variations ? variations + ' | ' : '') + config.prompt;
|
||||||
|
|
||||||
|
// img needs width and height for lazy loading to work
|
||||||
|
const figureContents = `
|
||||||
|
<a href="${src}" target="_blank">
|
||||||
|
<img src="${src}"
|
||||||
|
alt="${altText}"
|
||||||
|
title="${altText}"
|
||||||
|
loading="lazy"
|
||||||
|
width="256"
|
||||||
|
height="256">
|
||||||
|
</a>
|
||||||
|
<figcaption>${seed}</figcaption>
|
||||||
|
`;
|
||||||
|
|
||||||
|
outputNode.innerHTML = figureContents;
|
||||||
|
let figcaption = outputNode.querySelector('figcaption');
|
||||||
|
|
||||||
|
// Reload image config
|
||||||
|
figcaption.addEventListener('click', () => {
|
||||||
|
let form = document.querySelector("#generate-form");
|
||||||
|
for (const [k, v] of new FormData(form)) {
|
||||||
|
if (k == 'initimg') { continue; }
|
||||||
|
form.querySelector(`*[name=${k}]`).value = config[k];
|
||||||
|
}
|
||||||
|
|
||||||
|
document.querySelector("#seed").value = baseseed;
|
||||||
|
document.querySelector("#with_variations").value = variations || '';
|
||||||
|
if (document.querySelector("#variation_amount").value <= 0) {
|
||||||
|
document.querySelector("#variation_amount").value = 0.2;
|
||||||
|
}
|
||||||
|
|
||||||
|
saveFields(document.querySelector("#generate-form"));
|
||||||
|
});
|
||||||
|
|
||||||
|
document.querySelector("#results").prepend(outputNode);
|
||||||
|
}
|
||||||
|
|
||||||
|
function saveFields(form) {
|
||||||
|
for (const [k, v] of new FormData(form)) {
|
||||||
|
if (typeof v !== 'object') { // Don't save 'file' type
|
||||||
|
localStorage.setItem(k, v);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function loadFields(form) {
|
||||||
|
for (const [k, v] of new FormData(form)) {
|
||||||
|
const item = localStorage.getItem(k);
|
||||||
|
if (item != null) {
|
||||||
|
form.querySelector(`*[name=${k}]`).value = item;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function clearFields(form) {
|
||||||
|
localStorage.clear();
|
||||||
|
let prompt = form.prompt.value;
|
||||||
|
form.reset();
|
||||||
|
form.prompt.value = prompt;
|
||||||
|
}
|
||||||
|
|
||||||
|
const BLANK_IMAGE_URL = 'data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg"/>';
|
||||||
|
async function generateSubmit(form) {
|
||||||
|
const prompt = document.querySelector("#prompt").value;
|
||||||
|
|
||||||
|
// Convert file data to base64
|
||||||
|
let formData = Object.fromEntries(new FormData(form));
|
||||||
|
formData.initimg_name = formData.initimg.name
|
||||||
|
formData.initimg = formData.initimg.name !== '' ? await toBase64(formData.initimg) : null;
|
||||||
|
|
||||||
|
let strength = formData.strength;
|
||||||
|
let totalSteps = formData.initimg ? Math.floor(strength * formData.steps) : formData.steps;
|
||||||
|
|
||||||
|
let progressSectionEle = document.querySelector('#progress-section');
|
||||||
|
progressSectionEle.style.display = 'initial';
|
||||||
|
let progressEle = document.querySelector('#progress-bar');
|
||||||
|
progressEle.setAttribute('max', totalSteps);
|
||||||
|
let progressImageEle = document.querySelector('#progress-image');
|
||||||
|
progressImageEle.src = BLANK_IMAGE_URL;
|
||||||
|
|
||||||
|
progressImageEle.style.display = {}.hasOwnProperty.call(formData, 'progress_images') ? 'initial': 'none';
|
||||||
|
|
||||||
|
// Post as JSON, using Fetch streaming to get results
|
||||||
|
fetch(form.action, {
|
||||||
|
method: form.method,
|
||||||
|
body: JSON.stringify(formData),
|
||||||
|
}).then(async (response) => {
|
||||||
|
const reader = response.body.getReader();
|
||||||
|
|
||||||
|
let noOutputs = true;
|
||||||
|
while (true) {
|
||||||
|
let {value, done} = await reader.read();
|
||||||
|
value = new TextDecoder().decode(value);
|
||||||
|
if (done) {
|
||||||
|
progressSectionEle.style.display = 'none';
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (let event of value.split('\n').filter(e => e !== '')) {
|
||||||
|
const data = JSON.parse(event);
|
||||||
|
|
||||||
|
if (data.event === 'result') {
|
||||||
|
noOutputs = false;
|
||||||
|
appendOutput(data.url, data.seed, data.config);
|
||||||
|
progressEle.setAttribute('value', 0);
|
||||||
|
progressEle.setAttribute('max', totalSteps);
|
||||||
|
} else if (data.event === 'upscaling-started') {
|
||||||
|
document.getElementById("processing_cnt").textContent=data.processed_file_cnt;
|
||||||
|
document.getElementById("scaling-inprocess-message").style.display = "block";
|
||||||
|
} else if (data.event === 'upscaling-done') {
|
||||||
|
document.getElementById("scaling-inprocess-message").style.display = "none";
|
||||||
|
} else if (data.event === 'step') {
|
||||||
|
progressEle.setAttribute('value', data.step);
|
||||||
|
if (data.url) {
|
||||||
|
progressImageEle.src = data.url;
|
||||||
|
}
|
||||||
|
} else if (data.event === 'canceled') {
|
||||||
|
// avoid alerting as if this were an error case
|
||||||
|
noOutputs = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Re-enable form, remove no-results-message
|
||||||
|
form.querySelector('fieldset').removeAttribute('disabled');
|
||||||
|
document.querySelector("#prompt").value = prompt;
|
||||||
|
document.querySelector('progress').setAttribute('value', '0');
|
||||||
|
|
||||||
|
if (noOutputs) {
|
||||||
|
alert("Error occurred while generating.");
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
// Disable form while generating
|
||||||
|
form.querySelector('fieldset').setAttribute('disabled','');
|
||||||
|
document.querySelector("#prompt").value = `Generating: "${prompt}"`;
|
||||||
|
}
|
||||||
|
|
||||||
|
async function fetchRunLog() {
|
||||||
|
try {
|
||||||
|
let response = await fetch('/run_log.json')
|
||||||
|
const data = await response.json();
|
||||||
|
for(let item of data.run_log) {
|
||||||
|
appendOutput(item.url, item.seed, item);
|
||||||
|
}
|
||||||
|
} catch (e) {
|
||||||
|
console.error(e);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
window.onload = async () => {
|
||||||
|
document.querySelector("#prompt").addEventListener("keydown", (e) => {
|
||||||
|
if (e.key === "Enter" && !e.shiftKey) {
|
||||||
|
const form = e.target.form;
|
||||||
|
generateSubmit(form);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
document.querySelector("#generate-form").addEventListener('submit', (e) => {
|
||||||
|
e.preventDefault();
|
||||||
|
const form = e.target;
|
||||||
|
|
||||||
|
generateSubmit(form);
|
||||||
|
});
|
||||||
|
document.querySelector("#generate-form").addEventListener('change', (e) => {
|
||||||
|
saveFields(e.target.form);
|
||||||
|
});
|
||||||
|
document.querySelector("#reset-seed").addEventListener('click', (e) => {
|
||||||
|
document.querySelector("#seed").value = -1;
|
||||||
|
saveFields(e.target.form);
|
||||||
|
});
|
||||||
|
document.querySelector("#reset-all").addEventListener('click', (e) => {
|
||||||
|
clearFields(e.target.form);
|
||||||
|
});
|
||||||
|
document.querySelector("#remove-image").addEventListener('click', (e) => {
|
||||||
|
initimg.value=null;
|
||||||
|
});
|
||||||
|
loadFields(document.querySelector("#generate-form"));
|
||||||
|
|
||||||
|
document.querySelector('#cancel-button').addEventListener('click', () => {
|
||||||
|
fetch('/cancel').catch(e => {
|
||||||
|
console.error(e);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
document.documentElement.addEventListener('keydown', (e) => {
|
||||||
|
if (e.key === "Escape")
|
||||||
|
fetch('/cancel').catch(err => {
|
||||||
|
console.error(err);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!config.gfpgan_model_exists) {
|
||||||
|
document.querySelector("#gfpgan").style.display = 'none';
|
||||||
|
}
|
||||||
|
await fetchRunLog()
|
||||||
|
};
|
Loading…
Reference in New Issue
Block a user