mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'resolution-checker' of https://github.com/blessedcoolant/stable-diffusion into main
This commit is contained in:
commit
0be2351c97
@ -50,6 +50,8 @@ class InitImageResizer():
|
||||
new_image = Image.new('RGB',(width,height))
|
||||
new_image.paste(resized_image,((width-rw)//2,(height-rh)//2))
|
||||
|
||||
print(f'>> Resized image size to {width}x{height}')
|
||||
|
||||
return new_image
|
||||
|
||||
def make_grid(image_list, rows=None, cols=None):
|
||||
|
@ -266,16 +266,9 @@ class T2I:
|
||||
assert (
|
||||
0.0 <= strength <= 1.0
|
||||
), 'can only work with strength in [0.0, 1.0]'
|
||||
w, h = map(
|
||||
lambda x: x - x % 64, (width, height)
|
||||
) # resize to integer multiple of 64
|
||||
|
||||
if h != height or w != width:
|
||||
print(
|
||||
f'Height and width must be multiples of 64. Resizing to {h}x{w}.'
|
||||
)
|
||||
height = h
|
||||
width = w
|
||||
if not(width == self.width and height == self.height):
|
||||
width, height, _ = self._resolution_check(width, height, log=True)
|
||||
|
||||
scope = autocast if self.precision == 'autocast' else nullcontext
|
||||
|
||||
@ -353,6 +346,9 @@ class T2I:
|
||||
f'Error running RealESRGAN - Your image was not upscaled.\n{e}'
|
||||
)
|
||||
if image_callback is not None:
|
||||
if save_original:
|
||||
image_callback(image, seed)
|
||||
else:
|
||||
image_callback(image, seed, upscaled=True)
|
||||
else: # no callback passed, so we simply replace old image with rescaled one
|
||||
result[0] = image
|
||||
@ -445,7 +441,7 @@ class T2I:
|
||||
# PLMS sampler not supported yet, so ignore previous sampler
|
||||
if self.sampler_name != 'ddim':
|
||||
print(
|
||||
f"sampler '{self.sampler_name}' is not yet supported. Using DDM sampler"
|
||||
f"sampler '{self.sampler_name}' is not yet supported. Using DDIM sampler"
|
||||
)
|
||||
sampler = DDIMSampler(self.model, device=self.device)
|
||||
else:
|
||||
@ -514,7 +510,8 @@ class T2I:
|
||||
x_samples = self.model.decode_first_stage(samples)
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
if len(x_samples) != 1:
|
||||
raise Exception(f'expected to get a single image, but got {len(x_samples)}')
|
||||
raise Exception(
|
||||
f'expected to get a single image, but got {len(x_samples)}')
|
||||
x_sample = 255.0 * rearrange(
|
||||
x_samples[0].cpu().numpy(), 'c h w -> h w c'
|
||||
)
|
||||
@ -545,7 +542,8 @@ class T2I:
|
||||
self.model.cond_stage_model.device = self.device
|
||||
except AttributeError:
|
||||
import traceback
|
||||
print('Error loading model. Only the CUDA backend is supported',file=sys.stderr)
|
||||
print(
|
||||
'Error loading model. Only the CUDA backend is supported', file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
raise SystemExit
|
||||
|
||||
@ -606,10 +604,26 @@ class T2I:
|
||||
print(f'image path = {path}, cwd = {os.getcwd()}')
|
||||
with Image.open(path) as img:
|
||||
image = img.convert('RGB')
|
||||
print(f'loaded input image of size {image.width}x{image.height} from {path}')
|
||||
print(
|
||||
f'loaded input image of size {image.width}x{image.height} from {path}')
|
||||
|
||||
from ldm.dream.image_util import InitImageResizer
|
||||
if width == self.width and height == self.height:
|
||||
new_image_width, new_image_height, resize_needed = self._resolution_check(
|
||||
image.width, image.height)
|
||||
else:
|
||||
if height == self.height:
|
||||
new_image_width, new_image_height, resize_needed = self._resolution_check(
|
||||
width, image.height)
|
||||
if width == self.width:
|
||||
new_image_width, new_image_height, resize_needed = self._resolution_check(
|
||||
image.width, height)
|
||||
else:
|
||||
image = InitImageResizer(image).resize(width, height)
|
||||
print(f'resized input image to size {image.width}x{image.height}')
|
||||
resize_needed=False
|
||||
if resize_needed:
|
||||
image = InitImageResizer(image).resize(
|
||||
new_image_width, new_image_height)
|
||||
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
@ -685,4 +699,20 @@ class T2I:
|
||||
discarded = discarded + f"\x1b[0;3{s};40m{token}"
|
||||
print(f"\nTokens ({usedTokens}):\n{tokenized}\x1b[0m")
|
||||
if discarded != "":
|
||||
print(f"Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m")
|
||||
print(
|
||||
f"Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m")
|
||||
|
||||
def _resolution_check(self, width, height, log=False):
|
||||
resize_needed = False
|
||||
w, h = map(
|
||||
lambda x: x - x % 64, (width, height)
|
||||
) # resize to integer multiple of 64
|
||||
if h != height or w != width:
|
||||
if log:
|
||||
print(
|
||||
f'>> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}'
|
||||
)
|
||||
height = h
|
||||
width = w
|
||||
resize_needed = True
|
||||
return width, height, resize_needed
|
||||
|
Loading…
x
Reference in New Issue
Block a user