mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
report full size for fast latents and update conversion matrix for v1.5
This commit is contained in:
parent
688d7258f1
commit
0cc39f01a3
@ -640,9 +640,11 @@ class InvokeAIWebServer:
|
|||||||
if generation_parameters['progress_latents']:
|
if generation_parameters['progress_latents']:
|
||||||
image = self.generate.sample_to_lowres_estimated_image(sample)
|
image = self.generate.sample_to_lowres_estimated_image(sample)
|
||||||
(width, height) = image.size
|
(width, height) = image.size
|
||||||
|
width *= 8
|
||||||
|
height *= 8
|
||||||
buffered = io.BytesIO()
|
buffered = io.BytesIO()
|
||||||
image.save(buffered, format="PNG")
|
image.save(buffered, format="PNG")
|
||||||
img_base64 = "data:image/jpeg;base64," + base64.b64encode(buffered.getvalue()).decode('UTF-8')
|
img_base64 = "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode('UTF-8')
|
||||||
self.socketio.emit(
|
self.socketio.emit(
|
||||||
"intermediateResult",
|
"intermediateResult",
|
||||||
{
|
{
|
||||||
|
@ -119,19 +119,19 @@ class Generator():
|
|||||||
# write an approximate RGB image from latent samples for a single step to PNG
|
# write an approximate RGB image from latent samples for a single step to PNG
|
||||||
|
|
||||||
def sample_to_lowres_estimated_image(self,samples):
|
def sample_to_lowres_estimated_image(self,samples):
|
||||||
# adapted from code by @erucipe and @keturn here:
|
# origingally adapted from code by @erucipe and @keturn here:
|
||||||
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
|
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
|
||||||
|
|
||||||
# these numbers were determined empirically by @keturn
|
# these updated numbers for v1.5 are from @torridgristle
|
||||||
v1_4_latent_rgb_factors = torch.tensor([
|
v1_5_latent_rgb_factors = torch.tensor([
|
||||||
# R G B
|
# R G B
|
||||||
[ 0.298, 0.207, 0.208], # L1
|
[ 0.3444, 0.1385, 0.0670], # L1
|
||||||
[ 0.187, 0.286, 0.173], # L2
|
[ 0.1247, 0.4027, 0.1494], # L2
|
||||||
[-0.158, 0.189, 0.264], # L3
|
[-0.3192, 0.2513, 0.2103], # L3
|
||||||
[-0.184, -0.271, -0.473], # L4
|
[-0.1307, -0.1874, -0.7445] # L4
|
||||||
], dtype=samples.dtype, device=samples.device)
|
], dtype=samples.dtype, device=samples.device)
|
||||||
|
|
||||||
latent_image = samples[0].permute(1, 2, 0) @ v1_4_latent_rgb_factors
|
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
|
||||||
latents_ubyte = (((latent_image + 1) / 2)
|
latents_ubyte = (((latent_image + 1) / 2)
|
||||||
.clamp(0, 1) # change scale from -1..1 to 0..1
|
.clamp(0, 1) # change scale from -1..1 to 0..1
|
||||||
.mul(0xFF) # to 0..255
|
.mul(0xFF) # to 0..255
|
||||||
|
Loading…
Reference in New Issue
Block a user