mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
add techjedi's import script, with some filecompletion tweaks
This commit is contained in:
parent
dc96a3e79d
commit
0ccc3b509e
739
invokeai/frontend/install/import_images.py
Normal file
739
invokeai/frontend/install/import_images.py
Normal file
@ -0,0 +1,739 @@
|
|||||||
|
# Copyright (c) 2023 - The InvokeAI Team
|
||||||
|
# Author: techjedi
|
||||||
|
|
||||||
|
# pylint: disable=line-too-long
|
||||||
|
# pylint: disable=broad-exception-caught
|
||||||
|
"""Script to import images into the new database system for 3.0.0"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import datetime
|
||||||
|
import shutil
|
||||||
|
import locale
|
||||||
|
import sqlite3
|
||||||
|
import json
|
||||||
|
import glob
|
||||||
|
import re
|
||||||
|
import uuid
|
||||||
|
import yaml
|
||||||
|
import PIL
|
||||||
|
import PIL.ImageOps
|
||||||
|
import PIL.PngImagePlugin
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
from prompt_toolkit import prompt
|
||||||
|
from prompt_toolkit.shortcuts import yes_no_dialog, message_dialog, input_dialog, button_dialog
|
||||||
|
from prompt_toolkit.completion import PathCompleter
|
||||||
|
from prompt_toolkit.key_binding import KeyBindings
|
||||||
|
|
||||||
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
|
app_config = InvokeAIAppConfig.get_config()
|
||||||
|
|
||||||
|
bindings = KeyBindings()
|
||||||
|
@bindings.add('c-c')
|
||||||
|
def _(event):
|
||||||
|
raise KeyboardInterrupt
|
||||||
|
|
||||||
|
# release notes
|
||||||
|
# "Use All" with size dimensions not selectable in the UI will not load dimensions
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
"""Configuration loader."""
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
TIMESTAMP_STRING= datetime.datetime.utcnow().strftime("%Y%m%dT%H%M%SZ")
|
||||||
|
|
||||||
|
INVOKE_DIRNAME = "invokeai"
|
||||||
|
YAML_FILENAME = "invokeai.yaml"
|
||||||
|
DATABASE_FILENAME = "invokeai.db"
|
||||||
|
|
||||||
|
database_path = None
|
||||||
|
database_backup_dir = None
|
||||||
|
outputs_path = None
|
||||||
|
thumbnail_path = None
|
||||||
|
|
||||||
|
def find_and_load(self):
|
||||||
|
"""find the yaml config file and load"""
|
||||||
|
root = app_config.root_path
|
||||||
|
if not self.confirm_and_load(os.path.abspath(root)):
|
||||||
|
print ("\r\nSpecify custom database and outputs paths:")
|
||||||
|
self.confirm_and_load_from_user()
|
||||||
|
|
||||||
|
self.database_backup_dir = os.path.join(os.path.dirname(self.database_path),"backup")
|
||||||
|
self.thumbnail_path = os.path.join(self.outputs_path,"thumbnails")
|
||||||
|
|
||||||
|
def confirm_and_load(self, invoke_root):
|
||||||
|
"""Validates a yaml path exists, confirms the user wants to use it and loads config."""
|
||||||
|
yaml_path = os.path.join(invoke_root,self.YAML_FILENAME)
|
||||||
|
if os.path.exists(yaml_path):
|
||||||
|
db_dir, outdir = self.load_paths_from_yaml(yaml_path)
|
||||||
|
if os.path.isabs(db_dir):
|
||||||
|
database_path = os.path.join(db_dir,self.DATABASE_FILENAME)
|
||||||
|
else:
|
||||||
|
database_path = os.path.join(invoke_root,db_dir,self.DATABASE_FILENAME)
|
||||||
|
|
||||||
|
if os.path.isabs(outdir):
|
||||||
|
outputs_path = os.path.join(outdir, "images")
|
||||||
|
else:
|
||||||
|
outputs_path = os.path.join(invoke_root, outdir, "images")
|
||||||
|
|
||||||
|
db_exists = os.path.exists(database_path)
|
||||||
|
outdir_exists = os.path.exists(outputs_path)
|
||||||
|
|
||||||
|
text = f"Found {self.YAML_FILENAME} file at {yaml_path}:"
|
||||||
|
text += f"\n Database : {database_path}"
|
||||||
|
text += f"\n Outputs : {outputs_path}"
|
||||||
|
text += "\n\nUse these paths for import (yes) or choose different ones (no) [Yn]: "
|
||||||
|
|
||||||
|
if db_exists and outdir_exists:
|
||||||
|
if (prompt(text).strip() or 'Y').upper().startswith('Y'):
|
||||||
|
self.database_path = database_path
|
||||||
|
self.outputs_path = outputs_path
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
print(" Invalid: One or more paths in this config did not exist and cannot be used.")
|
||||||
|
|
||||||
|
else:
|
||||||
|
message_dialog(
|
||||||
|
title="Path not found",
|
||||||
|
text=f"Auto-discovery of configuration failed! Could not find ({yaml_path}), Custom paths can be specified."
|
||||||
|
).run()
|
||||||
|
return False
|
||||||
|
|
||||||
|
def confirm_and_load_from_user(self):
|
||||||
|
default = ''
|
||||||
|
while True:
|
||||||
|
database_path = os.path.expanduser(
|
||||||
|
prompt(
|
||||||
|
"Database: Specify absolute path to the database to import into: ",
|
||||||
|
completer=PathCompleter(expanduser=True, file_filter=lambda x: Path(x).is_dir() or x.endswith(('.db'))),
|
||||||
|
default = default,
|
||||||
|
))
|
||||||
|
if database_path.endswith(".db") and os.path.isabs(database_path) and os.path.exists(database_path):
|
||||||
|
break
|
||||||
|
default = database_path + '/' if Path(database_path).is_dir() else database_path
|
||||||
|
|
||||||
|
default = ''
|
||||||
|
while True:
|
||||||
|
outputs_path = os.path.expanduser(
|
||||||
|
prompt(
|
||||||
|
"Outputs: Specify absolute path to outputs/images directory to import into: ",
|
||||||
|
completer = PathCompleter(expanduser=True, only_directories=True),
|
||||||
|
default = default,
|
||||||
|
))
|
||||||
|
|
||||||
|
if outputs_path.endswith("images") and os.path.isabs(outputs_path) and os.path.exists(outputs_path):
|
||||||
|
break
|
||||||
|
default = outputs_path + '/' if Path(outputs_path).is_dir() else outputs_path
|
||||||
|
|
||||||
|
self.database_path = database_path
|
||||||
|
self.outputs_path = outputs_path
|
||||||
|
|
||||||
|
return
|
||||||
|
|
||||||
|
def load_paths_from_yaml(self, yaml_path):
|
||||||
|
"""Load an Invoke AI yaml file and get the database and outputs paths."""
|
||||||
|
try:
|
||||||
|
with open(yaml_path, 'rt', encoding=locale.getpreferredencoding()) as file:
|
||||||
|
yamlinfo = yaml.safe_load(file)
|
||||||
|
db_dir = yamlinfo.get("InvokeAI",{}).get("Paths",{}).get("db_dir", None)
|
||||||
|
outdir = yamlinfo.get("InvokeAI",{}).get("Paths",{}).get("outdir", None)
|
||||||
|
return db_dir, outdir
|
||||||
|
except Exception:
|
||||||
|
print(f"Failed to load paths from yaml file! {yaml_path}!")
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
class ImportStats:
|
||||||
|
"""DTO for tracking work progress."""
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
time_start = datetime.datetime.utcnow()
|
||||||
|
count_source_files = 0
|
||||||
|
count_skipped_file_exists = 0
|
||||||
|
count_skipped_db_exists = 0
|
||||||
|
count_imported = 0
|
||||||
|
count_imported_by_version = {}
|
||||||
|
count_file_errors = 0
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_elapsed_time_string():
|
||||||
|
"""Get a friendly time string for the time elapsed since processing start."""
|
||||||
|
time_now = datetime.datetime.utcnow()
|
||||||
|
total_seconds = (time_now - ImportStats.time_start).total_seconds()
|
||||||
|
hours = int((total_seconds) / 3600)
|
||||||
|
minutes = int(((total_seconds) % 3600) / 60)
|
||||||
|
seconds = total_seconds % 60
|
||||||
|
out_str = f"{hours} hour(s) -" if hours > 0 else ""
|
||||||
|
out_str += f"{minutes} minute(s) -" if minutes > 0 else ""
|
||||||
|
out_str += f"{seconds:.2f} second(s)"
|
||||||
|
return out_str
|
||||||
|
|
||||||
|
class InvokeAIMetadata:
|
||||||
|
"""DTO for core Invoke AI generation properties parsed from metadata."""
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
formatted_str = f"{self.generation_mode}~{self.steps}~{self.cfg_scale}~{self.model_name}~{self.scheduler}~{self.seed}~{self.width}~{self.height}~{self.rand_device}~{self.strength}~{self.init_image}"
|
||||||
|
formatted_str += f"\r\npositive_prompt: {self.positive_prompt}"
|
||||||
|
formatted_str += f"\r\nnegative_prompt: {self.negative_prompt}"
|
||||||
|
return formatted_str
|
||||||
|
|
||||||
|
generation_mode = None
|
||||||
|
steps = None
|
||||||
|
cfg_scale = None
|
||||||
|
model_name = None
|
||||||
|
scheduler = None
|
||||||
|
seed = None
|
||||||
|
width = None
|
||||||
|
height = None
|
||||||
|
rand_device = None
|
||||||
|
strength = None
|
||||||
|
init_image = None
|
||||||
|
positive_prompt = None
|
||||||
|
negative_prompt = None
|
||||||
|
imported_app_version = None
|
||||||
|
|
||||||
|
def to_json(self):
|
||||||
|
"""Convert the active instance to json format."""
|
||||||
|
prop_dict = {}
|
||||||
|
prop_dict["generation_mode"] = self.generation_mode
|
||||||
|
prop_dict["positive_prompt"] = self.positive_prompt
|
||||||
|
prop_dict["negative_prompt"] = self.negative_prompt
|
||||||
|
prop_dict["width"] = self.width
|
||||||
|
prop_dict["height"] = self.height
|
||||||
|
prop_dict["seed"] = self.seed
|
||||||
|
prop_dict["rand_device"] = self.rand_device
|
||||||
|
prop_dict["cfg_scale"] = self.cfg_scale
|
||||||
|
prop_dict["steps"] = self.steps
|
||||||
|
prop_dict["scheduler"] = self.scheduler
|
||||||
|
prop_dict["clip_skip"] = 0
|
||||||
|
prop_dict["model"] = {}
|
||||||
|
prop_dict["model"]["model_name"] = self.model_name
|
||||||
|
prop_dict["model"]["base_model"] = None
|
||||||
|
prop_dict["controlnets"] = []
|
||||||
|
prop_dict["loras"] = []
|
||||||
|
prop_dict["vae"] = None
|
||||||
|
prop_dict["strength"] = self.strength
|
||||||
|
prop_dict["init_image"] = self.init_image
|
||||||
|
prop_dict["positive_style_prompt"] = None
|
||||||
|
prop_dict["negative_style_prompt"] = None
|
||||||
|
prop_dict["refiner_model"] = None
|
||||||
|
prop_dict["refiner_cfg_scale"] = None
|
||||||
|
prop_dict["refiner_steps"] = None
|
||||||
|
prop_dict["refiner_scheduler"] = None
|
||||||
|
prop_dict["refiner_aesthetic_store"] = None
|
||||||
|
prop_dict["refiner_start"] = None
|
||||||
|
prop_dict["imported_app_version"] = self.imported_app_version
|
||||||
|
|
||||||
|
return json.dumps(prop_dict)
|
||||||
|
|
||||||
|
|
||||||
|
class InvokeAIMetadataParser:
|
||||||
|
"""Parses strings with json data to find Invoke AI core metadata properties."""
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def parse_meta_tag_dream(self, dream_string):
|
||||||
|
"""Take as input an png metadata json node for the 'dream' field variant from prior to 1.15"""
|
||||||
|
props = InvokeAIMetadata()
|
||||||
|
|
||||||
|
props.imported_app_version = "pre1.15"
|
||||||
|
seed_match = re.search("-S\\s*(\\d+)", dream_string)
|
||||||
|
if seed_match is not None:
|
||||||
|
try:
|
||||||
|
props.seed = int(seed_match[1])
|
||||||
|
except ValueError:
|
||||||
|
props.seed = None
|
||||||
|
raw_prompt = re.sub("(-S\\s*\\d+)", "", dream_string)
|
||||||
|
else:
|
||||||
|
raw_prompt = dream_string
|
||||||
|
|
||||||
|
pos_prompt, neg_prompt = self.split_prompt(raw_prompt)
|
||||||
|
|
||||||
|
props.positive_prompt = pos_prompt
|
||||||
|
props.negative_prompt = neg_prompt
|
||||||
|
|
||||||
|
return props
|
||||||
|
|
||||||
|
def parse_meta_tag_sd_metadata(self, tag_value):
|
||||||
|
"""Take as input an png metadata json node for the 'sd-metadata' field variant from 1.15 through 2.3.5 post 2"""
|
||||||
|
props = InvokeAIMetadata()
|
||||||
|
|
||||||
|
props.imported_app_version = tag_value.get("app_version")
|
||||||
|
props.model_name = tag_value.get("model_weights")
|
||||||
|
img_node = tag_value.get("image")
|
||||||
|
if img_node is not None:
|
||||||
|
props.generation_mode = img_node.get("type")
|
||||||
|
props.width = img_node.get("width")
|
||||||
|
props.height = img_node.get("height")
|
||||||
|
props.seed = img_node.get("seed")
|
||||||
|
props.rand_device = "cuda" #hardcoded since all generations pre 3.0 used cuda random noise instead of cpu
|
||||||
|
props.cfg_scale = img_node.get("cfg_scale")
|
||||||
|
props.steps = img_node.get("steps")
|
||||||
|
props.scheduler = self.map_scheduler(img_node.get("sampler"))
|
||||||
|
props.strength = img_node.get("strength")
|
||||||
|
if props.strength is None:
|
||||||
|
props.strength = img_node.get("strength_steps") # try second name for this property
|
||||||
|
props.init_image = img_node.get("init_image_path")
|
||||||
|
if props.init_image is None: # try second name for this property
|
||||||
|
props.init_image = img_node.get("init_img")
|
||||||
|
# remove the path info from init_image so if we move the init image, it will be correctly relative in the new location
|
||||||
|
if props.init_image is not None:
|
||||||
|
props.init_image = os.path.basename(props.init_image)
|
||||||
|
raw_prompt = img_node.get("prompt")
|
||||||
|
if isinstance(raw_prompt, list):
|
||||||
|
raw_prompt = raw_prompt[0].get("prompt")
|
||||||
|
|
||||||
|
props.positive_prompt, props.negative_prompt = self.split_prompt(raw_prompt)
|
||||||
|
|
||||||
|
return props
|
||||||
|
|
||||||
|
def parse_meta_tag_invokeai(self, tag_value):
|
||||||
|
"""Take as input an png metadata json node for the 'invokeai' field variant from 3.0.0 beta 1 through 5"""
|
||||||
|
props = InvokeAIMetadata()
|
||||||
|
|
||||||
|
props.imported_app_version = "3.0.0 or later"
|
||||||
|
props.generation_mode = tag_value.get("type")
|
||||||
|
if props.generation_mode is not None:
|
||||||
|
props.generation_mode = props.generation_mode.replace("t2l","txt2img").replace("l2l","img2img")
|
||||||
|
|
||||||
|
props.width = tag_value.get("width")
|
||||||
|
props.height = tag_value.get("height")
|
||||||
|
props.seed = tag_value.get("seed")
|
||||||
|
props.cfg_scale = tag_value.get("cfg_scale")
|
||||||
|
props.steps = tag_value.get("steps")
|
||||||
|
props.scheduler = tag_value.get("scheduler")
|
||||||
|
props.strength = tag_value.get("strength")
|
||||||
|
props.positive_prompt = tag_value.get("positive_conditioning")
|
||||||
|
props.negative_prompt = tag_value.get("negative_conditioning")
|
||||||
|
|
||||||
|
return props
|
||||||
|
|
||||||
|
def map_scheduler(self, old_scheduler):
|
||||||
|
"""Convert the legacy sampler names to matching 3.0 schedulers"""
|
||||||
|
if old_scheduler is None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
match(old_scheduler):
|
||||||
|
case "ddim" : return "ddim"
|
||||||
|
case "plms" : return "pnmd"
|
||||||
|
case "k_lms" : return "lms"
|
||||||
|
case "k_dpm_2" : return "kdpm_2"
|
||||||
|
case "k_dpm_2_a" : return "kdpm_2_a"
|
||||||
|
case "dpmpp_2" : return "dpmpp_2s"
|
||||||
|
case "k_dpmpp_2" : return "dpmpp_2m"
|
||||||
|
case "k_dpmpp_2_a" : return None #invalid, in 2.3.x, selecting this sample would just fallback to last run or plms if new session
|
||||||
|
case "k_euler" : return "euler"
|
||||||
|
case "k_euler_a" : return "euler_a"
|
||||||
|
case "k_heun" : return "heun"
|
||||||
|
return None
|
||||||
|
|
||||||
|
def split_prompt(self, raw_prompt: str):
|
||||||
|
"""Split the unified prompt strings by extracting all negative prompt blocks out into the negative prompt."""
|
||||||
|
if raw_prompt is None:
|
||||||
|
return "", ""
|
||||||
|
raw_prompt_search = raw_prompt.replace("\r","").replace("\n","")
|
||||||
|
matches = re.findall(r"\[(.+?)\]", raw_prompt_search)
|
||||||
|
if len(matches) > 0:
|
||||||
|
negative_prompt = ""
|
||||||
|
if len(matches) == 1:
|
||||||
|
negative_prompt = matches[0].strip().strip(',')
|
||||||
|
else:
|
||||||
|
for match in matches:
|
||||||
|
negative_prompt += f"({match.strip().strip(',')})"
|
||||||
|
positive_prompt = re.sub(r"(\[.+?\])", "", raw_prompt_search).strip()
|
||||||
|
else:
|
||||||
|
positive_prompt = raw_prompt_search.strip()
|
||||||
|
negative_prompt = ""
|
||||||
|
|
||||||
|
return positive_prompt,negative_prompt
|
||||||
|
|
||||||
|
class DatabaseMapper:
|
||||||
|
"""Class to abstract database functionality."""
|
||||||
|
def __init__(self, database_path, database_backup_dir):
|
||||||
|
self.database_path = database_path
|
||||||
|
self.database_backup_dir = database_backup_dir
|
||||||
|
self.connection = None
|
||||||
|
self.cursor = None
|
||||||
|
|
||||||
|
def connect(self):
|
||||||
|
"""Open connection to the database."""
|
||||||
|
self.connection = sqlite3.connect(self.database_path)
|
||||||
|
self.cursor = self.connection.cursor()
|
||||||
|
|
||||||
|
def get_board_names(self):
|
||||||
|
"""Get a list of the current board names from the database."""
|
||||||
|
sql_get_board_name = "SELECT board_name FROM boards"
|
||||||
|
self.cursor.execute(sql_get_board_name)
|
||||||
|
rows = self.cursor.fetchall()
|
||||||
|
return [row[0] for row in rows]
|
||||||
|
|
||||||
|
def does_image_exist(self, image_name):
|
||||||
|
"""Check database if a image name already exists and return a boolean."""
|
||||||
|
sql_get_image_by_name = f"SELECT image_name FROM images WHERE image_name='{image_name}'"
|
||||||
|
self.cursor.execute(sql_get_image_by_name)
|
||||||
|
rows = self.cursor.fetchall()
|
||||||
|
return True if len(rows) > 0 else False
|
||||||
|
|
||||||
|
def add_new_image_to_database(self, filename, width, height, metadata, modified_date_string):
|
||||||
|
"""Add an image to the database."""
|
||||||
|
sql_add_image = f"""INSERT INTO images (image_name, image_origin, image_category, width, height, session_id, node_id, metadata, is_intermediate, created_at, updated_at)
|
||||||
|
VALUES ('{filename}', 'internal', 'general', {width}, {height}, null, null, '{metadata}', 0, '{modified_date_string}', '{modified_date_string}')"""
|
||||||
|
self.cursor.execute(sql_add_image)
|
||||||
|
self.connection.commit()
|
||||||
|
|
||||||
|
def get_board_id_with_create(self, board_name):
|
||||||
|
"""Get the board id for supplied name, and create the board if one does not exist."""
|
||||||
|
sql_find_board = f"SELECT board_id FROM boards WHERE board_name='{board_name}' COLLATE NOCASE"
|
||||||
|
self.cursor.execute(sql_find_board)
|
||||||
|
rows = self.cursor.fetchall()
|
||||||
|
if len(rows)>0:
|
||||||
|
return rows[0][0]
|
||||||
|
else:
|
||||||
|
board_date_string = datetime.datetime.utcnow().date().isoformat()
|
||||||
|
new_board_id = str(uuid.uuid4())
|
||||||
|
sql_insert_board = f"INSERT INTO boards (board_id, board_name, created_at, updated_at) VALUES ('{new_board_id}', '{board_name}', '{board_date_string}', '{board_date_string}')"
|
||||||
|
self.cursor.execute(sql_insert_board)
|
||||||
|
self.connection.commit()
|
||||||
|
return new_board_id
|
||||||
|
|
||||||
|
def add_image_to_board(self, filename, board_id):
|
||||||
|
"""Add an image mapping to a board."""
|
||||||
|
add_datetime_str = datetime.datetime.utcnow().isoformat()
|
||||||
|
sql_add_image_to_board = f"""INSERT INTO board_images (board_id, image_name, created_at, updated_at)
|
||||||
|
VALUES ('{board_id}', '{filename}', '{add_datetime_str}', '{add_datetime_str}')"""
|
||||||
|
self.cursor.execute(sql_add_image_to_board)
|
||||||
|
self.connection.commit()
|
||||||
|
|
||||||
|
def disconnect(self):
|
||||||
|
"""Disconnect from the db, cleaning up connections and cursors."""
|
||||||
|
if self.cursor is not None:
|
||||||
|
self.cursor.close()
|
||||||
|
if self.connection is not None:
|
||||||
|
self.connection.close()
|
||||||
|
|
||||||
|
def backup(self, timestamp_string):
|
||||||
|
"""Take a backup of the database."""
|
||||||
|
if not os.path.exists(self.database_backup_dir):
|
||||||
|
print (f"Database backup directory {self.database_backup_dir} does not exist -> creating...", end="")
|
||||||
|
os.makedirs(self.database_backup_dir)
|
||||||
|
print ("Done!")
|
||||||
|
database_backup_path = os.path.join(self.database_backup_dir, f"backup-{timestamp_string}-invokeai.db")
|
||||||
|
print (f"Making DB Backup at {database_backup_path}...", end="")
|
||||||
|
shutil.copy2(self.database_path, database_backup_path)
|
||||||
|
print ("Done!")
|
||||||
|
|
||||||
|
class MediaImportProcessor:
|
||||||
|
"""Containing class for script functionality."""
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
board_name_id_map = {}
|
||||||
|
|
||||||
|
def get_import_file_list(self):
|
||||||
|
"""Ask the user for the import folder and scan for the list of files to return."""
|
||||||
|
while True:
|
||||||
|
default = ''
|
||||||
|
while True:
|
||||||
|
import_dir = os.path.expanduser(
|
||||||
|
prompt(
|
||||||
|
"Inputs: Specify absolute path containing InvokeAI .png images to import: ",
|
||||||
|
completer = PathCompleter(expanduser=True, only_directories=True),
|
||||||
|
default = default,
|
||||||
|
))
|
||||||
|
if len(import_dir)>0 and Path(import_dir).is_dir():
|
||||||
|
break
|
||||||
|
default = import_dir
|
||||||
|
|
||||||
|
recurse_directories = (prompt("Include files from subfolders recursively [yN]? ").strip() or 'N').upper().startswith('N')
|
||||||
|
if recurse_directories:
|
||||||
|
is_recurse = False
|
||||||
|
matching_file_list = glob.glob(import_dir + '/*.png', recursive=False)
|
||||||
|
else:
|
||||||
|
is_recurse = True
|
||||||
|
matching_file_list = glob.glob(import_dir + '/**/*.png', recursive=True)
|
||||||
|
|
||||||
|
if len(matching_file_list) > 0:
|
||||||
|
return import_dir, is_recurse, matching_file_list
|
||||||
|
else:
|
||||||
|
print(f"The specific path {import_dir} exists, but does not contain .png files!")
|
||||||
|
|
||||||
|
def get_file_details(self, filepath):
|
||||||
|
"""Retrieve the embedded metedata fields and dimensions from an image file."""
|
||||||
|
with PIL.Image.open(filepath) as img:
|
||||||
|
img.load()
|
||||||
|
png_width, png_height = img.size
|
||||||
|
img_info = img.info
|
||||||
|
return img_info, png_width, png_height
|
||||||
|
|
||||||
|
def select_board_option(self, board_names, timestamp_string):
|
||||||
|
"""Allow the user to choose how a board is selected for imported files."""
|
||||||
|
while True:
|
||||||
|
print("\r\nOptions for board selection for imported images:")
|
||||||
|
print(f"1) Select an existing board name. (found {len(board_names)})")
|
||||||
|
print( "2) Specify a board name to create/add to.")
|
||||||
|
print( "3) Create/add to board named 'IMPORT'.")
|
||||||
|
print(f"4) Create/add to board named 'IMPORT' with the current datetime string appended (.e.g IMPORT_{timestamp_string}).")
|
||||||
|
print( "5) Create/add to board named 'IMPORT' with a the original file app_version appended (.e.g IMPORT_2.2.5).")
|
||||||
|
input_option = input("Specify desired board option: ")
|
||||||
|
match(input_option):
|
||||||
|
case "1" :
|
||||||
|
if len(board_names) < 1:
|
||||||
|
print("\r\nThere are no existing board names to choose from. Select another option!")
|
||||||
|
continue
|
||||||
|
board_name = self.select_item_from_list(board_names, "board name", True, "Cancel, go back and choose a different board option.")
|
||||||
|
if board_name is not None:
|
||||||
|
return board_name
|
||||||
|
case "2":
|
||||||
|
while True:
|
||||||
|
board_name = input("Specify new/existing board name: ")
|
||||||
|
if board_name:
|
||||||
|
return board_name
|
||||||
|
case "3" :
|
||||||
|
return "IMPORT"
|
||||||
|
case "4":
|
||||||
|
return f"IMPORT_{timestamp_string}"
|
||||||
|
case "5":
|
||||||
|
return "IMPORT_APPVERSION"
|
||||||
|
|
||||||
|
def select_item_from_list(self, items, entity_name, allow_cancel, cancel_string):
|
||||||
|
"""A general function to render a list of items to select in the console, prompt the user for a selection and ensure a valid entry is selected."""
|
||||||
|
print (f"Select a {entity_name.lower()} from the following list:")
|
||||||
|
index = 1
|
||||||
|
for item in items:
|
||||||
|
print(f"{index}) {item}")
|
||||||
|
index += 1
|
||||||
|
if allow_cancel:
|
||||||
|
print(f"{index}) {cancel_string}")
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
option_number = int(input("Specify number of selection: "))
|
||||||
|
except ValueError:
|
||||||
|
continue
|
||||||
|
if allow_cancel and option_number == index:
|
||||||
|
return None
|
||||||
|
if option_number >=1 and option_number <= len(items):
|
||||||
|
return items[option_number-1]
|
||||||
|
|
||||||
|
def import_image(self, filepath: str, board_name_option: str, db_mapper: DatabaseMapper, config: Config):
|
||||||
|
"""Import a single file by its path"""
|
||||||
|
parser = InvokeAIMetadataParser()
|
||||||
|
file_name = os.path.basename(filepath)
|
||||||
|
file_destination_path = os.path.join(config.outputs_path, file_name)
|
||||||
|
|
||||||
|
print("===============================================================================")
|
||||||
|
print(f"Importing {filepath}")
|
||||||
|
|
||||||
|
# check destination to see if the file was previously imported
|
||||||
|
if os.path.exists(file_destination_path):
|
||||||
|
print("File already exists in the destination, skipping!")
|
||||||
|
ImportStats.count_skipped_file_exists += 1
|
||||||
|
return
|
||||||
|
|
||||||
|
# check if file name is already referenced in the database
|
||||||
|
if db_mapper.does_image_exist(file_name):
|
||||||
|
print("A reference to a file with this name already exists in the database, skipping!")
|
||||||
|
ImportStats.count_skipped_db_exists += 1
|
||||||
|
return
|
||||||
|
|
||||||
|
# load image info and dimensions
|
||||||
|
img_info, png_width, png_height = self.get_file_details(filepath)
|
||||||
|
|
||||||
|
# parse metadata
|
||||||
|
destination_needs_meta_update = True
|
||||||
|
log_version_note = "(Unknown)"
|
||||||
|
if "invokeai_metadata" in img_info:
|
||||||
|
# for the latest, we will just re-emit the same json, no need to parse/modify
|
||||||
|
converted_field = None
|
||||||
|
latest_json_string = img_info.get("invokeai_metadata")
|
||||||
|
log_version_note = "3.0.0+"
|
||||||
|
destination_needs_meta_update = False
|
||||||
|
else:
|
||||||
|
if "sd-metadata" in img_info:
|
||||||
|
converted_field = parser.parse_meta_tag_sd_metadata(json.loads(img_info.get("sd-metadata")))
|
||||||
|
elif "invokeai" in img_info:
|
||||||
|
converted_field = parser.parse_meta_tag_invokeai(json.loads(img_info.get("invokeai")))
|
||||||
|
elif "dream" in img_info:
|
||||||
|
converted_field = parser.parse_meta_tag_dream(img_info.get("dream"))
|
||||||
|
elif "Dream" in img_info:
|
||||||
|
converted_field = parser.parse_meta_tag_dream(img_info.get("Dream"))
|
||||||
|
else:
|
||||||
|
converted_field = InvokeAIMetadata()
|
||||||
|
destination_needs_meta_update = False
|
||||||
|
print("File does not have metadata from known Invoke AI versions, add only, no update!")
|
||||||
|
|
||||||
|
# use the loaded img dimensions if the metadata didnt have them
|
||||||
|
if converted_field.width is None:
|
||||||
|
converted_field.width = png_width
|
||||||
|
if converted_field.height is None:
|
||||||
|
converted_field.height = png_height
|
||||||
|
|
||||||
|
log_version_note = converted_field.imported_app_version if converted_field else "NoVersion"
|
||||||
|
log_version_note = log_version_note or "NoVersion"
|
||||||
|
|
||||||
|
latest_json_string = converted_field.to_json()
|
||||||
|
|
||||||
|
print (f"From Invoke AI Version {log_version_note} with dimensions {png_width} x {png_height}.")
|
||||||
|
|
||||||
|
# if metadata needs update, then update metdata and copy in one shot
|
||||||
|
if destination_needs_meta_update:
|
||||||
|
print("Updating metadata while copying...", end="")
|
||||||
|
self.update_file_metadata_while_copying(filepath, file_destination_path, "invokeai_metadata", latest_json_string)
|
||||||
|
print("Done!")
|
||||||
|
else:
|
||||||
|
print("No metadata update necessary, copying only...", end="")
|
||||||
|
shutil.copy2(filepath, file_destination_path)
|
||||||
|
print("Done!")
|
||||||
|
|
||||||
|
# create thumbnail
|
||||||
|
print("Creating thumbnail...", end="")
|
||||||
|
thumbnail_path = os.path.join(config.thumbnail_path, os.path.splitext(file_name)[0]) + ".webp"
|
||||||
|
thumbnail_size = 256, 256
|
||||||
|
with PIL.Image.open(filepath) as source_image:
|
||||||
|
source_image.thumbnail(thumbnail_size)
|
||||||
|
source_image.save(thumbnail_path, "webp")
|
||||||
|
print("Done!")
|
||||||
|
|
||||||
|
# finalize the dynamic board name if there is an APPVERSION token in it.
|
||||||
|
if converted_field is not None:
|
||||||
|
board_name = board_name_option.replace("APPVERSION", converted_field.imported_app_version or "NoVersion")
|
||||||
|
else:
|
||||||
|
board_name = board_name_option.replace("APPVERSION", "Latest")
|
||||||
|
|
||||||
|
# maintain a map of alrady created/looked up ids to avoid DB queries
|
||||||
|
print("Finding/Creating board...", end="")
|
||||||
|
if board_name in self.board_name_id_map:
|
||||||
|
board_id = self.board_name_id_map[board_name]
|
||||||
|
else:
|
||||||
|
board_id = db_mapper.get_board_id_with_create(board_name)
|
||||||
|
self.board_name_id_map[board_name] = board_id
|
||||||
|
print("Done!")
|
||||||
|
|
||||||
|
# add image to db
|
||||||
|
print("Adding image to database......", end="")
|
||||||
|
modified_time = datetime.datetime.utcfromtimestamp(os.path.getmtime(filepath))
|
||||||
|
db_mapper.add_new_image_to_database(file_name, png_width, png_height, latest_json_string, modified_time)
|
||||||
|
print("Done!")
|
||||||
|
|
||||||
|
#add image to board
|
||||||
|
print("Adding image to board......", end="")
|
||||||
|
db_mapper.add_image_to_board(file_name, board_id)
|
||||||
|
print("Done!")
|
||||||
|
|
||||||
|
ImportStats.count_imported += 1
|
||||||
|
if log_version_note in ImportStats.count_imported_by_version:
|
||||||
|
ImportStats.count_imported_by_version[log_version_note] += 1
|
||||||
|
else:
|
||||||
|
ImportStats.count_imported_by_version[log_version_note] = 1
|
||||||
|
|
||||||
|
def update_file_metadata_while_copying(self, filepath, file_destination_path, tag_name, tag_value):
|
||||||
|
"""Perform a metadata update with save to a new destination which accomplishes a copy while updating metadata."""
|
||||||
|
with PIL.Image.open(filepath) as target_image:
|
||||||
|
existing_img_info = target_image.info
|
||||||
|
metadata = PIL.PngImagePlugin.PngInfo()
|
||||||
|
# re-add any existing invoke ai tags unless they are the one we are trying to add
|
||||||
|
for key in existing_img_info:
|
||||||
|
if key != tag_name and key in ("dream", "Dream", "sd-metadata", "invokeai", "invokeai_metadata"):
|
||||||
|
metadata.add_text(key,existing_img_info[key])
|
||||||
|
metadata.add_text(tag_name, tag_value)
|
||||||
|
target_image.save(file_destination_path, pnginfo=metadata)
|
||||||
|
|
||||||
|
def process(self):
|
||||||
|
"""Begin main processing."""
|
||||||
|
|
||||||
|
print("===============================================================================")
|
||||||
|
print("This script will import images generated by earlier versions of")
|
||||||
|
print("InvokeAI into the currently installed root directory:")
|
||||||
|
print(f' {app_config.root_path}')
|
||||||
|
print("If this is not what you want to do, type ctrl-C now to cancel.")
|
||||||
|
|
||||||
|
# load config
|
||||||
|
print("===============================================================================")
|
||||||
|
print("= Configuration & Settings")
|
||||||
|
|
||||||
|
config = Config()
|
||||||
|
config.find_and_load()
|
||||||
|
db_mapper = DatabaseMapper(config.database_path, config.database_backup_dir)
|
||||||
|
db_mapper.connect()
|
||||||
|
|
||||||
|
import_dir, is_recurse, import_file_list = self.get_import_file_list()
|
||||||
|
ImportStats.count_source_files = len(import_file_list)
|
||||||
|
|
||||||
|
board_names = db_mapper.get_board_names()
|
||||||
|
board_name_option = self.select_board_option(board_names, config.TIMESTAMP_STRING)
|
||||||
|
|
||||||
|
print("\r\n===============================================================================")
|
||||||
|
print("= Import Settings Confirmation")
|
||||||
|
|
||||||
|
print()
|
||||||
|
print(f"Database File Path : {config.database_path}")
|
||||||
|
print(f"Outputs/Images Directory : {config.outputs_path}")
|
||||||
|
print(f"Import Image Source Directory : {import_dir}")
|
||||||
|
print(f" Recurse Source SubDirectories : {'Yes' if is_recurse else 'No'}")
|
||||||
|
print(f"Count of .png file(s) found : {len(import_file_list)}")
|
||||||
|
print(f"Board name option specified : {board_name_option}")
|
||||||
|
print(f"Database backup will be taken at : {config.database_backup_dir}")
|
||||||
|
|
||||||
|
print("\r\nNotes about the import process:")
|
||||||
|
print("- Source image files will not be modified, only copied to the outputs directory.")
|
||||||
|
print("- If the same file name already exists in the destination, the file will be skipped.")
|
||||||
|
print("- If the same file name already has a record in the database, the file will be skipped.")
|
||||||
|
print("- Invoke AI metadata tags will be updated/written into the imported copy only.")
|
||||||
|
print("- On the imported copy, only Invoke AI known tags (latest and legacy) will be retained (dream, sd-metadata, invokeai, invokeai_metadata)")
|
||||||
|
print("- A property 'imported_app_version' will be added to metadata that can be viewed in the UI's metadata viewer.")
|
||||||
|
print("- The new 3.x InvokeAI outputs folder structure is flat so recursively found source imges will all be placed into the single outputs/images folder.")
|
||||||
|
|
||||||
|
while True:
|
||||||
|
should_continue = prompt("\nDo you wish to continue with the import [Yn] ? ").lower() or 'y'
|
||||||
|
if should_continue=='n':
|
||||||
|
print("\r\nCancelling Import")
|
||||||
|
return
|
||||||
|
elif should_continue=='y':
|
||||||
|
print()
|
||||||
|
break
|
||||||
|
|
||||||
|
db_mapper.backup(config.TIMESTAMP_STRING)
|
||||||
|
|
||||||
|
print()
|
||||||
|
ImportStats.time_start = datetime.datetime.utcnow()
|
||||||
|
|
||||||
|
for filepath in import_file_list:
|
||||||
|
try:
|
||||||
|
self.import_image(filepath, board_name_option, db_mapper, config)
|
||||||
|
except sqlite3.Error as sql_ex:
|
||||||
|
print(f"A database related exception was found processing {filepath}, will continue to next file. ")
|
||||||
|
print("Exception detail:")
|
||||||
|
print(sql_ex)
|
||||||
|
ImportStats.count_file_errors += 1
|
||||||
|
except Exception as ex:
|
||||||
|
print(f"Exception processing {filepath}, will continue to next file. ")
|
||||||
|
print("Exception detail:")
|
||||||
|
print(ex)
|
||||||
|
ImportStats.count_file_errors += 1
|
||||||
|
|
||||||
|
print("\r\n===============================================================================")
|
||||||
|
print(f"= Import Complete - Elpased Time: {ImportStats.get_elapsed_time_string()}")
|
||||||
|
print()
|
||||||
|
print(f"Source File(s) : {ImportStats.count_source_files}")
|
||||||
|
print(f"Total Imported : {ImportStats.count_imported}")
|
||||||
|
print(f"Skipped b/c file already exists on disk : {ImportStats.count_skipped_file_exists}")
|
||||||
|
print(f"Skipped b/c file already exists in db : {ImportStats.count_skipped_db_exists}")
|
||||||
|
print(f"Errors during import : {ImportStats.count_file_errors}")
|
||||||
|
if ImportStats.count_imported > 0:
|
||||||
|
print("\r\nBreakdown of imported files by version:")
|
||||||
|
for key,version in ImportStats.count_imported_by_version.items():
|
||||||
|
print(f" {key:20} : {version}")
|
||||||
|
|
||||||
|
def main():
|
||||||
|
try:
|
||||||
|
processor = MediaImportProcessor()
|
||||||
|
processor.process()
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\r\n\r\nUser cancelled execution.")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -139,6 +139,7 @@ dependencies = [
|
|||||||
"invokeai-metadata" = "invokeai.frontend.CLI.sd_metadata:print_metadata"
|
"invokeai-metadata" = "invokeai.frontend.CLI.sd_metadata:print_metadata"
|
||||||
"invokeai-node-cli" = "invokeai.app.cli_app:invoke_cli"
|
"invokeai-node-cli" = "invokeai.app.cli_app:invoke_cli"
|
||||||
"invokeai-node-web" = "invokeai.app.api_app:invoke_api"
|
"invokeai-node-web" = "invokeai.app.api_app:invoke_api"
|
||||||
|
"invokeai-import-images" = "invokeai.frontend.install.import_images:main"
|
||||||
|
|
||||||
[project.urls]
|
[project.urls]
|
||||||
"Homepage" = "https://invoke-ai.github.io/InvokeAI/"
|
"Homepage" = "https://invoke-ai.github.io/InvokeAI/"
|
||||||
|
Loading…
Reference in New Issue
Block a user