diff --git a/invokeai/app/api/routers/models.py b/invokeai/app/api/routers/models.py new file mode 100644 index 0000000000..5b3fbebddd --- /dev/null +++ b/invokeai/app/api/routers/models.py @@ -0,0 +1,279 @@ +# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) + +from typing import Annotated, Any, List, Literal, Optional, Union + +from fastapi.routing import APIRouter +from pydantic import BaseModel, Field, parse_obj_as + +from ..dependencies import ApiDependencies + +models_router = APIRouter(prefix="/v1/models", tags=["models"]) + + +class VaeRepo(BaseModel): + repo_id: str = Field(description="The repo ID to use for this VAE") + path: Optional[str] = Field(description="The path to the VAE") + subfolder: Optional[str] = Field(description="The subfolder to use for this VAE") + + +class ModelInfo(BaseModel): + description: Optional[str] = Field(description="A description of the model") + + +class CkptModelInfo(ModelInfo): + format: Literal['ckpt'] = 'ckpt' + + config: str = Field(description="The path to the model config") + weights: str = Field(description="The path to the model weights") + vae: str = Field(description="The path to the model VAE") + width: Optional[int] = Field(description="The width of the model") + height: Optional[int] = Field(description="The height of the model") + + +class DiffusersModelInfo(ModelInfo): + format: Literal['diffusers'] = 'diffusers' + + vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model") + repo_id: Optional[str] = Field(description="The repo ID to use for this model") + path: Optional[str] = Field(description="The path to the model") + + +class ModelsList(BaseModel): + models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]] + + + +@models_router.get( + "/", + operation_id="list_models", + responses={200: {"model": ModelsList }}, +) +async def list_models() -> ModelsList: + """Gets a list of models""" + models_raw = ApiDependencies.invoker.services.model_manager.list_models() + models = parse_obj_as(ModelsList, { "models": models_raw }) + return models + + # @socketio.on("requestSystemConfig") + # def handle_request_capabilities(): + # print(">> System config requested") + # config = self.get_system_config() + # config["model_list"] = self.generate.model_manager.list_models() + # config["infill_methods"] = infill_methods() + # socketio.emit("systemConfig", config) + + # @socketio.on("searchForModels") + # def handle_search_models(search_folder: str): + # try: + # if not search_folder: + # socketio.emit( + # "foundModels", + # {"search_folder": None, "found_models": None}, + # ) + # else: + # ( + # search_folder, + # found_models, + # ) = self.generate.model_manager.search_models(search_folder) + # socketio.emit( + # "foundModels", + # {"search_folder": search_folder, "found_models": found_models}, + # ) + # except Exception as e: + # self.handle_exceptions(e) + # print("\n") + + # @socketio.on("addNewModel") + # def handle_add_model(new_model_config: dict): + # try: + # model_name = new_model_config["name"] + # del new_model_config["name"] + # model_attributes = new_model_config + # if len(model_attributes["vae"]) == 0: + # del model_attributes["vae"] + # update = False + # current_model_list = self.generate.model_manager.list_models() + # if model_name in current_model_list: + # update = True + + # print(f">> Adding New Model: {model_name}") + + # self.generate.model_manager.add_model( + # model_name=model_name, + # model_attributes=model_attributes, + # clobber=True, + # ) + # self.generate.model_manager.commit(opt.conf) + + # new_model_list = self.generate.model_manager.list_models() + # socketio.emit( + # "newModelAdded", + # { + # "new_model_name": model_name, + # "model_list": new_model_list, + # "update": update, + # }, + # ) + # print(f">> New Model Added: {model_name}") + # except Exception as e: + # self.handle_exceptions(e) + + # @socketio.on("deleteModel") + # def handle_delete_model(model_name: str): + # try: + # print(f">> Deleting Model: {model_name}") + # self.generate.model_manager.del_model(model_name) + # self.generate.model_manager.commit(opt.conf) + # updated_model_list = self.generate.model_manager.list_models() + # socketio.emit( + # "modelDeleted", + # { + # "deleted_model_name": model_name, + # "model_list": updated_model_list, + # }, + # ) + # print(f">> Model Deleted: {model_name}") + # except Exception as e: + # self.handle_exceptions(e) + + # @socketio.on("requestModelChange") + # def handle_set_model(model_name: str): + # try: + # print(f">> Model change requested: {model_name}") + # model = self.generate.set_model(model_name) + # model_list = self.generate.model_manager.list_models() + # if model is None: + # socketio.emit( + # "modelChangeFailed", + # {"model_name": model_name, "model_list": model_list}, + # ) + # else: + # socketio.emit( + # "modelChanged", + # {"model_name": model_name, "model_list": model_list}, + # ) + # except Exception as e: + # self.handle_exceptions(e) + + # @socketio.on("convertToDiffusers") + # def convert_to_diffusers(model_to_convert: dict): + # try: + # if model_info := self.generate.model_manager.model_info( + # model_name=model_to_convert["model_name"] + # ): + # if "weights" in model_info: + # ckpt_path = Path(model_info["weights"]) + # original_config_file = Path(model_info["config"]) + # model_name = model_to_convert["model_name"] + # model_description = model_info["description"] + # else: + # self.socketio.emit( + # "error", {"message": "Model is not a valid checkpoint file"} + # ) + # else: + # self.socketio.emit( + # "error", {"message": "Could not retrieve model info."} + # ) + + # if not ckpt_path.is_absolute(): + # ckpt_path = Path(Globals.root, ckpt_path) + + # if original_config_file and not original_config_file.is_absolute(): + # original_config_file = Path(Globals.root, original_config_file) + + # diffusers_path = Path( + # ckpt_path.parent.absolute(), f"{model_name}_diffusers" + # ) + + # if model_to_convert["save_location"] == "root": + # diffusers_path = Path( + # global_converted_ckpts_dir(), f"{model_name}_diffusers" + # ) + + # if ( + # model_to_convert["save_location"] == "custom" + # and model_to_convert["custom_location"] is not None + # ): + # diffusers_path = Path( + # model_to_convert["custom_location"], f"{model_name}_diffusers" + # ) + + # if diffusers_path.exists(): + # shutil.rmtree(diffusers_path) + + # self.generate.model_manager.convert_and_import( + # ckpt_path, + # diffusers_path, + # model_name=model_name, + # model_description=model_description, + # vae=None, + # original_config_file=original_config_file, + # commit_to_conf=opt.conf, + # ) + + # new_model_list = self.generate.model_manager.list_models() + # socketio.emit( + # "modelConverted", + # { + # "new_model_name": model_name, + # "model_list": new_model_list, + # "update": True, + # }, + # ) + # print(f">> Model Converted: {model_name}") + # except Exception as e: + # self.handle_exceptions(e) + + # @socketio.on("mergeDiffusersModels") + # def merge_diffusers_models(model_merge_info: dict): + # try: + # models_to_merge = model_merge_info["models_to_merge"] + # model_ids_or_paths = [ + # self.generate.model_manager.model_name_or_path(x) + # for x in models_to_merge + # ] + # merged_pipe = merge_diffusion_models( + # model_ids_or_paths, + # model_merge_info["alpha"], + # model_merge_info["interp"], + # model_merge_info["force"], + # ) + + # dump_path = global_models_dir() / "merged_models" + # if model_merge_info["model_merge_save_path"] is not None: + # dump_path = Path(model_merge_info["model_merge_save_path"]) + + # os.makedirs(dump_path, exist_ok=True) + # dump_path = dump_path / model_merge_info["merged_model_name"] + # merged_pipe.save_pretrained(dump_path, safe_serialization=1) + + # merged_model_config = dict( + # model_name=model_merge_info["merged_model_name"], + # description=f'Merge of models {", ".join(models_to_merge)}', + # commit_to_conf=opt.conf, + # ) + + # if vae := self.generate.model_manager.config[models_to_merge[0]].get( + # "vae", None + # ): + # print(f">> Using configured VAE assigned to {models_to_merge[0]}") + # merged_model_config.update(vae=vae) + + # self.generate.model_manager.import_diffuser_model( + # dump_path, **merged_model_config + # ) + # new_model_list = self.generate.model_manager.list_models() + + # socketio.emit( + # "modelsMerged", + # { + # "merged_models": models_to_merge, + # "merged_model_name": model_merge_info["merged_model_name"], + # "model_list": new_model_list, + # "update": True, + # }, + # ) + # print(f">> Models Merged: {models_to_merge}") + # print(f">> New Model Added: {model_merge_info['merged_model_name']}") + # except Exception as e: + # self.handle_exceptions(e) \ No newline at end of file diff --git a/invokeai/app/api_app.py b/invokeai/app/api_app.py index 0ce2386557..ab05cb3344 100644 --- a/invokeai/app/api_app.py +++ b/invokeai/app/api_app.py @@ -14,7 +14,7 @@ from pydantic.schema import schema from ..backend import Args from .api.dependencies import ApiDependencies -from .api.routers import images, sessions +from .api.routers import images, sessions, models from .api.sockets import SocketIO from .invocations import * from .invocations.baseinvocation import BaseInvocation @@ -76,6 +76,8 @@ app.include_router(sessions.session_router, prefix="/api") app.include_router(images.images_router, prefix="/api") +app.include_router(models.models_router, prefix="/api") + # Build a custom OpenAPI to include all outputs # TODO: can outputs be included on metadata of invocation schemas somehow?