mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge remote-tracking branch 'origin/main' into refactor/model_manager_instantiate
# Conflicts: # invokeai/backend/model_management/model_manager.py
This commit is contained in:
@ -181,7 +181,7 @@ def download_with_progress_bar(model_url: str, model_dest: str, label: str = "th
|
||||
|
||||
|
||||
def download_conversion_models():
|
||||
target_dir = config.root_path / "models/core/convert"
|
||||
target_dir = config.models_path / "core/convert"
|
||||
kwargs = dict() # for future use
|
||||
try:
|
||||
logger.info("Downloading core tokenizers and text encoders")
|
||||
|
@ -7,7 +7,7 @@ import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import List, Dict, Callable, Union, Set
|
||||
from typing import List, Dict, Callable, Union, Set, Optional
|
||||
|
||||
import requests
|
||||
from diffusers import DiffusionPipeline
|
||||
@ -128,7 +128,9 @@ class ModelInstall(object):
|
||||
model_dict[key] = ModelLoadInfo(**value)
|
||||
|
||||
# supplement with entries in models.yaml
|
||||
installed_models = self.mgr.list_models()
|
||||
installed_models = [x for x in self.mgr.list_models()]
|
||||
# suppresses autoloaded models
|
||||
# installed_models = [x for x in self.mgr.list_models() if not self._is_autoloaded(x)]
|
||||
|
||||
for md in installed_models:
|
||||
base = md["base_model"]
|
||||
@ -147,6 +149,17 @@ class ModelInstall(object):
|
||||
)
|
||||
return {x: model_dict[x] for x in sorted(model_dict.keys(), key=lambda y: model_dict[y].name.lower())}
|
||||
|
||||
def _is_autoloaded(self, model_info: dict) -> bool:
|
||||
path = model_info.get("path")
|
||||
if not path:
|
||||
return False
|
||||
for autodir in ["autoimport_dir", "lora_dir", "embedding_dir", "controlnet_dir"]:
|
||||
if autodir_path := getattr(self.config, autodir):
|
||||
autodir_path = self.config.root_path / autodir_path
|
||||
if Path(path).is_relative_to(autodir_path):
|
||||
return True
|
||||
return False
|
||||
|
||||
def list_models(self, model_type):
|
||||
installed = self.mgr.list_models(model_type=model_type)
|
||||
print(f"Installed models of type `{model_type}`:")
|
||||
@ -273,6 +286,7 @@ class ModelInstall(object):
|
||||
logger.error(f"Unable to download {url}. Skipping.")
|
||||
info = ModelProbe().heuristic_probe(location)
|
||||
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
|
||||
dest.parent.mkdir(parents=True, exist_ok=True)
|
||||
models_path = shutil.move(location, dest)
|
||||
|
||||
# staged version will be garbage-collected at this time
|
||||
@ -346,7 +360,7 @@ class ModelInstall(object):
|
||||
if key in self.datasets:
|
||||
description = self.datasets[key].get("description") or description
|
||||
|
||||
rel_path = self.relative_to_root(path)
|
||||
rel_path = self.relative_to_root(path, self.config.models_path)
|
||||
|
||||
attributes = dict(
|
||||
path=str(rel_path),
|
||||
@ -386,8 +400,8 @@ class ModelInstall(object):
|
||||
attributes.update(dict(config=str(legacy_conf)))
|
||||
return attributes
|
||||
|
||||
def relative_to_root(self, path: Path) -> Path:
|
||||
root = self.config.root_path
|
||||
def relative_to_root(self, path: Path, root: Optional[Path] = None) -> Path:
|
||||
root = root or self.config.root_path
|
||||
if path.is_relative_to(root):
|
||||
return path.relative_to(root)
|
||||
else:
|
||||
|
@ -63,7 +63,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionS
|
||||
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig, MODEL_CORE
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
|
||||
from picklescan.scanner import scan_file_path
|
||||
from .models import BaseModelType, ModelVariantType
|
||||
@ -81,7 +81,7 @@ if is_accelerate_available():
|
||||
from accelerate.utils import set_module_tensor_to_device
|
||||
|
||||
logger = InvokeAILogger.getLogger(__name__)
|
||||
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().root_path / MODEL_CORE / "convert"
|
||||
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().models_path / "core/convert"
|
||||
|
||||
|
||||
def shave_segments(path, n_shave_prefix_segments=1):
|
||||
@ -1070,7 +1070,7 @@ def convert_controlnet_checkpoint(
|
||||
extract_ema,
|
||||
use_linear_projection=None,
|
||||
cross_attention_dim=None,
|
||||
precision: torch.dtype = torch.float32,
|
||||
precision: Optional[torch.dtype] = None,
|
||||
):
|
||||
ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True)
|
||||
ctrlnet_config["upcast_attention"] = upcast_attention
|
||||
@ -1111,7 +1111,6 @@ def convert_controlnet_checkpoint(
|
||||
return controlnet.to(precision)
|
||||
|
||||
|
||||
# TO DO - PASS PRECISION
|
||||
def download_from_original_stable_diffusion_ckpt(
|
||||
checkpoint_path: str,
|
||||
model_version: BaseModelType,
|
||||
@ -1121,7 +1120,7 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
prediction_type: str = None,
|
||||
model_type: str = None,
|
||||
extract_ema: bool = False,
|
||||
precision: torch.dtype = torch.float32,
|
||||
precision: Optional[torch.dtype] = None,
|
||||
scheduler_type: str = "pndm",
|
||||
num_in_channels: Optional[int] = None,
|
||||
upcast_attention: Optional[bool] = None,
|
||||
@ -1194,6 +1193,8 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
|
||||
to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by itself, if
|
||||
needed.
|
||||
precision (`torch.dtype`, *optional*, defauts to `None`):
|
||||
If not provided the precision will be set to the precision of the original file.
|
||||
return: A StableDiffusionPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
|
||||
"""
|
||||
|
||||
@ -1252,6 +1253,10 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
|
||||
logger.debug(f"model_type = {model_type}; original_config_file = {original_config_file}")
|
||||
|
||||
precision_probing_key = "model.diffusion_model.input_blocks.0.0.bias"
|
||||
logger.debug(f"original checkpoint precision == {checkpoint[precision_probing_key].dtype}")
|
||||
precision = precision or checkpoint[precision_probing_key].dtype
|
||||
|
||||
if original_config_file is None:
|
||||
key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
key_name_sd_xl_base = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias"
|
||||
@ -1279,9 +1284,12 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
original_config_file = BytesIO(requests.get(config_url).content)
|
||||
|
||||
original_config = OmegaConf.load(original_config_file)
|
||||
if original_config["model"]["params"].get("use_ema") is not None:
|
||||
extract_ema = original_config["model"]["params"]["use_ema"]
|
||||
|
||||
if (
|
||||
model_version == BaseModelType.StableDiffusion2
|
||||
and original_config["model"]["params"]["parameterization"] == "v"
|
||||
and original_config["model"]["params"].get("parameterization") == "v"
|
||||
):
|
||||
prediction_type = "v_prediction"
|
||||
upcast_attention = True
|
||||
@ -1447,7 +1455,7 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
if controlnet:
|
||||
pipe = pipeline_class(
|
||||
vae=vae.to(precision),
|
||||
text_encoder=text_model,
|
||||
text_encoder=text_model.to(precision),
|
||||
tokenizer=tokenizer,
|
||||
unet=unet.to(precision),
|
||||
scheduler=scheduler,
|
||||
@ -1459,7 +1467,7 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
else:
|
||||
pipe = pipeline_class(
|
||||
vae=vae.to(precision),
|
||||
text_encoder=text_model,
|
||||
text_encoder=text_model.to(precision),
|
||||
tokenizer=tokenizer,
|
||||
unet=unet.to(precision),
|
||||
scheduler=scheduler,
|
||||
@ -1484,8 +1492,8 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
image_noising_scheduler=image_noising_scheduler,
|
||||
# regular denoising components
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_model,
|
||||
unet=unet,
|
||||
text_encoder=text_model.to(precision),
|
||||
unet=unet.to(precision),
|
||||
scheduler=scheduler,
|
||||
# vae
|
||||
vae=vae,
|
||||
@ -1560,7 +1568,7 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
if controlnet:
|
||||
pipe = pipeline_class(
|
||||
vae=vae.to(precision),
|
||||
text_encoder=text_model,
|
||||
text_encoder=text_model.to(precision),
|
||||
tokenizer=tokenizer,
|
||||
unet=unet.to(precision),
|
||||
controlnet=controlnet,
|
||||
@ -1571,7 +1579,7 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
else:
|
||||
pipe = pipeline_class(
|
||||
vae=vae.to(precision),
|
||||
text_encoder=text_model,
|
||||
text_encoder=text_model.to(precision),
|
||||
tokenizer=tokenizer,
|
||||
unet=unet.to(precision),
|
||||
scheduler=scheduler,
|
||||
@ -1594,9 +1602,9 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
|
||||
pipe = StableDiffusionXLPipeline(
|
||||
vae=vae.to(precision),
|
||||
text_encoder=text_encoder,
|
||||
text_encoder=text_encoder.to(precision),
|
||||
tokenizer=tokenizer,
|
||||
text_encoder_2=text_encoder_2,
|
||||
text_encoder_2=text_encoder_2.to(precision),
|
||||
tokenizer_2=tokenizer_2,
|
||||
unet=unet.to(precision),
|
||||
scheduler=scheduler,
|
||||
@ -1639,7 +1647,7 @@ def download_controlnet_from_original_ckpt(
|
||||
original_config_file: str,
|
||||
image_size: int = 512,
|
||||
extract_ema: bool = False,
|
||||
precision: torch.dtype = torch.float32,
|
||||
precision: Optional[torch.dtype] = None,
|
||||
num_in_channels: Optional[int] = None,
|
||||
upcast_attention: Optional[bool] = None,
|
||||
device: str = None,
|
||||
@ -1680,6 +1688,12 @@ def download_controlnet_from_original_ckpt(
|
||||
while "state_dict" in checkpoint:
|
||||
checkpoint = checkpoint["state_dict"]
|
||||
|
||||
# use original precision
|
||||
precision_probing_key = "input_blocks.0.0.bias"
|
||||
ckpt_precision = checkpoint[precision_probing_key].dtype
|
||||
logger.debug(f"original controlnet precision = {ckpt_precision}")
|
||||
precision = precision or ckpt_precision
|
||||
|
||||
original_config = OmegaConf.load(original_config_file)
|
||||
|
||||
if num_in_channels is not None:
|
||||
@ -1699,7 +1713,7 @@ def download_controlnet_from_original_ckpt(
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
)
|
||||
|
||||
return controlnet
|
||||
return controlnet.to(precision)
|
||||
|
||||
|
||||
def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL:
|
||||
|
@ -187,7 +187,9 @@ class ModelCache(object):
|
||||
# TODO: lock for no copies on simultaneous calls?
|
||||
cache_entry = self._cached_models.get(key, None)
|
||||
if cache_entry is None:
|
||||
self.logger.info(f"Loading model {model_path}, type {base_model}:{model_type}:{submodel}")
|
||||
self.logger.info(
|
||||
f"Loading model {model_path}, type {base_model.value}:{model_type.value}:{submodel.value if submodel else ''}"
|
||||
)
|
||||
|
||||
# this will remove older cached models until
|
||||
# there is sufficient room to load the requested model
|
||||
|
@ -426,7 +426,7 @@ class ModelManager(object):
|
||||
return (model_name, base_model, model_type)
|
||||
|
||||
def _get_model_cache_path(self, model_path):
|
||||
return self.app_config.models_path / ".cache" / hashlib.md5(str(model_path).encode()).hexdigest()
|
||||
return self.resolve_model_path(Path(".cache") / hashlib.md5(str(model_path).encode()).hexdigest())
|
||||
|
||||
@classmethod
|
||||
def initialize_model_config(cls, config_path: Path):
|
||||
@ -520,7 +520,7 @@ class ModelManager(object):
|
||||
model_path = getattr(model_config, submodel_type)
|
||||
is_submodel_override = True
|
||||
|
||||
model_path = self.app_config.root_path / model_path
|
||||
model_path = self.resolve_model_path(model_path)
|
||||
return model_path, is_submodel_override
|
||||
|
||||
def _get_model_config(self, base_model, model_name, model_type) -> ModelConfigBase:
|
||||
@ -618,7 +618,7 @@ class ModelManager(object):
|
||||
|
||||
# expose paths as absolute to help web UI
|
||||
if path := model_dict.get("path"):
|
||||
model_dict["path"] = str(self.app_config.root_path / path)
|
||||
model_dict["path"] = str(self.resolve_model_path(path))
|
||||
models.append(model_dict)
|
||||
|
||||
return models
|
||||
@ -655,7 +655,7 @@ class ModelManager(object):
|
||||
self.cache.uncache_model(cache_id)
|
||||
|
||||
# if model inside invoke models folder - delete files
|
||||
model_path = self.app_config.root_path / model_cfg.path
|
||||
model_path = self.resolve_model_path(model_cfg.path)
|
||||
cache_path = self._get_model_cache_path(model_path)
|
||||
if cache_path.exists():
|
||||
rmtree(str(cache_path))
|
||||
@ -686,10 +686,9 @@ class ModelManager(object):
|
||||
The returned dict has the same format as the dict returned by
|
||||
model_info().
|
||||
"""
|
||||
# relativize paths as they go in - this makes it easier to move the root directory around
|
||||
# relativize paths as they go in - this makes it easier to move the models directory around
|
||||
if path := model_attributes.get("path"):
|
||||
if Path(path).is_relative_to(self.app_config.root_path):
|
||||
model_attributes["path"] = str(Path(path).relative_to(self.app_config.root_path))
|
||||
model_attributes["path"] = str(self.relative_model_path(Path(path)))
|
||||
|
||||
model_class = self._get_implementation(base_model, model_type)
|
||||
model_config = model_class.create_config(**model_attributes)
|
||||
@ -747,7 +746,7 @@ class ModelManager(object):
|
||||
if not model_cfg:
|
||||
raise ModelNotFoundException(f"Unknown model: {model_key}")
|
||||
|
||||
old_path = self.app_config.root_path / model_cfg.path
|
||||
old_path = self.resolve_model_path(model_cfg.path)
|
||||
new_name = new_name or model_name
|
||||
new_base = new_base or base_model
|
||||
new_key = self.create_key(new_name, new_base, model_type)
|
||||
@ -756,15 +755,15 @@ class ModelManager(object):
|
||||
|
||||
# if this is a model file/directory that we manage ourselves, we need to move it
|
||||
if old_path.is_relative_to(self.app_config.models_path):
|
||||
new_path = (
|
||||
self.app_config.root_path
|
||||
/ "models"
|
||||
/ BaseModelType(new_base).value
|
||||
/ ModelType(model_type).value
|
||||
/ new_name
|
||||
new_path = self.resolve_model_path(
|
||||
Path(
|
||||
BaseModelType(new_base).value,
|
||||
ModelType(model_type).value,
|
||||
new_name,
|
||||
)
|
||||
)
|
||||
move(old_path, new_path)
|
||||
model_cfg.path = str(new_path.relative_to(self.app_config.root_path))
|
||||
model_cfg.path = str(new_path.relative_to(self.app_config.models_path))
|
||||
|
||||
# clean up caches
|
||||
old_model_cache = self._get_model_cache_path(old_path)
|
||||
@ -814,7 +813,7 @@ class ModelManager(object):
|
||||
**submodel,
|
||||
)
|
||||
checkpoint_path = self.app_config.root_path / info["path"]
|
||||
old_diffusers_path = self.app_config.models_path / model.location
|
||||
old_diffusers_path = self.resolve_model_path(model.location)
|
||||
new_diffusers_path = (
|
||||
dest_directory or self.app_config.models_path / base_model.value / model_type.value
|
||||
) / model_name
|
||||
@ -827,7 +826,7 @@ class ModelManager(object):
|
||||
info["path"] = (
|
||||
str(new_diffusers_path)
|
||||
if dest_directory
|
||||
else str(new_diffusers_path.relative_to(self.app_config.root_path))
|
||||
else str(new_diffusers_path.relative_to(self.app_config.models_path))
|
||||
)
|
||||
info.pop("config")
|
||||
|
||||
@ -842,6 +841,15 @@ class ModelManager(object):
|
||||
|
||||
return result
|
||||
|
||||
def resolve_model_path(self, path: Union[Path, str]) -> Path:
|
||||
"""return relative paths based on configured models_path"""
|
||||
return self.app_config.models_path / path
|
||||
|
||||
def relative_model_path(self, model_path: Path) -> Path:
|
||||
if model_path.is_relative_to(self.app_config.models_path):
|
||||
model_path = model_path.relative_to(self.app_config.models_path)
|
||||
return model_path
|
||||
|
||||
def search_models(self, search_folder):
|
||||
self.logger.info(f"Finding Models In: {search_folder}")
|
||||
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
||||
@ -915,10 +923,17 @@ class ModelManager(object):
|
||||
new_models_found = False
|
||||
|
||||
self.logger.info(f"Scanning {self.app_config.models_path} for new models")
|
||||
with Chdir(self.app_config.root_path):
|
||||
with Chdir(self.app_config.models_path):
|
||||
for model_key, model_config in list(self.models.items()):
|
||||
model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
|
||||
model_path = self.app_config.root_path.absolute() / model_config.path
|
||||
|
||||
# Patch for relative path bug in older models.yaml - paths should not
|
||||
# be starting with a hard-coded 'models'. This will also fix up
|
||||
# models.yaml when committed.
|
||||
if model_config.path.startswith("models"):
|
||||
model_config.path = str(Path(*Path(model_config.path).parts[1:]))
|
||||
|
||||
model_path = self.resolve_model_path(model_config.path).absolute()
|
||||
if not model_path.exists():
|
||||
model_class = self._get_implementation(cur_base_model, cur_model_type)
|
||||
if model_class.save_to_config:
|
||||
@ -937,7 +952,7 @@ class ModelManager(object):
|
||||
if model_type is not None and cur_model_type != model_type:
|
||||
continue
|
||||
model_class = self._get_implementation(cur_base_model, cur_model_type)
|
||||
models_dir = self.app_config.models_path / cur_base_model.value / cur_model_type.value
|
||||
models_dir = self.resolve_model_path(Path(cur_base_model.value, cur_model_type.value))
|
||||
|
||||
if not models_dir.exists():
|
||||
continue # TODO: or create all folders?
|
||||
@ -951,9 +966,7 @@ class ModelManager(object):
|
||||
if model_key in self.models:
|
||||
raise DuplicateModelException(f"Model with key {model_key} added twice")
|
||||
|
||||
if model_path.is_relative_to(self.app_config.root_path):
|
||||
model_path = model_path.relative_to(self.app_config.root_path)
|
||||
|
||||
model_path = self.relative_model_path(model_path)
|
||||
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
|
||||
self.models[model_key] = model_config
|
||||
new_models_found = True
|
||||
@ -964,12 +977,11 @@ class ModelManager(object):
|
||||
except NotImplementedError as e:
|
||||
self.logger.warning(e)
|
||||
|
||||
imported_models = self.autoimport()
|
||||
|
||||
imported_models = self.scan_autoimport_directory()
|
||||
if (new_models_found or imported_models) and self.config_path:
|
||||
self.commit()
|
||||
|
||||
def autoimport(self) -> Dict[str, AddModelResult]:
|
||||
def scan_autoimport_directory(self) -> Dict[str, AddModelResult]:
|
||||
"""
|
||||
Scan the autoimport directory (if defined) and import new models, delete defunct models.
|
||||
"""
|
||||
@ -1003,7 +1015,7 @@ class ModelManager(object):
|
||||
# LS: hacky
|
||||
# Patch in the SD VAE from core so that it is available for use by the UI
|
||||
try:
|
||||
self.heuristic_import({config.root_path / "models/core/convert/sd-vae-ft-mse"})
|
||||
self.heuristic_import({self.resolve_model_path("core/convert/sd-vae-ft-mse")})
|
||||
except:
|
||||
pass
|
||||
|
||||
|
@ -17,6 +17,7 @@ from .base import (
|
||||
ModelNotFoundException,
|
||||
)
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
|
||||
class ControlNetModelFormat(str, Enum):
|
||||
@ -66,7 +67,7 @@ class ControlNetModel(ModelBase):
|
||||
child_type: Optional[SubModelType] = None,
|
||||
):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in controlnet model")
|
||||
raise Exception("There are no child models in controlnet model")
|
||||
|
||||
model = None
|
||||
for variant in ["fp16", None]:
|
||||
@ -124,9 +125,7 @@ class ControlNetModel(ModelBase):
|
||||
return model_path
|
||||
|
||||
|
||||
@classmethod
|
||||
def _convert_controlnet_ckpt_and_cache(
|
||||
cls,
|
||||
model_path: str,
|
||||
output_path: str,
|
||||
base_model: BaseModelType,
|
||||
@ -141,6 +140,7 @@ def _convert_controlnet_ckpt_and_cache(
|
||||
weights = app_config.root_path / model_path
|
||||
output_path = Path(output_path)
|
||||
|
||||
logger.info(f"Converting {weights} to diffusers format")
|
||||
# return cached version if it exists
|
||||
if output_path.exists():
|
||||
return output_path
|
||||
|
@ -123,6 +123,7 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
return _convert_ckpt_and_cache(
|
||||
version=BaseModelType.StableDiffusion1,
|
||||
model_config=config,
|
||||
load_safety_checker=False,
|
||||
output_path=output_path,
|
||||
)
|
||||
else:
|
||||
@ -259,7 +260,7 @@ def _convert_ckpt_and_cache(
|
||||
"""
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
|
||||
weights = app_config.root_path / model_config.path
|
||||
weights = app_config.models_path / model_config.path
|
||||
config_file = app_config.root_path / model_config.config
|
||||
output_path = Path(output_path)
|
||||
|
||||
|
Reference in New Issue
Block a user