Merge remote-tracking branch 'origin/main' into refactor/model_manager_instantiate

# Conflicts:
#	invokeai/backend/model_management/model_manager.py
This commit is contained in:
Kevin Turner 2023-07-30 11:33:13 -07:00
commit 0e48c98330
22 changed files with 342 additions and 311 deletions

View File

@ -14,20 +14,25 @@ The nodes linked below have been developed and contributed by members of the Inv
## List of Nodes ## List of Nodes
### Face Mask ### FaceTools
**Description:** This node autodetects a face in the image using MediaPipe and masks it by making it transparent. Via outpainting you can swap faces with other faces, or invert the mask and swap things around the face with other things. Additionally, you can supply X and Y offset values to scale/change the shape of the mask for finer control. The node also outputs an all-white mask in the same dimensions as the input image. This is needed by the inpaint node (and unified canvas) for outpainting. **Description:** FaceTools is a collection of nodes created to manipulate faces as you would in Unified Canvas. It includes FaceMask, FaceOff, and FacePlace. FaceMask autodetects a face in the image using MediaPipe and creates a mask from it. FaceOff similarly detects a face, then takes the face off of the image by adding a square bounding box around it and cropping/scaling it. FacePlace puts the bounded face image from FaceOff back onto the original image. Using these nodes with other inpainting node(s), you can put new faces on existing things, put new things around existing faces, and work closer with a face as a bounded image. Additionally, you can supply X and Y offset values to scale/change the shape of the mask for finer control on FaceMask and FaceOff. See GitHub repository below for usage examples.
**Node Link:** https://github.com/ymgenesis/InvokeAI/blob/facemaskmediapipe/invokeai/app/invocations/facemask.py **Node Link:** https://github.com/ymgenesis/FaceTools/
**Example Node Graph:** https://www.mediafire.com/file/gohn5sb1bfp8use/21-July_2023-FaceMask.json/file **FaceMask Output Examples**
**Output Examples** ![5cc8abce-53b0-487a-b891-3bf94dcc8960](https://github.com/invoke-ai/InvokeAI/assets/25252829/43f36d24-1429-4ab1-bd06-a4bedfe0955e)
![b920b710-1882-49a0-8d02-82dff2cca907](https://github.com/invoke-ai/InvokeAI/assets/25252829/7660c1ed-bf7d-4d0a-947f-1fc1679557ba)
![71a91805-fda5-481c-b380-264665703133](https://github.com/invoke-ai/InvokeAI/assets/25252829/f8f6a2ee-2b68-4482-87da-b90221d5c3e2)
![2e3168cb-af6a-475d-bfac-c7b7fd67b4c2](https://github.com/ymgenesis/InvokeAI/assets/25252829/a5ad7d44-2ada-4b3c-a56e-a21f8244a1ac) <hr>
![2_annotated](https://github.com/ymgenesis/InvokeAI/assets/25252829/53416c8a-a23b-4d76-bb6d-3cfd776e0096)
![2fe2150c-fd08-4e26-8c36-f0610bf441bb](https://github.com/ymgenesis/InvokeAI/assets/25252829/b0f7ecfe-f093-4147-a904-b9f131b41dc9) ### Ideal Size
![831b6b98-4f0f-4360-93c8-69a9c1338cbe](https://github.com/ymgenesis/InvokeAI/assets/25252829/fc7b0622-e361-4155-8a76-082894d084f0)
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Node Link:** https://github.com/JPPhoto/ideal-size-node
-------------------------------- --------------------------------
### Super Cool Node Template ### Super Cool Node Template
@ -42,11 +47,5 @@ The nodes linked below have been developed and contributed by members of the Inv
![Invoke AI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png) ![Invoke AI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png)
### Ideal Size
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Node Link:** https://github.com/JPPhoto/ideal-size-node
## Help ## Help
If you run into any issues with a node, please post in the [InvokeAI Discord](https://discord.gg/ZmtBAhwWhy). If you run into any issues with a node, please post in the [InvokeAI Discord](https://discord.gg/ZmtBAhwWhy).

View File

@ -13,7 +13,7 @@ from pathlib import Path
from tempfile import TemporaryDirectory from tempfile import TemporaryDirectory
from typing import Union from typing import Union
SUPPORTED_PYTHON = ">=3.9.0,<3.11" SUPPORTED_PYTHON = ">=3.9.0,<=3.11.100"
INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"] INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"]
BOOTSTRAP_VENV_PREFIX = "invokeai-installer-tmp" BOOTSTRAP_VENV_PREFIX = "invokeai-installer-tmp"
@ -149,7 +149,7 @@ class Installer:
return venv_dir return venv_dir
def install( def install(
self, root: str = "~/invokeai-3", version: str = "latest", yes_to_all=False, find_links: Path = None self, root: str = "~/invokeai", version: str = "latest", yes_to_all=False, find_links: Path = None
) -> None: ) -> None:
""" """
Install the InvokeAI application into the given runtime path Install the InvokeAI application into the given runtime path
@ -168,7 +168,8 @@ class Installer:
messages.welcome() messages.welcome()
self.dest = Path(root).expanduser().resolve() if yes_to_all else messages.dest_path(root) default_path = os.environ.get("INVOKEAI_ROOT") or Path(root).expanduser().resolve()
self.dest = default_path if yes_to_all else messages.dest_path(root)
# create the venv for the app # create the venv for the app
self.venv = self.app_venv() self.venv = self.app_venv()
@ -248,6 +249,9 @@ class InvokeAiInstance:
pip[ pip[
"install", "install",
"--require-virtualenv", "--require-virtualenv",
"numpy~=1.24.0", # choose versions that won't be uninstalled during phase 2
"urllib3~=1.26.0",
"requests~=2.28.0",
"torch~=2.0.0", "torch~=2.0.0",
"torchmetrics==0.11.4", "torchmetrics==0.11.4",
"torchvision>=0.14.1", "torchvision>=0.14.1",

View File

@ -3,6 +3,7 @@ InvokeAI Installer
""" """
import argparse import argparse
import os
from pathlib import Path from pathlib import Path
from installer import Installer from installer import Installer
@ -15,7 +16,7 @@ if __name__ == "__main__":
dest="root", dest="root",
type=str, type=str,
help="Destination path for installation", help="Destination path for installation",
default="~/invokeai", default=os.environ.get("INVOKEAI_ROOT") or "~/invokeai",
) )
parser.add_argument( parser.add_argument(
"-y", "-y",

View File

@ -41,7 +41,7 @@ IF /I "%choice%" == "1" (
python .venv\Scripts\invokeai-configure.exe --skip-sd-weight --skip-support-models python .venv\Scripts\invokeai-configure.exe --skip-sd-weight --skip-support-models
) ELSE IF /I "%choice%" == "7" ( ) ELSE IF /I "%choice%" == "7" (
echo Running invokeai-configure... echo Running invokeai-configure...
python .venv\Scripts\invokeai-configure.exe --yes --default_only python .venv\Scripts\invokeai-configure.exe --yes --skip-sd-weight
) ELSE IF /I "%choice%" == "8" ( ) ELSE IF /I "%choice%" == "8" (
echo Developer Console echo Developer Console
echo Python command is: echo Python command is:

View File

@ -82,7 +82,7 @@ do_choice() {
7) 7)
clear clear
printf "Re-run the configure script to fix a broken install or to complete a major upgrade\n" printf "Re-run the configure script to fix a broken install or to complete a major upgrade\n"
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only --skip-sd-weights
;; ;;
8) 8)
clear clear

View File

@ -171,7 +171,6 @@ from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path("invokeai.yaml") INIT_FILE = Path("invokeai.yaml")
MODEL_CORE = Path("models/core")
DB_FILE = Path("invokeai.db") DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init") LEGACY_INIT_FILE = Path("invokeai.init")
@ -357,7 +356,7 @@ def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".") venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"): if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve() root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]): elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]):
root = (venv.parent).resolve() root = (venv.parent).resolve()
else: else:
root = Path("~/invokeai").expanduser().resolve() root = Path("~/invokeai").expanduser().resolve()

View File

@ -181,7 +181,7 @@ def download_with_progress_bar(model_url: str, model_dest: str, label: str = "th
def download_conversion_models(): def download_conversion_models():
target_dir = config.root_path / "models/core/convert" target_dir = config.models_path / "core/convert"
kwargs = dict() # for future use kwargs = dict() # for future use
try: try:
logger.info("Downloading core tokenizers and text encoders") logger.info("Downloading core tokenizers and text encoders")

View File

@ -7,7 +7,7 @@ import warnings
from dataclasses import dataclass, field from dataclasses import dataclass, field
from pathlib import Path from pathlib import Path
from tempfile import TemporaryDirectory from tempfile import TemporaryDirectory
from typing import List, Dict, Callable, Union, Set from typing import List, Dict, Callable, Union, Set, Optional
import requests import requests
from diffusers import DiffusionPipeline from diffusers import DiffusionPipeline
@ -128,7 +128,9 @@ class ModelInstall(object):
model_dict[key] = ModelLoadInfo(**value) model_dict[key] = ModelLoadInfo(**value)
# supplement with entries in models.yaml # supplement with entries in models.yaml
installed_models = self.mgr.list_models() installed_models = [x for x in self.mgr.list_models()]
# suppresses autoloaded models
# installed_models = [x for x in self.mgr.list_models() if not self._is_autoloaded(x)]
for md in installed_models: for md in installed_models:
base = md["base_model"] base = md["base_model"]
@ -147,6 +149,17 @@ class ModelInstall(object):
) )
return {x: model_dict[x] for x in sorted(model_dict.keys(), key=lambda y: model_dict[y].name.lower())} return {x: model_dict[x] for x in sorted(model_dict.keys(), key=lambda y: model_dict[y].name.lower())}
def _is_autoloaded(self, model_info: dict) -> bool:
path = model_info.get("path")
if not path:
return False
for autodir in ["autoimport_dir", "lora_dir", "embedding_dir", "controlnet_dir"]:
if autodir_path := getattr(self.config, autodir):
autodir_path = self.config.root_path / autodir_path
if Path(path).is_relative_to(autodir_path):
return True
return False
def list_models(self, model_type): def list_models(self, model_type):
installed = self.mgr.list_models(model_type=model_type) installed = self.mgr.list_models(model_type=model_type)
print(f"Installed models of type `{model_type}`:") print(f"Installed models of type `{model_type}`:")
@ -273,6 +286,7 @@ class ModelInstall(object):
logger.error(f"Unable to download {url}. Skipping.") logger.error(f"Unable to download {url}. Skipping.")
info = ModelProbe().heuristic_probe(location) info = ModelProbe().heuristic_probe(location)
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
dest.parent.mkdir(parents=True, exist_ok=True)
models_path = shutil.move(location, dest) models_path = shutil.move(location, dest)
# staged version will be garbage-collected at this time # staged version will be garbage-collected at this time
@ -346,7 +360,7 @@ class ModelInstall(object):
if key in self.datasets: if key in self.datasets:
description = self.datasets[key].get("description") or description description = self.datasets[key].get("description") or description
rel_path = self.relative_to_root(path) rel_path = self.relative_to_root(path, self.config.models_path)
attributes = dict( attributes = dict(
path=str(rel_path), path=str(rel_path),
@ -386,8 +400,8 @@ class ModelInstall(object):
attributes.update(dict(config=str(legacy_conf))) attributes.update(dict(config=str(legacy_conf)))
return attributes return attributes
def relative_to_root(self, path: Path) -> Path: def relative_to_root(self, path: Path, root: Optional[Path] = None) -> Path:
root = self.config.root_path root = root or self.config.root_path
if path.is_relative_to(root): if path.is_relative_to(root):
return path.relative_to(root) return path.relative_to(root)
else: else:

View File

@ -63,7 +63,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionS
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
from invokeai.app.services.config import InvokeAIAppConfig, MODEL_CORE from invokeai.app.services.config import InvokeAIAppConfig
from picklescan.scanner import scan_file_path from picklescan.scanner import scan_file_path
from .models import BaseModelType, ModelVariantType from .models import BaseModelType, ModelVariantType
@ -81,7 +81,7 @@ if is_accelerate_available():
from accelerate.utils import set_module_tensor_to_device from accelerate.utils import set_module_tensor_to_device
logger = InvokeAILogger.getLogger(__name__) logger = InvokeAILogger.getLogger(__name__)
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().root_path / MODEL_CORE / "convert" CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().models_path / "core/convert"
def shave_segments(path, n_shave_prefix_segments=1): def shave_segments(path, n_shave_prefix_segments=1):
@ -1070,7 +1070,7 @@ def convert_controlnet_checkpoint(
extract_ema, extract_ema,
use_linear_projection=None, use_linear_projection=None,
cross_attention_dim=None, cross_attention_dim=None,
precision: torch.dtype = torch.float32, precision: Optional[torch.dtype] = None,
): ):
ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True) ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True)
ctrlnet_config["upcast_attention"] = upcast_attention ctrlnet_config["upcast_attention"] = upcast_attention
@ -1111,7 +1111,6 @@ def convert_controlnet_checkpoint(
return controlnet.to(precision) return controlnet.to(precision)
# TO DO - PASS PRECISION
def download_from_original_stable_diffusion_ckpt( def download_from_original_stable_diffusion_ckpt(
checkpoint_path: str, checkpoint_path: str,
model_version: BaseModelType, model_version: BaseModelType,
@ -1121,7 +1120,7 @@ def download_from_original_stable_diffusion_ckpt(
prediction_type: str = None, prediction_type: str = None,
model_type: str = None, model_type: str = None,
extract_ema: bool = False, extract_ema: bool = False,
precision: torch.dtype = torch.float32, precision: Optional[torch.dtype] = None,
scheduler_type: str = "pndm", scheduler_type: str = "pndm",
num_in_channels: Optional[int] = None, num_in_channels: Optional[int] = None,
upcast_attention: Optional[bool] = None, upcast_attention: Optional[bool] = None,
@ -1194,6 +1193,8 @@ def download_from_original_stable_diffusion_ckpt(
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer) [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by itself, if to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by itself, if
needed. needed.
precision (`torch.dtype`, *optional*, defauts to `None`):
If not provided the precision will be set to the precision of the original file.
return: A StableDiffusionPipeline object representing the passed-in `.ckpt`/`.safetensors` file. return: A StableDiffusionPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
""" """
@ -1252,6 +1253,10 @@ def download_from_original_stable_diffusion_ckpt(
logger.debug(f"model_type = {model_type}; original_config_file = {original_config_file}") logger.debug(f"model_type = {model_type}; original_config_file = {original_config_file}")
precision_probing_key = "model.diffusion_model.input_blocks.0.0.bias"
logger.debug(f"original checkpoint precision == {checkpoint[precision_probing_key].dtype}")
precision = precision or checkpoint[precision_probing_key].dtype
if original_config_file is None: if original_config_file is None:
key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
key_name_sd_xl_base = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias" key_name_sd_xl_base = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias"
@ -1279,9 +1284,12 @@ def download_from_original_stable_diffusion_ckpt(
original_config_file = BytesIO(requests.get(config_url).content) original_config_file = BytesIO(requests.get(config_url).content)
original_config = OmegaConf.load(original_config_file) original_config = OmegaConf.load(original_config_file)
if original_config["model"]["params"].get("use_ema") is not None:
extract_ema = original_config["model"]["params"]["use_ema"]
if ( if (
model_version == BaseModelType.StableDiffusion2 model_version == BaseModelType.StableDiffusion2
and original_config["model"]["params"]["parameterization"] == "v" and original_config["model"]["params"].get("parameterization") == "v"
): ):
prediction_type = "v_prediction" prediction_type = "v_prediction"
upcast_attention = True upcast_attention = True
@ -1447,7 +1455,7 @@ def download_from_original_stable_diffusion_ckpt(
if controlnet: if controlnet:
pipe = pipeline_class( pipe = pipeline_class(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_model, text_encoder=text_model.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
unet=unet.to(precision), unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
@ -1459,7 +1467,7 @@ def download_from_original_stable_diffusion_ckpt(
else: else:
pipe = pipeline_class( pipe = pipeline_class(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_model, text_encoder=text_model.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
unet=unet.to(precision), unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
@ -1484,8 +1492,8 @@ def download_from_original_stable_diffusion_ckpt(
image_noising_scheduler=image_noising_scheduler, image_noising_scheduler=image_noising_scheduler,
# regular denoising components # regular denoising components
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder=text_model, text_encoder=text_model.to(precision),
unet=unet, unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
# vae # vae
vae=vae, vae=vae,
@ -1560,7 +1568,7 @@ def download_from_original_stable_diffusion_ckpt(
if controlnet: if controlnet:
pipe = pipeline_class( pipe = pipeline_class(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_model, text_encoder=text_model.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
unet=unet.to(precision), unet=unet.to(precision),
controlnet=controlnet, controlnet=controlnet,
@ -1571,7 +1579,7 @@ def download_from_original_stable_diffusion_ckpt(
else: else:
pipe = pipeline_class( pipe = pipeline_class(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_model, text_encoder=text_model.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
unet=unet.to(precision), unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
@ -1594,9 +1602,9 @@ def download_from_original_stable_diffusion_ckpt(
pipe = StableDiffusionXLPipeline( pipe = StableDiffusionXLPipeline(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_encoder, text_encoder=text_encoder.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder_2=text_encoder_2, text_encoder_2=text_encoder_2.to(precision),
tokenizer_2=tokenizer_2, tokenizer_2=tokenizer_2,
unet=unet.to(precision), unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
@ -1639,7 +1647,7 @@ def download_controlnet_from_original_ckpt(
original_config_file: str, original_config_file: str,
image_size: int = 512, image_size: int = 512,
extract_ema: bool = False, extract_ema: bool = False,
precision: torch.dtype = torch.float32, precision: Optional[torch.dtype] = None,
num_in_channels: Optional[int] = None, num_in_channels: Optional[int] = None,
upcast_attention: Optional[bool] = None, upcast_attention: Optional[bool] = None,
device: str = None, device: str = None,
@ -1680,6 +1688,12 @@ def download_controlnet_from_original_ckpt(
while "state_dict" in checkpoint: while "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"] checkpoint = checkpoint["state_dict"]
# use original precision
precision_probing_key = "input_blocks.0.0.bias"
ckpt_precision = checkpoint[precision_probing_key].dtype
logger.debug(f"original controlnet precision = {ckpt_precision}")
precision = precision or ckpt_precision
original_config = OmegaConf.load(original_config_file) original_config = OmegaConf.load(original_config_file)
if num_in_channels is not None: if num_in_channels is not None:
@ -1699,7 +1713,7 @@ def download_controlnet_from_original_ckpt(
cross_attention_dim=cross_attention_dim, cross_attention_dim=cross_attention_dim,
) )
return controlnet return controlnet.to(precision)
def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL: def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL:

View File

@ -187,7 +187,9 @@ class ModelCache(object):
# TODO: lock for no copies on simultaneous calls? # TODO: lock for no copies on simultaneous calls?
cache_entry = self._cached_models.get(key, None) cache_entry = self._cached_models.get(key, None)
if cache_entry is None: if cache_entry is None:
self.logger.info(f"Loading model {model_path}, type {base_model}:{model_type}:{submodel}") self.logger.info(
f"Loading model {model_path}, type {base_model.value}:{model_type.value}:{submodel.value if submodel else ''}"
)
# this will remove older cached models until # this will remove older cached models until
# there is sufficient room to load the requested model # there is sufficient room to load the requested model

View File

@ -426,7 +426,7 @@ class ModelManager(object):
return (model_name, base_model, model_type) return (model_name, base_model, model_type)
def _get_model_cache_path(self, model_path): def _get_model_cache_path(self, model_path):
return self.app_config.models_path / ".cache" / hashlib.md5(str(model_path).encode()).hexdigest() return self.resolve_model_path(Path(".cache") / hashlib.md5(str(model_path).encode()).hexdigest())
@classmethod @classmethod
def initialize_model_config(cls, config_path: Path): def initialize_model_config(cls, config_path: Path):
@ -520,7 +520,7 @@ class ModelManager(object):
model_path = getattr(model_config, submodel_type) model_path = getattr(model_config, submodel_type)
is_submodel_override = True is_submodel_override = True
model_path = self.app_config.root_path / model_path model_path = self.resolve_model_path(model_path)
return model_path, is_submodel_override return model_path, is_submodel_override
def _get_model_config(self, base_model, model_name, model_type) -> ModelConfigBase: def _get_model_config(self, base_model, model_name, model_type) -> ModelConfigBase:
@ -618,7 +618,7 @@ class ModelManager(object):
# expose paths as absolute to help web UI # expose paths as absolute to help web UI
if path := model_dict.get("path"): if path := model_dict.get("path"):
model_dict["path"] = str(self.app_config.root_path / path) model_dict["path"] = str(self.resolve_model_path(path))
models.append(model_dict) models.append(model_dict)
return models return models
@ -655,7 +655,7 @@ class ModelManager(object):
self.cache.uncache_model(cache_id) self.cache.uncache_model(cache_id)
# if model inside invoke models folder - delete files # if model inside invoke models folder - delete files
model_path = self.app_config.root_path / model_cfg.path model_path = self.resolve_model_path(model_cfg.path)
cache_path = self._get_model_cache_path(model_path) cache_path = self._get_model_cache_path(model_path)
if cache_path.exists(): if cache_path.exists():
rmtree(str(cache_path)) rmtree(str(cache_path))
@ -686,10 +686,9 @@ class ModelManager(object):
The returned dict has the same format as the dict returned by The returned dict has the same format as the dict returned by
model_info(). model_info().
""" """
# relativize paths as they go in - this makes it easier to move the root directory around # relativize paths as they go in - this makes it easier to move the models directory around
if path := model_attributes.get("path"): if path := model_attributes.get("path"):
if Path(path).is_relative_to(self.app_config.root_path): model_attributes["path"] = str(self.relative_model_path(Path(path)))
model_attributes["path"] = str(Path(path).relative_to(self.app_config.root_path))
model_class = self._get_implementation(base_model, model_type) model_class = self._get_implementation(base_model, model_type)
model_config = model_class.create_config(**model_attributes) model_config = model_class.create_config(**model_attributes)
@ -747,7 +746,7 @@ class ModelManager(object):
if not model_cfg: if not model_cfg:
raise ModelNotFoundException(f"Unknown model: {model_key}") raise ModelNotFoundException(f"Unknown model: {model_key}")
old_path = self.app_config.root_path / model_cfg.path old_path = self.resolve_model_path(model_cfg.path)
new_name = new_name or model_name new_name = new_name or model_name
new_base = new_base or base_model new_base = new_base or base_model
new_key = self.create_key(new_name, new_base, model_type) new_key = self.create_key(new_name, new_base, model_type)
@ -756,15 +755,15 @@ class ModelManager(object):
# if this is a model file/directory that we manage ourselves, we need to move it # if this is a model file/directory that we manage ourselves, we need to move it
if old_path.is_relative_to(self.app_config.models_path): if old_path.is_relative_to(self.app_config.models_path):
new_path = ( new_path = self.resolve_model_path(
self.app_config.root_path Path(
/ "models" BaseModelType(new_base).value,
/ BaseModelType(new_base).value ModelType(model_type).value,
/ ModelType(model_type).value new_name,
/ new_name )
) )
move(old_path, new_path) move(old_path, new_path)
model_cfg.path = str(new_path.relative_to(self.app_config.root_path)) model_cfg.path = str(new_path.relative_to(self.app_config.models_path))
# clean up caches # clean up caches
old_model_cache = self._get_model_cache_path(old_path) old_model_cache = self._get_model_cache_path(old_path)
@ -814,7 +813,7 @@ class ModelManager(object):
**submodel, **submodel,
) )
checkpoint_path = self.app_config.root_path / info["path"] checkpoint_path = self.app_config.root_path / info["path"]
old_diffusers_path = self.app_config.models_path / model.location old_diffusers_path = self.resolve_model_path(model.location)
new_diffusers_path = ( new_diffusers_path = (
dest_directory or self.app_config.models_path / base_model.value / model_type.value dest_directory or self.app_config.models_path / base_model.value / model_type.value
) / model_name ) / model_name
@ -827,7 +826,7 @@ class ModelManager(object):
info["path"] = ( info["path"] = (
str(new_diffusers_path) str(new_diffusers_path)
if dest_directory if dest_directory
else str(new_diffusers_path.relative_to(self.app_config.root_path)) else str(new_diffusers_path.relative_to(self.app_config.models_path))
) )
info.pop("config") info.pop("config")
@ -842,6 +841,15 @@ class ModelManager(object):
return result return result
def resolve_model_path(self, path: Union[Path, str]) -> Path:
"""return relative paths based on configured models_path"""
return self.app_config.models_path / path
def relative_model_path(self, model_path: Path) -> Path:
if model_path.is_relative_to(self.app_config.models_path):
model_path = model_path.relative_to(self.app_config.models_path)
return model_path
def search_models(self, search_folder): def search_models(self, search_folder):
self.logger.info(f"Finding Models In: {search_folder}") self.logger.info(f"Finding Models In: {search_folder}")
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt") models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
@ -915,10 +923,17 @@ class ModelManager(object):
new_models_found = False new_models_found = False
self.logger.info(f"Scanning {self.app_config.models_path} for new models") self.logger.info(f"Scanning {self.app_config.models_path} for new models")
with Chdir(self.app_config.root_path): with Chdir(self.app_config.models_path):
for model_key, model_config in list(self.models.items()): for model_key, model_config in list(self.models.items()):
model_name, cur_base_model, cur_model_type = self.parse_key(model_key) model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
model_path = self.app_config.root_path.absolute() / model_config.path
# Patch for relative path bug in older models.yaml - paths should not
# be starting with a hard-coded 'models'. This will also fix up
# models.yaml when committed.
if model_config.path.startswith("models"):
model_config.path = str(Path(*Path(model_config.path).parts[1:]))
model_path = self.resolve_model_path(model_config.path).absolute()
if not model_path.exists(): if not model_path.exists():
model_class = self._get_implementation(cur_base_model, cur_model_type) model_class = self._get_implementation(cur_base_model, cur_model_type)
if model_class.save_to_config: if model_class.save_to_config:
@ -937,7 +952,7 @@ class ModelManager(object):
if model_type is not None and cur_model_type != model_type: if model_type is not None and cur_model_type != model_type:
continue continue
model_class = self._get_implementation(cur_base_model, cur_model_type) model_class = self._get_implementation(cur_base_model, cur_model_type)
models_dir = self.app_config.models_path / cur_base_model.value / cur_model_type.value models_dir = self.resolve_model_path(Path(cur_base_model.value, cur_model_type.value))
if not models_dir.exists(): if not models_dir.exists():
continue # TODO: or create all folders? continue # TODO: or create all folders?
@ -951,9 +966,7 @@ class ModelManager(object):
if model_key in self.models: if model_key in self.models:
raise DuplicateModelException(f"Model with key {model_key} added twice") raise DuplicateModelException(f"Model with key {model_key} added twice")
if model_path.is_relative_to(self.app_config.root_path): model_path = self.relative_model_path(model_path)
model_path = model_path.relative_to(self.app_config.root_path)
model_config: ModelConfigBase = model_class.probe_config(str(model_path)) model_config: ModelConfigBase = model_class.probe_config(str(model_path))
self.models[model_key] = model_config self.models[model_key] = model_config
new_models_found = True new_models_found = True
@ -964,12 +977,11 @@ class ModelManager(object):
except NotImplementedError as e: except NotImplementedError as e:
self.logger.warning(e) self.logger.warning(e)
imported_models = self.autoimport() imported_models = self.scan_autoimport_directory()
if (new_models_found or imported_models) and self.config_path: if (new_models_found or imported_models) and self.config_path:
self.commit() self.commit()
def autoimport(self) -> Dict[str, AddModelResult]: def scan_autoimport_directory(self) -> Dict[str, AddModelResult]:
""" """
Scan the autoimport directory (if defined) and import new models, delete defunct models. Scan the autoimport directory (if defined) and import new models, delete defunct models.
""" """
@ -1003,7 +1015,7 @@ class ModelManager(object):
# LS: hacky # LS: hacky
# Patch in the SD VAE from core so that it is available for use by the UI # Patch in the SD VAE from core so that it is available for use by the UI
try: try:
self.heuristic_import({config.root_path / "models/core/convert/sd-vae-ft-mse"}) self.heuristic_import({self.resolve_model_path("core/convert/sd-vae-ft-mse")})
except: except:
pass pass

View File

@ -17,6 +17,7 @@ from .base import (
ModelNotFoundException, ModelNotFoundException,
) )
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
import invokeai.backend.util.logging as logger
class ControlNetModelFormat(str, Enum): class ControlNetModelFormat(str, Enum):
@ -66,7 +67,7 @@ class ControlNetModel(ModelBase):
child_type: Optional[SubModelType] = None, child_type: Optional[SubModelType] = None,
): ):
if child_type is not None: if child_type is not None:
raise Exception("There is no child models in controlnet model") raise Exception("There are no child models in controlnet model")
model = None model = None
for variant in ["fp16", None]: for variant in ["fp16", None]:
@ -124,9 +125,7 @@ class ControlNetModel(ModelBase):
return model_path return model_path
@classmethod
def _convert_controlnet_ckpt_and_cache( def _convert_controlnet_ckpt_and_cache(
cls,
model_path: str, model_path: str,
output_path: str, output_path: str,
base_model: BaseModelType, base_model: BaseModelType,
@ -141,6 +140,7 @@ def _convert_controlnet_ckpt_and_cache(
weights = app_config.root_path / model_path weights = app_config.root_path / model_path
output_path = Path(output_path) output_path = Path(output_path)
logger.info(f"Converting {weights} to diffusers format")
# return cached version if it exists # return cached version if it exists
if output_path.exists(): if output_path.exists():
return output_path return output_path

View File

@ -123,6 +123,7 @@ class StableDiffusion1Model(DiffusersModel):
return _convert_ckpt_and_cache( return _convert_ckpt_and_cache(
version=BaseModelType.StableDiffusion1, version=BaseModelType.StableDiffusion1,
model_config=config, model_config=config,
load_safety_checker=False,
output_path=output_path, output_path=output_path,
) )
else: else:
@ -259,7 +260,7 @@ def _convert_ckpt_and_cache(
""" """
app_config = InvokeAIAppConfig.get_config() app_config = InvokeAIAppConfig.get_config()
weights = app_config.root_path / model_config.path weights = app_config.models_path / model_config.path
config_file = app_config.root_path / model_config.config config_file = app_config.root_path / model_config.config
output_path = Path(output_path) output_path = Path(output_path)

View File

@ -112,7 +112,7 @@ def main():
extras = get_extras() extras = get_extras()
print(f":crossed_fingers: Upgrading to [yellow]{tag if tag else release}[/yellow]") print(f":crossed_fingers: Upgrading to [yellow]{tag or release or branch}[/yellow]")
if release: if release:
cmd = f'pip install "invokeai{extras} @ {INVOKE_AI_SRC}/{release}.zip" --use-pep517 --upgrade' cmd = f'pip install "invokeai{extras} @ {INVOKE_AI_SRC}/{release}.zip" --use-pep517 --upgrade'
elif tag: elif tag:

View File

@ -58,6 +58,9 @@ logger = InvokeAILogger.getLogger()
# from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python # from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python
NOPRINT_TRANS_TABLE = {i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()} NOPRINT_TRANS_TABLE = {i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()}
# maximum number of installed models we can display before overflowing vertically
MAX_OTHER_MODELS = 72
def make_printable(s: str) -> str: def make_printable(s: str) -> str:
"""Replace non-printable characters in a string""" """Replace non-printable characters in a string"""
@ -102,7 +105,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
SingleSelectColumns, SingleSelectColumns,
values=[ values=[
"STARTER MODELS", "STARTER MODELS",
"MORE MODELS", "MAIN MODELS",
"CONTROLNETS", "CONTROLNETS",
"LORA/LYCORIS", "LORA/LYCORIS",
"TEXTUAL INVERSION", "TEXTUAL INVERSION",
@ -153,7 +156,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
BufferBox, BufferBox,
name="Log Messages", name="Log Messages",
editable=False, editable=False,
max_height=8, max_height=15,
) )
self.nextrely += 1 self.nextrely += 1
@ -253,6 +256,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
model_labels = [self.model_labels[x] for x in model_list] model_labels = [self.model_labels[x] for x in model_list]
show_recommended = len(self.installed_models) == 0 show_recommended = len(self.installed_models) == 0
truncated = False
if len(model_list) > 0: if len(model_list) > 0:
max_width = max([len(x) for x in model_labels]) max_width = max([len(x) for x in model_labels])
columns = window_width // (max_width + 8) # 8 characters for "[x] " and padding columns = window_width // (max_width + 8) # 8 characters for "[x] " and padding
@ -271,6 +275,10 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
) )
) )
if len(model_labels) > MAX_OTHER_MODELS:
model_labels = model_labels[0:MAX_OTHER_MODELS]
truncated = True
widgets.update( widgets.update(
models_selected=self.add_widget_intelligent( models_selected=self.add_widget_intelligent(
MultiSelectColumns, MultiSelectColumns,
@ -289,6 +297,16 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
models=model_list, models=model_list,
) )
if truncated:
widgets.update(
warning_message=self.add_widget_intelligent(
npyscreen.FixedText,
value=f"Too many models to display (max={MAX_OTHER_MODELS}). Some are not displayed.",
editable=False,
color="CAUTION",
)
)
self.nextrely += 1 self.nextrely += 1
widgets.update( widgets.update(
download_ids=self.add_widget_intelligent( download_ids=self.add_widget_intelligent(
@ -313,7 +331,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
widgets = self.add_model_widgets( widgets = self.add_model_widgets(
model_type=model_type, model_type=model_type,
window_width=window_width, window_width=window_width,
install_prompt=f"Additional {model_type.value.title()} models already installed.", install_prompt=f"Installed {model_type.value.title()} models. Unchecked models in the InvokeAI root directory will be deleted. Enter URLs, paths or repo_ids to import.",
**kwargs, **kwargs,
) )
@ -399,7 +417,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.ok_button.hidden = True self.ok_button.hidden = True
self.display() self.display()
# for communication with the subprocess # TO DO: Spawn a worker thread, not a subprocess
parent_conn, child_conn = Pipe() parent_conn, child_conn = Pipe()
p = Process( p = Process(
target=process_and_execute, target=process_and_execute,
@ -414,7 +432,6 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.subprocess_connection = parent_conn self.subprocess_connection = parent_conn
self.subprocess = p self.subprocess = p
app.install_selections = InstallSelections() app.install_selections = InstallSelections()
# process_and_execute(app.opt, app.install_selections)
def on_back(self): def on_back(self):
self.parentApp.switchFormPrevious() self.parentApp.switchFormPrevious()
@ -489,8 +506,6 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
# rebuild the form, saving and restoring some of the fields that need to be preserved. # rebuild the form, saving and restoring some of the fields that need to be preserved.
saved_messages = self.monitor.entry_widget.values saved_messages = self.monitor.entry_widget.values
# autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value)
# autoscan = self.pipeline_models['autoscan_on_startup'].value
app.main_form = app.addForm( app.main_form = app.addForm(
"MAIN", "MAIN",
@ -544,12 +559,6 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
if downloads := section.get("download_ids"): if downloads := section.get("download_ids"):
selections.install_models.extend(downloads.value.split()) selections.install_models.extend(downloads.value.split())
# load directory and whether to scan on startup
# if self.parentApp.autoload_pending:
# selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value)
# self.parentApp.autoload_pending = False
# selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value
class AddModelApplication(npyscreen.NPSAppManaged): class AddModelApplication(npyscreen.NPSAppManaged):
def __init__(self, opt): def __init__(self, opt):
@ -639,6 +648,11 @@ def process_and_execute(
selections: InstallSelections, selections: InstallSelections,
conn_out: Connection = None, conn_out: Connection = None,
): ):
# need to reinitialize config in subprocess
config = InvokeAIAppConfig.get_config()
args = ["--root", opt.root] if opt.root else []
config.parse_args(args)
# set up so that stderr is sent to conn_out # set up so that stderr is sent to conn_out
if conn_out: if conn_out:
translator = StderrToMessage(conn_out) translator = StderrToMessage(conn_out)
@ -656,38 +670,11 @@ def process_and_execute(
conn_out.close() conn_out.close()
def do_listings(opt) -> bool:
"""List installed models of various sorts, and return
True if any were requested."""
model_manager = ModelManager(config.model_conf_path)
if opt.list_models == "diffusers":
print("Diffuser models:")
model_manager.print_models()
elif opt.list_models == "controlnets":
print("Installed Controlnet Models:")
cnm = model_manager.list_controlnet_models()
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]), prefix=" "))
elif opt.list_models == "loras":
print("Installed LoRA/LyCORIS Models:")
cnm = model_manager.list_lora_models()
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]), prefix=" "))
elif opt.list_models == "tis":
print("Installed Textual Inversion Embeddings:")
cnm = model_manager.list_ti_models()
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]), prefix=" "))
else:
return False
return True
# -------------------------------------------------------- # --------------------------------------------------------
def select_and_download_models(opt: Namespace): def select_and_download_models(opt: Namespace):
precision = "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device())) precision = "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device()))
config.precision = precision config.precision = precision
helper = lambda x: ask_user_for_prediction_type(x) helper = lambda x: ask_user_for_prediction_type(x)
# if do_listings(opt):
# pass
installer = ModelInstall(config, prediction_type_helper=helper) installer = ModelInstall(config, prediction_type_helper=helper)
if opt.list_models: if opt.list_models:
installer.list_models(opt.list_models) installer.list_models(opt.list_models)
@ -706,8 +693,6 @@ def select_and_download_models(opt: Namespace):
# needed to support the probe() method running under a subprocess # needed to support the probe() method running under a subprocess
torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_start_method("spawn")
# the third argument is needed in the Windows 11 environment in
# order to launch and resize a console window running this program
set_min_terminal_size(MIN_COLS, MIN_LINES) set_min_terminal_size(MIN_COLS, MIN_LINES)
installApp = AddModelApplication(opt) installApp = AddModelApplication(opt)
try: try:

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -12,7 +12,7 @@
margin: 0; margin: 0;
} }
</style> </style>
<script type="module" crossorigin src="./assets/index-bad7ff83.js"></script> <script type="module" crossorigin src="./assets/index-9bb68e3a.js"></script>
</head> </head>
<body dir="ltr"> <body dir="ltr">

View File

@ -1 +1 @@
__version__ = "3.0.1" __version__ = "3.0.1post3"