fix(events): fix denoise progress percentage

- Restore calculation of step percentage but in the backend instead of client
- Simplify signatures for denoise progress event callbacks
- Clean up `step_callback.py` (types, do not recreate constant matrix on every step, formatting)
This commit is contained in:
psychedelicious 2024-04-01 18:16:33 +11:00
parent ec4f10aed3
commit 0f733c42fc
3 changed files with 59 additions and 65 deletions

View File

@ -32,6 +32,7 @@ from invokeai.app.services.events.events_common import (
SessionCompleteEvent,
SessionStartedEvent,
)
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
@ -64,12 +65,11 @@ class EventServiceBase:
self,
queue_item: "SessionQueueItem",
invocation: "BaseInvocation",
step: int,
total_steps: int,
intermediate_state: PipelineIntermediateState,
progress_image: "ProgressImage",
) -> None:
"""Emitted at each step during denoising of an invocation."""
self.dispatch(InvocationDenoiseProgressEvent.build(queue_item, invocation, step, total_steps, progress_image))
self.dispatch(InvocationDenoiseProgressEvent.build(queue_item, invocation, intermediate_state, progress_image))
def emit_invocation_complete(
self, queue_item: "SessionQueueItem", invocation: "BaseInvocation", output: "BaseInvocationOutput"

View File

@ -1,3 +1,4 @@
from math import floor
from typing import TYPE_CHECKING, Any, Coroutine, Optional, Protocol, TypeAlias, TypeVar
from fastapi_events.handlers.local import local_handler
@ -14,6 +15,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
)
from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
if TYPE_CHECKING:
from invokeai.app.services.download.download_base import DownloadJob
@ -68,7 +70,8 @@ def register_events(events: set[type[TEvent]], func: FastAPIEventFunc) -> None:
:param func: The function to handle the events
"""
for event in events:
local_handler.register(event_name=event.__event_name__, _func=func)
assert hasattr(event, "__event_name__")
local_handler.register(event_name=event.__event_name__, _func=func) # pyright: ignore [reportUnknownMemberType, reportUnknownArgumentType, reportAttributeAccessIssue]
class QueueEventBase(EventBase):
@ -128,16 +131,20 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
progress_image: ProgressImage = Field(description="The progress image sent at each step during processing")
step: int = Field(description="The current step of the invocation")
total_steps: int = Field(description="The total number of steps in the invocation")
order: int = Field(description="The order of the invocation in the session")
percentage: float = Field(description="The percentage of completion of the invocation")
@classmethod
def build(
cls,
queue_item: SessionQueueItem,
invocation: BaseInvocation,
step: int,
total_steps: int,
intermediate_state: PipelineIntermediateState,
progress_image: ProgressImage,
) -> "InvocationDenoiseProgressEvent":
step = intermediate_state.step
total_steps = intermediate_state.total_steps
order = intermediate_state.order
return cls(
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
@ -149,8 +156,20 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
progress_image=progress_image,
step=step,
total_steps=total_steps,
order=order,
percentage=cls.calc_percentage(step, total_steps, order),
)
@staticmethod
def calc_percentage(step: int, total_steps: int, scheduler_order: float) -> float:
"""Calculate the percentage of completion of denoising."""
if total_steps == 0:
return 0.0
if scheduler_order == 2:
return floor((step + 1 + 1) / 2) / floor((total_steps + 1) / 2)
# order == 1
return (step + 1 + 1) / (total_steps + 1)
class InvocationCompleteEvent(InvocationEventBase):
"""Event model for invocation_complete"""

View File

@ -1,4 +1,4 @@
from typing import TYPE_CHECKING, Callable
from typing import TYPE_CHECKING, Callable, Optional
import torch
from PIL import Image
@ -13,8 +13,36 @@ if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.shared.invocation_context import InvocationContextData
# fast latents preview matrix for sdxl
# generated by @StAlKeR7779
SDXL_LATENT_RGB_FACTORS = [
# R G B
[0.3816, 0.4930, 0.5320],
[-0.3753, 0.1631, 0.1739],
[0.1770, 0.3588, -0.2048],
[-0.4350, -0.2644, -0.4289],
]
SDXL_SMOOTH_MATRIX = [
[0.0358, 0.0964, 0.0358],
[0.0964, 0.4711, 0.0964],
[0.0358, 0.0964, 0.0358],
]
def sample_to_lowres_estimated_image(samples, latent_rgb_factors, smooth_matrix=None):
# origingally adapted from code by @erucipe and @keturn here:
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
# these updated numbers for v1.5 are from @torridgristle
SD1_5_LATENT_RGB_FACTORS = [
# R G B
[0.3444, 0.1385, 0.0670], # L1
[0.1247, 0.4027, 0.1494], # L2
[-0.3192, 0.2513, 0.2103], # L3
[-0.1307, -0.1874, -0.7445], # L4
]
def sample_to_lowres_estimated_image(
samples: torch.Tensor, latent_rgb_factors: torch.Tensor, smooth_matrix: Optional[torch.Tensor] = None
):
latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors
if smooth_matrix is not None:
@ -47,64 +75,12 @@ def stable_diffusion_step_callback(
else:
sample = intermediate_state.latents
# TODO: This does not seem to be needed any more?
# # txt2img provides a Tensor in the step_callback
# # img2img provides a PipelineIntermediateState
# if isinstance(sample, PipelineIntermediateState):
# # this was an img2img
# print('img2img')
# latents = sample.latents
# step = sample.step
# else:
# print('txt2img')
# latents = sample
# step = intermediate_state.step
# TODO: only output a preview image when requested
if base_model in [BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner]:
# fast latents preview matrix for sdxl
# generated by @StAlKeR7779
sdxl_latent_rgb_factors = torch.tensor(
[
# R G B
[0.3816, 0.4930, 0.5320],
[-0.3753, 0.1631, 0.1739],
[0.1770, 0.3588, -0.2048],
[-0.4350, -0.2644, -0.4289],
],
dtype=sample.dtype,
device=sample.device,
)
sdxl_smooth_matrix = torch.tensor(
[
[0.0358, 0.0964, 0.0358],
[0.0964, 0.4711, 0.0964],
[0.0358, 0.0964, 0.0358],
],
dtype=sample.dtype,
device=sample.device,
)
sdxl_latent_rgb_factors = torch.tensor(SDXL_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
sdxl_smooth_matrix = torch.tensor(SDXL_SMOOTH_MATRIX, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix)
else:
# origingally adapted from code by @erucipe and @keturn here:
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
# these updated numbers for v1.5 are from @torridgristle
v1_5_latent_rgb_factors = torch.tensor(
[
# R G B
[0.3444, 0.1385, 0.0670], # L1
[0.1247, 0.4027, 0.1494], # L2
[-0.3192, 0.2513, 0.2103], # L3
[-0.1307, -0.1874, -0.7445], # L4
],
dtype=sample.dtype,
device=sample.device,
)
v1_5_latent_rgb_factors = torch.tensor(SD1_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors)
(width, height) = image.size
@ -116,7 +92,6 @@ def stable_diffusion_step_callback(
events.emit_invocation_denoise_progress(
context_data.queue_item,
context_data.invocation,
intermediate_state.step,
intermediate_state.total_steps * intermediate_state.order,
intermediate_state,
ProgressImage(dataURL=dataURL, width=width, height=height),
)