Merge branch 'development' of github.com:pbaylies/stable-diffusion into pbaylies-development

This commit is contained in:
Lincoln Stein 2022-10-04 22:31:11 -04:00
commit 0f9bff66bc
10 changed files with 16 additions and 38 deletions

View File

@ -799,9 +799,6 @@ class InvokeAIWebServer:
rfc_dict['init_image_path'] = parameters[ rfc_dict['init_image_path'] = parameters[
'init_img' 'init_img'
] # TODO: Noncompliant ] # TODO: Noncompliant
rfc_dict[
'sampler'
] = 'ddim' # TODO: FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
if 'init_mask' in parameters: if 'init_mask' in parameters:
rfc_dict['mask_hash'] = calculate_init_img_hash( rfc_dict['mask_hash'] = calculate_init_img_hash(
self.get_image_path_from_url(parameters['init_mask']) self.get_image_path_from_url(parameters['init_mask'])

View File

Before

Width:  |  Height:  |  Size: 1.3 MiB

After

Width:  |  Height:  |  Size: 1.3 MiB

View File

@ -2,24 +2,22 @@
## Run ## Run
- `python backend/server.py` serves both frontend and backend at http://localhost:9090 - `python scripts/dream.py --web` serves both frontend and backend at
http://localhost:9090
## Evironment ## Evironment
Install [node](https://nodejs.org/en/download/) (includes npm) and optionally Install [node](https://nodejs.org/en/download/) (includes npm) and optionally
[yarn](https://yarnpkg.com/getting-started/install). [yarn](https://yarnpkg.com/getting-started/install).
From `frontend/` run `npm install` / `yarn install` to install the frontend packages. From `frontend/` run `npm install` / `yarn install` to install the frontend
packages.
## Dev ## Dev
1. From `frontend/`, run `npm dev` / `yarn dev` to start the dev server. 1. From `frontend/`, run `npm dev` / `yarn dev` to start the dev server.
2. Note the address it starts up on (probably `http://localhost:5173/`). 2. Run `python scripts/dream.py --web`.
3. Edit `backend/server.py`'s `additional_allowed_origins` to include this address, e.g. 3. Navigate to the dev server address e.g. `http://localhost:5173/`.
`additional_allowed_origins = ['http://localhost:5173']`.
4. Leaving the dev server running, open a new terminal and go to the project root.
5. Run `python backend/server.py`.
6. Navigate to the dev server address e.g. `http://localhost:5173/`.
To build for dev: `npm build-dev` / `yarn build-dev` To build for dev: `npm build-dev` / `yarn build-dev`
@ -28,10 +26,3 @@ To build for production: `npm build` / `yarn build`
## TODO ## TODO
- Search repo for "TODO" - Search repo for "TODO"
- My one gripe with Chakra: no way to disable all animations right now and drop the dependence on
`framer-motion`. I would prefer to save the ~30kb on bundle and have zero animations. This is on
the Chakra roadmap. See https://github.com/chakra-ui/chakra-ui/pull/6368 for last discussion on
this. Need to check in on this issue periodically.
- Mobile friendly layout
- Proper image gallery/viewer/manager
- Help tooltips and such

File diff suppressed because one or more lines are too long

View File

@ -6,7 +6,7 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>InvokeAI - A Stable Diffusion Toolkit</title> <title>InvokeAI - A Stable Diffusion Toolkit</title>
<link rel="shortcut icon" type="icon" href="/assets/favicon.0d253ced.ico" /> <link rel="shortcut icon" type="icon" href="/assets/favicon.0d253ced.ico" />
<script type="module" crossorigin src="/assets/index.045a5291.js"></script> <script type="module" crossorigin src="/assets/index.d9916e7a.js"></script>
<link rel="stylesheet" href="/assets/index.853a336f.css"> <link rel="stylesheet" href="/assets/index.853a336f.css">
</head> </head>

View File

@ -7,8 +7,6 @@ export const SAMPLERS: Array<string> = [
'k_lms', 'k_lms',
'k_dpm_2', 'k_dpm_2',
'k_dpm_2_a', 'k_dpm_2_a',
'k_dpm_fast',
'k_dpm_adaptive',
'k_euler', 'k_euler',
'k_euler_a', 'k_euler_a',
'k_heun', 'k_heun',

View File

@ -189,7 +189,6 @@ class Args(object):
switches.append(f'--perlin {a["perlin"]}') switches.append(f'--perlin {a["perlin"]}')
if a['threshold'] > 0: if a['threshold'] > 0:
switches.append(f'--threshold {a["threshold"]}') switches.append(f'--threshold {a["threshold"]}')
if a['grid']: if a['grid']:
switches.append('--grid') switches.append('--grid')
if a['seamless']: if a['seamless']:

View File

@ -32,7 +32,7 @@ class Txt2Img(Generator):
if self.free_gpu_mem and self.model.model.device != self.model.device: if self.free_gpu_mem and self.model.model.device != self.model.device:
self.model.model.to(self.model.device) self.model.model.to(self.model.device)
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=True) sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
samples, _ = sampler.sample( samples, _ = sampler.sample(
batch_size = 1, batch_size = 1,

View File

@ -79,17 +79,9 @@ class KSampler(Sampler):
ddim_eta=0.0, ddim_eta=0.0,
verbose=False, verbose=False,
) )
self.model = outer_model self.model = outer_model
self.ddim_num_steps = ddim_num_steps self.ddim_num_steps = ddim_num_steps
sigmas = K.sampling.get_sigmas_karras( sigmas = self.model.get_sigmas(ddim_num_steps)
n=ddim_num_steps,
sigma_min=self.model.sigmas[0].item(),
sigma_max=self.model.sigmas[-1].item(),
rho=7.,
device=self.device,
# Birch-san recommends this, but it doesn't match the call signature in his branch of k-diffusion
# concat_zero=False
)
self.sigmas = sigmas self.sigmas = sigmas
# ALERT: We are completely overriding the sample() method in the base class, which # ALERT: We are completely overriding the sample() method in the base class, which
@ -133,7 +125,8 @@ class KSampler(Sampler):
# sigmas = self.model.get_sigmas(S) # sigmas = self.model.get_sigmas(S)
# sigmas are now set up in make_schedule - we take the last steps items # sigmas are now set up in make_schedule - we take the last steps items
sigmas = self.sigmas[-S:] sigmas = self.sigmas[-S-1:]
if x_T is not None: if x_T is not None:
x = x_T * sigmas[0] x = x_T * sigmas[0]
else: else:
@ -147,7 +140,7 @@ class KSampler(Sampler):
'uncond': unconditional_conditioning, 'uncond': unconditional_conditioning,
'cond_scale': unconditional_guidance_scale, 'cond_scale': unconditional_guidance_scale,
} }
print(f'>> Sampling with k__{self.schedule}') print(f'>> Sampling with k_{self.schedule}')
return ( return (
K.sampling.__dict__[f'sample_{self.schedule}']( K.sampling.__dict__[f'sample_{self.schedule}'](
model_wrap_cfg, x, sigmas, extra_args=extra_args, model_wrap_cfg, x, sigmas, extra_args=extra_args,

View File

@ -218,7 +218,7 @@ def rand_perlin_2d(shape, res, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
delta = (res[0] / shape[0], res[1] / shape[1]) delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1]) d = (shape[0] // res[0], shape[1] // res[1])
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1])), dim = -1) % 1 grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1) % 1
angles = 2*math.pi*torch.rand(res[0]+1, res[1]+1) angles = 2*math.pi*torch.rand(res[0]+1, res[1]+1)
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1) gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1)
@ -230,4 +230,4 @@ def rand_perlin_2d(shape, res, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
n01 = dot(tile_grads([0, -1],[1, None]), [0, -1]) n01 = dot(tile_grads([0, -1],[1, None]), [0, -1])
n11 = dot(tile_grads([1, None], [1, None]), [-1,-1]) n11 = dot(tile_grads([1, None], [1, None]), [-1,-1])
t = fade(grid[:shape[0], :shape[1]]) t = fade(grid[:shape[0], :shape[1]])
return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]) return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1])