diff --git a/invokeai/app/invocations/latent.py b/invokeai/app/invocations/latent.py
index 5229ace95f..91320173ed 100644
--- a/invokeai/app/invocations/latent.py
+++ b/invokeai/app/invocations/latent.py
@@ -1,31 +1,32 @@
 # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
 
-import random
 from typing import Literal, Optional, Union
+
+import diffusers
 import einops
-from pydantic import BaseModel, Field
 import torch
+from diffusers import DiffusionPipeline
+from diffusers.schedulers import SchedulerMixin as Scheduler
+from pydantic import BaseModel, Field
 
+from invokeai.app.models.exceptions import CanceledException
 from invokeai.app.util.misc import SEED_MAX, get_random_seed
-
 from invokeai.app.util.step_callback import stable_diffusion_step_callback
 
-from ...backend.model_management.model_manager import ModelManager
-from ...backend.util.devices import choose_torch_device, torch_dtype
-from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
 from ...backend.image_util.seamless import configure_model_padding
-from ...backend.prompting.conditioning import get_uc_and_c_and_ec
-from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
-from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
-import numpy as np
-from ..services.image_storage import ImageType
-from .baseinvocation import BaseInvocation, InvocationContext
-from .image import ImageField, ImageOutput, build_image_output
-from .compel import ConditioningField
+from ...backend.model_management.model_manager import SDModelType
 from ...backend.stable_diffusion import PipelineIntermediateState
-from diffusers.schedulers import SchedulerMixin as Scheduler
-import diffusers
-from diffusers import DiffusionPipeline
+from ...backend.stable_diffusion.diffusers_pipeline import (
+    ConditioningData, StableDiffusionGeneratorPipeline,
+    image_resized_to_grid_as_tensor)
+from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
+    PostprocessingSettings
+from ...backend.util.devices import choose_torch_device, torch_dtype
+from ..services.image_storage import ImageType
+from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
+                             InvocationConfig, InvocationContext)
+from .compel import ConditioningField
+from .image import ImageField, ImageOutput, build_image_output
 
 
 class LatentsField(BaseModel):
@@ -103,6 +104,37 @@ def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_c
     #     x = (1 - self.perlin) * x + self.perlin * perlin_noise
     return x
 
+class ModelChooser:
+    def choose_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
+
+        if context.services.queue.is_canceled(context.graph_execution_state_id):
+            raise CanceledException
+
+        # Get the source node id (we are invoking the prepared node)
+        graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
+        source_node_id = graph_execution_state.prepared_source_mapping[self.id]
+
+        context.services.events.emit_model_load_started(
+            graph_execution_state_id=context.graph_execution_state_id,
+            node=self.dict(),
+            source_node_id=source_node_id,
+            model_name=self.model,
+            submodel=SDModelType.diffusers
+        )
+
+        model_manager = context.services.model_manager
+        model_info = model_manager.get_model(self.model)
+        model_ctx: StableDiffusionGeneratorPipeline = model_info.context
+        context.services.events.emit_model_load_completed (
+            graph_execution_state_id=context.graph_execution_state_id,
+            node=self.dict(),
+            source_node_id=source_node_id,
+            model_name=self.model,
+            submodel=SDModelType.diffusers,
+            model_info=model_info
+        )
+
+        return model_ctx
 
 class NoiseInvocation(BaseInvocation):
     """Generates latent noise."""
@@ -135,7 +167,7 @@ class NoiseInvocation(BaseInvocation):
 
 
 # Text to image
-class TextToLatentsInvocation(BaseInvocation):
+class TextToLatentsInvocation(BaseInvocation, ModelChooser):
     """Generates latents from conditionings."""
 
     type: Literal["t2l"] = "t2l"
@@ -175,32 +207,6 @@ class TextToLatentsInvocation(BaseInvocation):
             source_node_id=source_node_id,
         )
 
-    def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
-        model_info = model_manager.get_model(self.model)
-        model_name = model_info.name
-        model_hash = model_info.hash
-        model_ctx: StableDiffusionGeneratorPipeline = model_info.context
-        with model_ctx as model:
-            model.scheduler = get_scheduler(
-                model=model,
-                scheduler_name=self.scheduler
-            )
-
-            if isinstance(model, DiffusionPipeline):
-                for component in [model.unet, model.vae]:
-                    configure_model_padding(component,
-                                            self.seamless,
-                                            self.seamless_axes
-                                            )
-            else:
-                configure_model_padding(model,
-                                        self.seamless,
-                                        self.seamless_axes
-                                        )
-
-        return model_ctx
-
-
     def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
         c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
         uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
@@ -230,8 +236,8 @@ class TextToLatentsInvocation(BaseInvocation):
         def step_callback(state: PipelineIntermediateState):
             self.dispatch_progress(context, source_node_id, state)
             
-        model = self.get_model(context.services.model_manager)
-        conditioning_data = self.get_conditioning_data(context, model)
+        with self.choose_model(context) as model:
+            conditioning_data = self.get_conditioning_data(context, model)
 
         # TODO: Verify the noise is the right size
         result_latents, result_attention_map_saver = model.latents_from_embeddings(
@@ -251,8 +257,30 @@ class TextToLatentsInvocation(BaseInvocation):
             latents=LatentsField(latents_name=name)
         )
 
+    def choose_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
+        model_ctx = super().choose_model(context)
 
-class LatentsToLatentsInvocation(TextToLatentsInvocation):
+        with model_ctx as model:
+            model.scheduler = get_scheduler(
+                model=model,
+                scheduler_name=self.scheduler
+            )
+
+            if isinstance(model, DiffusionPipeline):
+                for component in [model.unet, model.vae]:
+                    configure_model_padding(component,
+                                            self.seamless,
+                                            self.seamless_axes
+                                            )
+            else:
+                configure_model_padding(model,
+                                        self.seamless,
+                                        self.seamless_axes
+                                        )
+        return model_ctx
+
+
+class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelChooser):
     """Generates latents using latents as base image."""
 
     type: Literal["l2l"] = "l2l"
@@ -283,7 +311,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
         def step_callback(state: PipelineIntermediateState):
             self.dispatch_progress(context, source_node_id, state)
 
-        with self.get_model(context.services.model_manager) as model:
+        with self.choose_model(context) as model:
             conditioning_data = self.get_conditioning_data(model)
 
             # TODO: Verify the noise is the right size
@@ -318,7 +346,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
 
 
 # Latent to image
-class LatentsToImageInvocation(BaseInvocation):
+class LatentsToImageInvocation(BaseInvocation, ModelChooser):
     """Generates an image from latents."""
 
     type: Literal["l2i"] = "l2i"
@@ -343,9 +371,7 @@ class LatentsToImageInvocation(BaseInvocation):
         latents = context.services.latents.get(self.latents.latents_name)
 
         # TODO: this only really needs the vae
-        model_info = choose_model(context.services.model_manager, self.model)
-        
-        with model_info.context as model:
+        with self.choose_model(context) as model:
             with torch.inference_mode():
                 np_image = model.decode_latents(latents)
                 image = model.numpy_to_pil(np_image)[0]
@@ -432,7 +458,7 @@ class ScaleLatentsInvocation(BaseInvocation):
         return LatentsOutput(latents=LatentsField(latents_name=name))
 
 
-class ImageToLatentsInvocation(BaseInvocation):
+class ImageToLatentsInvocation(BaseInvocation, ModelChooser):
     """Encodes an image into latents."""
 
     type: Literal["i2l"] = "i2l"
@@ -457,7 +483,7 @@ class ImageToLatentsInvocation(BaseInvocation):
         )
 
         # TODO: this only really needs the vae
-        model_info = choose_model(context.services.model_manager, self.model)
+        model_info = self.choose_model(context)
         model: StableDiffusionGeneratorPipeline = model_info["model"]
 
         image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
@@ -474,3 +500,4 @@ class ImageToLatentsInvocation(BaseInvocation):
         name = f"{context.graph_execution_state_id}__{self.id}"
         context.services.latents.set(name, latents)
         return LatentsOutput(latents=LatentsField(latents_name=name))
+
diff --git a/invokeai/app/services/events.py b/invokeai/app/services/events.py
index a25549dfc5..dda5557315 100644
--- a/invokeai/app/services/events.py
+++ b/invokeai/app/services/events.py
@@ -4,6 +4,7 @@ from typing import Any
 from invokeai.app.api.models.images import ProgressImage
 from invokeai.app.util.misc import get_timestamp
 from invokeai.app.services.model_manager_service import SDModelType, SDModelInfo
+from invokeai.app.models.exceptions import CanceledException
 
 class EventServiceBase:
     session_event: str = "session_event"
diff --git a/invokeai/app/services/model_manager_service.py b/invokeai/app/services/model_manager_service.py
index e9c959d5e0..3e245bc47e 100644
--- a/invokeai/app/services/model_manager_service.py
+++ b/invokeai/app/services/model_manager_service.py
@@ -4,6 +4,7 @@
 from abc import ABC, abstractmethod
 from pathlib import Path
 from typing import Union, Callable, types
+from dataclasses import dataclass
 
 from invokeai.backend.model_management.model_manager import (
     ModelManager,
@@ -15,6 +16,11 @@ from invokeai.backend.model_management.model_manager import (
 from ...backend import Args,Globals # this must go when pr 3340 merged
 from ...backend.util import choose_precision, choose_torch_device
 
+@dataclass
+class LastUsedModel:
+    model_name: str
+    model_type: SDModelType
+
 class ModelManagerServiceBase(ABC):
     """Responsible for managing models on disk and in memory"""
 
@@ -273,6 +279,22 @@ class ModelManagerService(ModelManagerServiceBase):
         Retrieve the indicated model. submodel can be used to get a
         part (such as the vae) of a diffusers mode.
         """
+        
+        # Temporary hack here: we remember the last model fetched
+        # so that when executing a graph, the first node called gets
+        # to set default model for subsequent nodes in the event that
+        # they do not set the model explicitly. This should be
+        # displaced by model loader mechanism.
+        # This is to work around lack of model loader at current time,
+        # which was causing inconsistent model usage throughout graph.
+        if not model_name:
+            self.logger.debug('No model name provided, defaulting to last loaded model')
+            model_name = LastUsedModel.name
+            model_type = model_type or LastUsedModel.type
+        else:
+            LastUsedModel.name = model_name
+            LastUsedModel.model_type = model_type
+        
         return self.mgr.get_model(
             model_name,
             model_type,