mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
add model loading support for SDXL
This commit is contained in:
parent
11d78ad75f
commit
130249a2dd
@ -38,6 +38,8 @@ class ModelProbe(object):
|
||||
|
||||
CLASS2TYPE = {
|
||||
'StableDiffusionPipeline' : ModelType.Main,
|
||||
'StableDiffusionXLPipeline' : ModelType.Main,
|
||||
'StableDiffusionXLImg2ImgPipeline' : ModelType.Main,
|
||||
'AutoencoderKL' : ModelType.Vae,
|
||||
'ControlNetModel' : ModelType.ControlNet,
|
||||
}
|
||||
@ -99,9 +101,10 @@ class ModelProbe(object):
|
||||
upcast_attention = (base_type==BaseModelType.StableDiffusion2 \
|
||||
and prediction_type==SchedulerPredictionType.VPrediction),
|
||||
format = format,
|
||||
image_size = 768 if (base_type==BaseModelType.StableDiffusion2 \
|
||||
and prediction_type==SchedulerPredictionType.VPrediction \
|
||||
) else 512,
|
||||
image_size = 1024 if (base_type==BaseModelType.StableDiffusionXL) else \
|
||||
768 if (base_type==BaseModelType.StableDiffusion2 \
|
||||
and prediction_type==SchedulerPredictionType.VPrediction ) else \
|
||||
512
|
||||
)
|
||||
except Exception:
|
||||
raise
|
||||
@ -248,6 +251,9 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
return BaseModelType.StableDiffusion1
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
|
||||
return BaseModelType.StableDiffusion2
|
||||
# TODO: Verify that this is correct! Need an XL checkpoint file for this.
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 2048:
|
||||
return BaseModelType.StableDiffusionXL
|
||||
raise Exception("Cannot determine base type")
|
||||
|
||||
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
||||
@ -360,6 +366,8 @@ class PipelineFolderProbe(FolderProbeBase):
|
||||
return BaseModelType.StableDiffusion1
|
||||
elif unet_conf['cross_attention_dim'] == 1024:
|
||||
return BaseModelType.StableDiffusion2
|
||||
elif unet_conf['cross_attention_dim'] in {1280,2048}:
|
||||
return BaseModelType.StableDiffusionXL
|
||||
else:
|
||||
raise ValueError(f'Unknown base model for {self.folder_path}')
|
||||
|
||||
|
@ -3,7 +3,7 @@ from enum import Enum
|
||||
from pydantic import BaseModel
|
||||
from typing import Literal, get_origin
|
||||
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException
|
||||
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
|
||||
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model, StableDiffusionXLModel
|
||||
from .vae import VaeModel
|
||||
from .lora import LoRAModel
|
||||
from .controlnet import ControlNetModel # TODO:
|
||||
@ -24,6 +24,14 @@ MODEL_CLASSES = {
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
},
|
||||
BaseModelType.StableDiffusionXL: {
|
||||
ModelType.Main: StableDiffusionXLModel,
|
||||
ModelType.Vae: VaeModel,
|
||||
# will not work until support written
|
||||
ModelType.Lora: LoRAModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
},
|
||||
#BaseModelType.Kandinsky2_1: {
|
||||
# ModelType.Main: Kandinsky2_1Model,
|
||||
# ModelType.MoVQ: MoVQModel,
|
||||
|
@ -21,6 +21,7 @@ class ModelNotFoundException(Exception):
|
||||
class BaseModelType(str, Enum):
|
||||
StableDiffusion1 = "sd-1"
|
||||
StableDiffusion2 = "sd-2"
|
||||
StableDiffusionXL = "sdxl"
|
||||
#Kandinsky2_1 = "kandinsky-2.1"
|
||||
|
||||
class ModelType(str, Enum):
|
||||
@ -33,7 +34,9 @@ class ModelType(str, Enum):
|
||||
class SubModelType(str, Enum):
|
||||
UNet = "unet"
|
||||
TextEncoder = "text_encoder"
|
||||
TextEncoder2 = "text_encoder_2"
|
||||
Tokenizer = "tokenizer"
|
||||
Tokenizer2 = "tokenizer_2"
|
||||
Vae = "vae"
|
||||
Scheduler = "scheduler"
|
||||
SafetyChecker = "safety_checker"
|
||||
|
@ -222,6 +222,105 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
else:
|
||||
return model_path
|
||||
|
||||
class StableDiffusionXLModelFormat(str, Enum):
|
||||
Checkpoint = "checkpoint"
|
||||
Diffusers = "diffusers"
|
||||
|
||||
class StableDiffusionXLModel(DiffusersModel):
|
||||
|
||||
# TODO: check that configs overwriten properly
|
||||
class DiffusersConfig(ModelConfigBase):
|
||||
model_format: Literal[StableDiffusionXLModelFormat.Diffusers]
|
||||
vae: Optional[str] = Field(None)
|
||||
variant: ModelVariantType
|
||||
|
||||
class CheckpointConfig(ModelConfigBase):
|
||||
model_format: Literal[StableDiffusionXLModelFormat.Checkpoint]
|
||||
vae: Optional[str] = Field(None)
|
||||
config: str
|
||||
variant: ModelVariantType
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert base_model == BaseModelType.StableDiffusionXL
|
||||
assert model_type == ModelType.Main
|
||||
super().__init__(
|
||||
model_path=model_path,
|
||||
base_model=BaseModelType.StableDiffusionXL,
|
||||
model_type=ModelType.Main,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def probe_config(cls, path: str, **kwargs):
|
||||
model_format = cls.detect_format(path)
|
||||
ckpt_config_path = kwargs.get("config", None)
|
||||
if model_format == StableDiffusionXLModelFormat.Checkpoint:
|
||||
if ckpt_config_path:
|
||||
ckpt_config = OmegaConf.load(ckpt_config_path)
|
||||
ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
|
||||
|
||||
else:
|
||||
checkpoint = read_checkpoint_meta(path)
|
||||
checkpoint = checkpoint.get('state_dict', checkpoint)
|
||||
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
|
||||
|
||||
elif model_format == StableDiffusionXLModelFormat.Diffusers:
|
||||
unet_config_path = os.path.join(path, "unet", "config.json")
|
||||
if os.path.exists(unet_config_path):
|
||||
with open(unet_config_path, "r") as f:
|
||||
unet_config = json.loads(f.read())
|
||||
in_channels = unet_config['in_channels']
|
||||
|
||||
else:
|
||||
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
|
||||
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown stable diffusion 2.* format: {model_format}")
|
||||
|
||||
if in_channels == 9:
|
||||
variant = ModelVariantType.Inpaint
|
||||
elif in_channels == 5:
|
||||
variant = ModelVariantType.Depth
|
||||
elif in_channels == 4:
|
||||
variant = ModelVariantType.Normal
|
||||
else:
|
||||
raise Exception("Unkown stable diffusion 2.* model format")
|
||||
|
||||
if ckpt_config_path is None:
|
||||
ckpt_config_path = _select_ckpt_config(BaseModelType.StableDiffusionXL, variant)
|
||||
|
||||
return cls.create_config(
|
||||
path=path,
|
||||
model_format=model_format,
|
||||
|
||||
config=ckpt_config_path,
|
||||
variant=variant,
|
||||
)
|
||||
|
||||
@classproperty
|
||||
def save_to_config(cls) -> bool:
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, model_path: str):
|
||||
if os.path.isdir(model_path):
|
||||
return StableDiffusionXLModelFormat.Diffusers
|
||||
else:
|
||||
return StableDiffusionXLModelFormat.Checkpoint
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
cls,
|
||||
model_path: str,
|
||||
output_path: str,
|
||||
config: ModelConfigBase,
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
if isinstance(config, cls.CheckpointConfig):
|
||||
raise NotImplementedError('conversion of SDXL checkpoint models to diffusers format is not yet supported')
|
||||
else:
|
||||
return model_path
|
||||
|
||||
|
||||
def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
|
||||
ckpt_configs = {
|
||||
BaseModelType.StableDiffusion1: {
|
||||
@ -232,6 +331,12 @@ def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
|
||||
ModelVariantType.Normal: "v2-inference-v.yaml", # best guess, as we can't differentiate with base(512)
|
||||
ModelVariantType.Inpaint: "v2-inpainting-inference.yaml",
|
||||
ModelVariantType.Depth: "v2-midas-inference.yaml",
|
||||
},
|
||||
# note that these .yaml files don't yet exist!
|
||||
BaseModelType.StableDiffusionXL: {
|
||||
ModelVariantType.Normal: "xl-inference-v.yaml",
|
||||
ModelVariantType.Inpaint: "xl-inpainting-inference.yaml",
|
||||
ModelVariantType.Depth: "xl-midas-inference.yaml",
|
||||
}
|
||||
}
|
||||
|
||||
@ -247,9 +352,10 @@ def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
|
||||
|
||||
|
||||
# TODO: rework
|
||||
# Note that convert_ckpt_to_diffuses does not currently support conversion of SDXL models
|
||||
def _convert_ckpt_and_cache(
|
||||
version: BaseModelType,
|
||||
model_config: Union[StableDiffusion1Model.CheckpointConfig, StableDiffusion2Model.CheckpointConfig],
|
||||
model_config: Union[StableDiffusion1Model.CheckpointConfig, StableDiffusion2Model.CheckpointConfig, StableDiffusionXLModel.CheckpointConfig],
|
||||
output_path: str,
|
||||
) -> str:
|
||||
"""
|
||||
|
@ -1,4 +1,10 @@
|
||||
# This file predefines a few models that the user may want to install.
|
||||
sd-1/main/stable-diffusion-xdl-base:
|
||||
description: Stable Diffusion XL base model - NOT YET RELEASED!! (70 GB)
|
||||
repo_id: stabilityai/stable-diffusion-xl-base
|
||||
sd-1/main/stable-diffusion-xdl-refiner:
|
||||
description: Stable Diffusion XL refiner model - NOT YET RELEASED!! (60 GB)
|
||||
repo_id: stabilityai/stable-diffusion-xl-refiner
|
||||
sd-1/main/stable-diffusion-v1-5:
|
||||
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
|
||||
repo_id: runwayml/stable-diffusion-v1-5
|
||||
|
Loading…
Reference in New Issue
Block a user