Merge branch 'main' into sdxl-support

This commit is contained in:
blessedcoolant
2023-07-18 13:34:07 +12:00
100 changed files with 3322 additions and 10176 deletions

View File

@ -30,8 +30,6 @@ from huggingface_hub import login as hf_hub_login
from omegaconf import OmegaConf
from tqdm import tqdm
from transformers import (
AutoProcessor,
CLIPSegForImageSegmentation,
CLIPTextModel,
CLIPTokenizer,
AutoFeatureExtractor,
@ -45,7 +43,6 @@ from invokeai.app.services.config import (
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
from invokeai.frontend.install.widgets import (
SingleSelectColumns,
CenteredButtonPress,
IntTitleSlider,
set_min_terminal_size,
@ -226,64 +223,30 @@ def download_conversion_models():
# ---------------------------------------------
def download_realesrgan():
logger.info("Installing models from RealESRGAN...")
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-x4v3.pth"
wdn_model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-wdn-x4v3.pth"
download_with_progress_bar(model_url, str(model_dest), "RealESRGAN")
download_with_progress_bar(wdn_model_url, str(wdn_model_dest), "RealESRGANwdn")
def download_gfpgan():
logger.info("Installing GFPGAN models...")
for model in (
[
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
"./models/core/face_restoration/gfpgan/GFPGANv1.4.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",
"./models/core/face_restoration/gfpgan/weights/detection_Resnet50_Final.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",
"./models/core/face_restoration/gfpgan/weights/parsing_parsenet.pth",
],
):
model_url, model_dest = model[0], config.root_path / model[1]
download_with_progress_bar(model_url, str(model_dest), "GFPGAN weights")
logger.info("Installing RealESRGAN models...")
URLs = [
dict(
url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
dest = "core/upscaling/realesrgan/RealESRGAN_x4plus.pth",
description = "RealESRGAN_x4plus.pth",
),
dict(
url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
dest = "core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth",
description = "RealESRGAN_x4plus_anime_6B.pth",
),
dict(
url= "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
dest= "core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
description = "ESRGAN_SRx4_DF2KOST_official.pth",
),
]
for model in URLs:
download_with_progress_bar(model['url'], config.models_path / model['dest'], model['description'])
# ---------------------------------------------
def download_codeformer():
logger.info("Installing CodeFormer model file...")
model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
)
model_dest = config.root_path / "models/core/face_restoration/codeformer/codeformer.pth"
download_with_progress_bar(model_url, str(model_dest), "CodeFormer")
# ---------------------------------------------
def download_clipseg():
logger.info("Installing clipseg model for text-based masking...")
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
try:
hf_download_from_pretrained(AutoProcessor, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
hf_download_from_pretrained(CLIPSegForImageSegmentation, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
except Exception:
logger.info("Error installing clipseg model:")
logger.info(traceback.format_exc())
def download_support_models():
download_realesrgan()
download_gfpgan()
download_codeformer()
download_clipseg()
download_conversion_models()
# -------------------------------------
@ -858,9 +821,9 @@ def main():
download_support_models()
if opt.skip_sd_weights:
logger.info("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
logger.warning("SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST")
elif models_to_download:
logger.info("\n** DOWNLOADING DIFFUSION WEIGHTS **")
logger.info("DOWNLOADING DIFFUSION WEIGHTS")
process_and_execute(opt, models_to_download)
postscript(errors=errors)

View File

@ -117,6 +117,7 @@ class ModelInstall(object):
# supplement with entries in models.yaml
installed_models = self.mgr.list_models()
for md in installed_models:
base = md['base_model']
model_type = md['model_type']
@ -134,6 +135,12 @@ class ModelInstall(object):
)
return {x : model_dict[x] for x in sorted(model_dict.keys(),key=lambda y: model_dict[y].name.lower())}
def list_models(self, model_type):
installed = self.mgr.list_models(model_type=model_type)
print(f'Installed models of type `{model_type}`:')
for i in installed:
print(f"{i['model_name']}\t{i['base_model']}\t{i['path']}")
def starter_models(self)->Set[str]:
models = set()
for key, value in self.datasets.items():

View File

@ -3,6 +3,6 @@ Initialization file for invokeai.backend.model_management
"""
from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType
from .model_cache import ModelCache
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType, ModelNotFoundException
from .model_merge import ModelMerger, MergeInterpolationMethod

View File

@ -552,7 +552,7 @@ class ModelManager(object):
model_config = self.models.get(model_key)
if not model_config:
self.logger.error(f'Unknown model {model_name}')
raise KeyError(f'Unknown model {model_name}')
raise ModelNotFoundException(f'Unknown model {model_name}')
cur_model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
if base_model is not None and cur_base_model != base_model:
@ -568,6 +568,9 @@ class ModelManager(object):
model_type=cur_model_type,
)
# expose paths as absolute to help web UI
if path := model_dict.get('path'):
model_dict['path'] = str(self.app_config.root_path / path)
models.append(model_dict)
return models
@ -596,7 +599,7 @@ class ModelManager(object):
model_cfg = self.models.pop(model_key, None)
if model_cfg is None:
raise KeyError(f"Unknown model {model_key}")
raise ModelNotFoundException(f"Unknown model {model_key}")
# note: it not garantie to release memory(model can has other references)
cache_ids = self.cache_keys.pop(model_key, [])
@ -635,6 +638,10 @@ class ModelManager(object):
The returned dict has the same format as the dict returned by
model_info().
"""
# relativize paths as they go in - this makes it easier to move the root directory around
if path := model_attributes.get('path'):
if Path(path).is_relative_to(self.app_config.root_path):
model_attributes['path'] = str(Path(path).relative_to(self.app_config.root_path))
model_class = MODEL_CLASSES[base_model][model_type]
model_config = model_class.create_config(**model_attributes)
@ -689,7 +696,7 @@ class ModelManager(object):
model_key = self.create_key(model_name, base_model, model_type)
model_cfg = self.models.get(model_key, None)
if not model_cfg:
raise KeyError(f"Unknown model: {model_key}")
raise ModelNotFoundException(f"Unknown model: {model_key}")
old_path = self.app_config.root_path / model_cfg.path
new_name = new_name or model_name
@ -700,7 +707,7 @@ class ModelManager(object):
# if this is a model file/directory that we manage ourselves, we need to move it
if old_path.is_relative_to(self.app_config.models_path):
new_path = self.app_config.root_path / 'models' / new_base.value / model_type.value / new_name
new_path = self.app_config.root_path / 'models' / BaseModelType(new_base).value / ModelType(model_type).value / new_name
move(old_path, new_path)
model_cfg.path = str(new_path.relative_to(self.app_config.root_path))
@ -908,7 +915,6 @@ class ModelManager(object):
from invokeai.backend.install.model_install_backend import ModelInstall
from invokeai.frontend.install.model_install import ask_user_for_prediction_type
class ScanAndImport(ModelSearch):
def __init__(self, directories, logger, ignore: Set[Path], installer: ModelInstall):
super().__init__(directories, logger)
@ -965,7 +971,7 @@ class ModelManager(object):
that model.
May return the following exceptions:
- KeyError - one or more of the items to import is not a valid path, repo_id or URL
- ModelNotFoundException - one or more of the items to import is not a valid path, repo_id or URL
- ValueError - a corresponding model already exists
'''
# avoid circular import here

View File

@ -68,7 +68,7 @@ class TextualInversionModel(ModelBase):
return None # diffusers-ti
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "bin"]]):
return None
raise InvalidModelException(f"Not a valid model: {path}")

View File

@ -16,6 +16,7 @@ from .base import (
calc_model_size_by_data,
classproperty,
InvalidModelException,
ModelNotFoundException,
)
from invokeai.app.services.config import InvokeAIAppConfig
from diffusers.utils import is_safetensors_available

View File

@ -1,4 +0,0 @@
"""
Initialization file for the invokeai.backend.restoration package
"""
from .base import Restoration

View File

@ -1,45 +0,0 @@
import invokeai.backend.util.logging as logger
class Restoration:
def __init__(self) -> None:
pass
def load_face_restore_models(
self, gfpgan_model_path="./models/core/face_restoration/gfpgan/GFPGANv1.4.pth"
):
# Load GFPGAN
gfpgan = self.load_gfpgan(gfpgan_model_path)
if gfpgan.gfpgan_model_exists:
logger.info("GFPGAN Initialized")
else:
logger.info("GFPGAN Disabled")
gfpgan = None
# Load CodeFormer
codeformer = self.load_codeformer()
if codeformer.codeformer_model_exists:
logger.info("CodeFormer Initialized")
else:
logger.info("CodeFormer Disabled")
codeformer = None
return gfpgan, codeformer
# Face Restore Models
def load_gfpgan(self, gfpgan_model_path):
from .gfpgan import GFPGAN
return GFPGAN(gfpgan_model_path)
def load_codeformer(self):
from .codeformer import CodeFormerRestoration
return CodeFormerRestoration()
# Upscale Models
def load_esrgan(self, esrgan_bg_tile=400):
from .realesrgan import ESRGAN
esrgan = ESRGAN(esrgan_bg_tile)
logger.info("ESRGAN Initialized")
return esrgan

View File

@ -1,120 +0,0 @@
import os
import sys
import warnings
import numpy as np
import torch
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
pretrained_model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
)
class CodeFormerRestoration:
def __init__(
self, codeformer_dir="./models/core/face_restoration/codeformer", codeformer_model_path="codeformer.pth"
) -> None:
self.globals = InvokeAIAppConfig.get_config()
codeformer_dir = self.globals.root_dir / codeformer_dir
self.model_path = codeformer_dir / codeformer_model_path
self.codeformer_model_exists = self.model_path.exists()
if not self.codeformer_model_exists:
logger.error(f"NOT FOUND: CodeFormer model not found at {self.model_path}")
sys.path.append(os.path.abspath(codeformer_dir))
def process(self, image, strength, device, seed=None, fidelity=0.75):
if seed is not None:
logger.info(f"CodeFormer - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from basicsr.utils import img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from PIL import Image
from torchvision.transforms.functional import normalize
from .codeformer_arch import CodeFormer
cf_class = CodeFormer
cf = cf_class(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(device)
# note that this file should already be downloaded and cached at
# this point
checkpoint_path = load_file_from_url(
url=pretrained_model_url,
model_dir=os.path.abspath(os.path.dirname(self.model_path)),
progress=True,
)
checkpoint = torch.load(checkpoint_path)["params_ema"]
cf.load_state_dict(checkpoint)
cf.eval()
image = image.convert("RGB")
# Codeformer expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1]
face_helper = FaceRestoreHelper(
upscale_factor=1,
use_parse=True,
device=device,
model_rootpath = self.globals.model_path / 'core/face_restoration/gfpgan/weights'
)
face_helper.clean_all()
face_helper.read_image(bgr_image_array)
face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5)
face_helper.align_warp_face()
for idx, cropped_face in enumerate(face_helper.cropped_faces):
cropped_face_t = img2tensor(
cropped_face / 255.0, bgr2rgb=True, float32=True
)
normalize(
cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True
)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
output = cf(cropped_face_t, w=fidelity, adain=True)[0]
restored_face = tensor2img(
output.squeeze(0), rgb2bgr=True, min_max=(-1, 1)
)
del output
torch.cuda.empty_cache()
except RuntimeError as error:
logger.error(f"Failed inference for CodeFormer: {error}.")
restored_face = cropped_face
restored_face = restored_face.astype("uint8")
face_helper.add_restored_face(restored_face)
face_helper.get_inverse_affine(None)
restored_img = face_helper.paste_faces_to_input_image()
# Flip the channels back to RGB
res = Image.fromarray(restored_img[..., ::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if restored_img.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
cf = None
return res

View File

@ -1,325 +0,0 @@
import math
from typing import List, Optional
import numpy as np
import torch
import torch.nn.functional as F
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY
from torch import Tensor, nn
from .vqgan_arch import *
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
Args:
feat (Tensor): 4D tensor.
eps (float): A small value added to the variance to avoid
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, "The input feature should be 4D tensor."
b, c = size[:2]
feat_var = feat.view(b, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(b, c, 1, 1)
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
"""Adaptive instance normalization.
Adjust the reference features to have the similar color and illuminations
as those in the degradate features.
Args:
content_feat (Tensor): The reference feature.
style_feat (Tensor): The degradate features.
"""
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(
size
)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask=None):
if mask is None:
mask = torch.zeros(
(x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool
)
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
class TransformerSALayer(nn.Module):
def __init__(
self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"
):
super().__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
# Implementation of Feedforward model - MLP
self.linear1 = nn.Linear(embed_dim, dim_mlp)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_mlp, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(
self,
tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
# self attention
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
)[0]
tgt = tgt + self.dropout1(tgt2)
# ffn
tgt2 = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout2(tgt2)
return tgt
class Fuse_sft_block(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.encode_enc = ResBlock(2 * in_ch, out_ch)
self.scale = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
)
self.shift = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
)
def forward(self, enc_feat, dec_feat, w=1):
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
scale = self.scale(enc_feat)
shift = self.shift(enc_feat)
residual = w * (dec_feat * scale + shift)
out = dec_feat + residual
return out
@ARCH_REGISTRY.register()
class CodeFormer(VQAutoEncoder):
def __init__(
self,
dim_embd=512,
n_head=8,
n_layers=9,
codebook_size=1024,
latent_size=256,
connect_list=["32", "64", "128", "256"],
fix_modules=["quantize", "generator"],
):
super(CodeFormer, self).__init__(
512, 64, [1, 2, 2, 4, 4, 8], "nearest", 2, [16], codebook_size
)
if fix_modules is not None:
for module in fix_modules:
for param in getattr(self, module).parameters():
param.requires_grad = False
self.connect_list = connect_list
self.n_layers = n_layers
self.dim_embd = dim_embd
self.dim_mlp = dim_embd * 2
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
self.feat_emb = nn.Linear(256, self.dim_embd)
# transformer
self.ft_layers = nn.Sequential(
*[
TransformerSALayer(
embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0
)
for _ in range(self.n_layers)
]
)
# logits_predict head
self.idx_pred_layer = nn.Sequential(
nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)
)
self.channels = {
"16": 512,
"32": 256,
"64": 256,
"128": 128,
"256": 128,
"512": 64,
}
# after second residual block for > 16, before attn layer for ==16
self.fuse_encoder_block = {
"512": 2,
"256": 5,
"128": 8,
"64": 11,
"32": 14,
"16": 18,
}
# after first residual block for > 16, before attn layer for ==16
self.fuse_generator_block = {
"16": 6,
"32": 9,
"64": 12,
"128": 15,
"256": 18,
"512": 21,
}
# fuse_convs_dict
self.fuse_convs_dict = nn.ModuleDict()
for f_size in self.connect_list:
in_ch = self.channels[f_size]
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
# ################### Encoder #####################
enc_feat_dict = {}
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.encoder.blocks):
x = block(x)
if i in out_list:
enc_feat_dict[str(x.shape[-1])] = x.clone()
lq_feat = x
# ################# Transformer ###################
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1)
# BCHW -> BC(HW) -> (HW)BC
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1))
query_emb = feat_emb
# Transformer encoder
for layer in self.ft_layers:
query_emb = layer(query_emb, query_pos=pos_emb)
# output logits
logits = self.idx_pred_layer(query_emb) # (hw)bn
logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n
if code_only: # for training stage II
# logits doesn't need softmax before cross_entropy loss
return logits, lq_feat
# ################# Quantization ###################
# if self.training:
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
# # b(hw)c -> bc(hw) -> bchw
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
# ------------
soft_one_hot = F.softmax(logits, dim=2)
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
quant_feat = self.quantize.get_codebook_feat(
top_idx, shape=[x.shape[0], 16, 16, 256]
)
# preserve gradients
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
if detach_16:
quant_feat = quant_feat.detach() # for training stage III
if adain:
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
# ################## Generator ####################
x = quant_feat
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.generator.blocks):
x = block(x)
if i in fuse_list: # fuse after i-th block
f_size = str(x.shape[-1])
if w > 0:
x = self.fuse_convs_dict[f_size](
enc_feat_dict[f_size].detach(), x, w
)
out = x
# logits doesn't need softmax before cross_entropy loss
return out, logits, lq_feat

View File

@ -1,84 +0,0 @@
import os
import sys
import warnings
import numpy as np
import torch
from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
class GFPGAN:
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
self.globals = InvokeAIAppConfig.get_config()
if not os.path.isabs(gfpgan_model_path):
gfpgan_model_path = self.globals.root_dir / gfpgan_model_path
self.model_path = gfpgan_model_path
self.gfpgan_model_exists = os.path.isfile(self.model_path)
if not self.gfpgan_model_exists:
logger.error(f"NOT FOUND: GFPGAN model not found at {self.model_path}")
return None
def model_exists(self):
return os.path.isfile(self.model_path)
def process(self, image, strength: float, seed: str = None):
if seed is not None:
logger.info(f"GFPGAN - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
cwd = os.getcwd()
os.chdir(self.globals.root_dir / 'models')
try:
from gfpgan import GFPGANer
self.gfpgan = GFPGANer(
model_path=self.model_path,
upscale=1,
arch="clean",
channel_multiplier=2,
bg_upsampler=None,
)
except Exception:
import traceback
logger.error("Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
os.chdir(cwd)
if self.gfpgan is None:
logger.warning("WARNING: GFPGAN not initialized.")
logger.warning(
f"Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
)
image = image.convert("RGB")
# GFPGAN expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1]
_, _, restored_img = self.gfpgan.enhance(
bgr_image_array,
has_aligned=False,
only_center_face=False,
paste_back=True,
)
# Flip the channels back to RGB
res = Image.fromarray(restored_img[..., ::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if restored_img.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.gfpgan = None
return res

View File

@ -1,118 +0,0 @@
import math
from PIL import Image
import invokeai.backend.util.logging as logger
class Outcrop(object):
def __init__(
self,
image,
generate, # current generate object
):
self.image = image
self.generate = generate
def process(
self,
extents: dict,
opt, # current options
orig_opt, # ones originally used to generate the image
image_callback=None,
prefix=None,
):
# grow and mask the image
extended_image = self._extend_all(extents)
# switch samplers temporarily
curr_sampler = self.generate.sampler
self.generate.sampler_name = opt.sampler_name
self.generate._set_scheduler()
def wrapped_callback(img, seed, **kwargs):
preferred_seed = (
orig_opt.seed
if orig_opt.seed is not None and orig_opt.seed >= 0
else seed
)
image_callback(img, preferred_seed, use_prefix=prefix, **kwargs)
result = self.generate.prompt2image(
opt.prompt,
seed=opt.seed or orig_opt.seed,
sampler=self.generate.sampler,
steps=opt.steps,
cfg_scale=opt.cfg_scale,
ddim_eta=self.generate.ddim_eta,
width=extended_image.width,
height=extended_image.height,
init_img=extended_image,
strength=0.90,
image_callback=wrapped_callback if image_callback else None,
seam_size=opt.seam_size or 96,
seam_blur=opt.seam_blur or 16,
seam_strength=opt.seam_strength or 0.7,
seam_steps=20,
tile_size=32,
color_match=True,
force_outpaint=True, # this just stops the warning about erased regions
)
# swap sampler back
self.generate.sampler = curr_sampler
return result
def _extend_all(
self,
extents: dict,
) -> Image:
"""
Extend the image in direction ('top','bottom','left','right') by
the indicated value. The image canvas is extended, and the empty
rectangular section will be filled with a blurred copy of the
adjacent image.
"""
image = self.image
for direction in extents:
assert direction in [
"top",
"left",
"bottom",
"right",
], 'Direction must be one of "top", "left", "bottom", "right"'
pixels = extents[direction]
# round pixels up to the nearest 64
pixels = math.ceil(pixels / 64) * 64
logger.info(f"extending image {direction}ward by {pixels} pixels")
image = self._rotate(image, direction)
image = self._extend(image, pixels)
image = self._rotate(image, direction, reverse=True)
return image
def _rotate(self, image: Image, direction: str, reverse=False) -> Image:
"""
Rotates image so that the area to extend is always at the top top.
Simplifies logic later. The reverse argument, if true, will undo the
previous transpose.
"""
transposes = {
"right": ["ROTATE_90", "ROTATE_270"],
"bottom": ["ROTATE_180", "ROTATE_180"],
"left": ["ROTATE_270", "ROTATE_90"],
}
if direction not in transposes:
return image
transpose = transposes[direction][1 if reverse else 0]
return image.transpose(Image.Transpose.__dict__[transpose])
def _extend(self, image: Image, pixels: int) -> Image:
extended_img = Image.new("RGBA", (image.width, image.height + pixels))
extended_img.paste((0, 0, 0), [0, 0, image.width, image.height + pixels])
extended_img.paste(image, box=(0, pixels))
# now make the top part transparent to use as a mask
alpha = extended_img.getchannel("A")
alpha.paste(0, (0, 0, extended_img.width, pixels))
extended_img.putalpha(alpha)
return extended_img

View File

@ -1,102 +0,0 @@
import math
import warnings
from PIL import Image, ImageFilter
class Outpaint(object):
def __init__(self, image, generate):
self.image = image
self.generate = generate
def process(self, opt, old_opt, image_callback=None, prefix=None):
image = self._create_outpaint_image(self.image, opt.out_direction)
seed = old_opt.seed
prompt = old_opt.prompt
def wrapped_callback(img, seed, **kwargs):
image_callback(img, seed, use_prefix=prefix, **kwargs)
return self.generate.prompt2image(
prompt,
seed=seed,
sampler=self.generate.sampler,
steps=opt.steps,
cfg_scale=opt.cfg_scale,
ddim_eta=self.generate.ddim_eta,
width=opt.width,
height=opt.height,
init_img=image,
strength=0.83,
image_callback=wrapped_callback,
prefix=prefix,
)
def _create_outpaint_image(self, image, direction_args):
assert len(direction_args) in [
1,
2,
], "Direction (-D) must have exactly one or two arguments."
if len(direction_args) == 1:
direction = direction_args[0]
pixels = None
elif len(direction_args) == 2:
direction = direction_args[0]
pixels = int(direction_args[1])
assert direction in [
"top",
"left",
"bottom",
"right",
], 'Direction (-D) must be one of "top", "left", "bottom", "right"'
image = image.convert("RGBA")
# we always extend top, but rotate to extend along the requested side
if direction == "left":
image = image.transpose(Image.Transpose.ROTATE_270)
elif direction == "bottom":
image = image.transpose(Image.Transpose.ROTATE_180)
elif direction == "right":
image = image.transpose(Image.Transpose.ROTATE_90)
pixels = image.height // 2 if pixels is None else int(pixels)
assert (
0 < pixels < image.height
), "Direction (-D) pixels length must be in the range 0 - image.size"
# the top part of the image is taken from the source image mirrored
# coordinates (0,0) are the upper left corner of an image
top = image.transpose(Image.Transpose.FLIP_TOP_BOTTOM).convert("RGBA")
top = top.crop((0, top.height - pixels, top.width, top.height))
# setting all alpha of the top part to 0
alpha = top.getchannel("A")
alpha.paste(0, (0, 0, top.width, top.height))
top.putalpha(alpha)
# taking the bottom from the original image
bottom = image.crop((0, 0, image.width, image.height - pixels))
new_img = image.copy()
new_img.paste(top, (0, 0))
new_img.paste(bottom, (0, pixels))
# create a 10% dither in the middle
dither = min(image.height // 10, pixels)
for x in range(0, image.width, 2):
for y in range(pixels - dither, pixels + dither):
(r, g, b, a) = new_img.getpixel((x, y))
new_img.putpixel((x, y), (r, g, b, 0))
# let's rotate back again
if direction == "left":
new_img = new_img.transpose(Image.Transpose.ROTATE_90)
elif direction == "bottom":
new_img = new_img.transpose(Image.Transpose.ROTATE_180)
elif direction == "right":
new_img = new_img.transpose(Image.Transpose.ROTATE_270)
return new_img

View File

@ -1,104 +0,0 @@
import warnings
import numpy as np
import torch
from PIL import Image
from PIL.Image import Image as ImageType
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig.get_config()
class ESRGAN:
def __init__(self, bg_tile_size=400) -> None:
self.bg_tile_size = bg_tile_size
def load_esrgan_bg_upsampler(self, denoise_str):
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=32,
upscale=4,
act_type="prelu",
)
model_path = config.models_path / "core/upscaling/realesrgan/realesr-general-x4v3.pth"
wdn_model_path = config.models_path / "core/upscaling/realesrgan/realesr-general-wdn-x4v3.pth"
scale = 4
bg_upsampler = RealESRGANer(
scale=scale,
model_path=[model_path, wdn_model_path],
model=model,
tile=self.bg_tile_size,
dni_weight=[denoise_str, 1 - denoise_str],
tile_pad=10,
pre_pad=0,
half=use_half_precision,
)
return bg_upsampler
def process(
self,
image: ImageType,
strength: float,
seed: str = None,
upsampler_scale: int = 2,
denoise_str: float = 0.75,
):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
try:
upsampler = self.load_esrgan_bg_upsampler(denoise_str)
except Exception:
import sys
import traceback
logger.error("Error loading Real-ESRGAN:")
print(traceback.format_exc(), file=sys.stderr)
if upsampler_scale == 0:
logger.warning("Real-ESRGAN: Invalid scaling option. Image not upscaled.")
return image
if seed is not None:
logger.info(
f"Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
)
# ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB
image = image.convert("RGB")
# REALSRGAN expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1]
output, _ = upsampler.enhance(
bgr_image_array,
outscale=upsampler_scale,
alpha_upsampler="realesrgan",
)
# Flip the channels back to RGB
res = Image.fromarray(output[..., ::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if output.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
upsampler = None
return res

View File

@ -1,514 +0,0 @@
"""
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
"""
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY
def normalize(in_channels):
return torch.nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
@torch.jit.script
def swish(x):
return x * torch.sigmoid(x)
# Define VQVAE classes
class VectorQuantizer(nn.Module):
def __init__(self, codebook_size, emb_dim, beta):
super(VectorQuantizer, self).__init__()
self.codebook_size = codebook_size # number of embeddings
self.emb_dim = emb_dim # dimension of embedding
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
self.embedding.weight.data.uniform_(
-1.0 / self.codebook_size, 1.0 / self.codebook_size
)
def forward(self, z):
# reshape z -> (batch, height, width, channel) and flatten
z = z.permute(0, 2, 3, 1).contiguous()
z_flattened = z.view(-1, self.emb_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (
(z_flattened**2).sum(dim=1, keepdim=True)
+ (self.embedding.weight**2).sum(1)
- 2 * torch.matmul(z_flattened, self.embedding.weight.t())
)
mean_distance = torch.mean(d)
# find closest encodings
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
min_encoding_scores, min_encoding_indices = torch.topk(
d, 1, dim=1, largest=False
)
# [0-1], higher score, higher confidence
min_encoding_scores = torch.exp(-min_encoding_scores / 10)
min_encodings = torch.zeros(
min_encoding_indices.shape[0], self.codebook_size
).to(z)
min_encodings.scatter_(1, min_encoding_indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
# compute loss for embedding
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean(
(z_q - z.detach()) ** 2
)
# preserve gradients
z_q = z + (z_q - z).detach()
# perplexity
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return (
z_q,
loss,
{
"perplexity": perplexity,
"min_encodings": min_encodings,
"min_encoding_indices": min_encoding_indices,
"min_encoding_scores": min_encoding_scores,
"mean_distance": mean_distance,
},
)
def get_codebook_feat(self, indices, shape):
# input indices: batch*token_num -> (batch*token_num)*1
# shape: batch, height, width, channel
indices = indices.view(-1, 1)
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
min_encodings.scatter_(1, indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
if shape is not None: # reshape back to match original input shape
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
return z_q
class GumbelQuantizer(nn.Module):
def __init__(
self,
codebook_size,
emb_dim,
num_hiddens,
straight_through=False,
kl_weight=5e-4,
temp_init=1.0,
):
super().__init__()
self.codebook_size = codebook_size # number of embeddings
self.emb_dim = emb_dim # dimension of embedding
self.straight_through = straight_through
self.temperature = temp_init
self.kl_weight = kl_weight
self.proj = nn.Conv2d(
num_hiddens, codebook_size, 1
) # projects last encoder layer to quantized logits
self.embed = nn.Embedding(codebook_size, emb_dim)
def forward(self, z):
hard = self.straight_through if self.training else True
logits = self.proj(z)
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
# + kl divergence to the prior loss
qy = F.softmax(logits, dim=1)
diff = (
self.kl_weight
* torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
)
min_encoding_indices = soft_one_hot.argmax(dim=1)
return z_q, diff, {"min_encoding_indices": min_encoding_indices}
class Downsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=2, padding=0
)
def forward(self, x):
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels=None):
super(ResBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.norm1 = normalize(in_channels)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.norm2 = normalize(out_channels)
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if self.in_channels != self.out_channels:
self.conv_out = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x_in):
x = x_in
x = self.norm1(x)
x = swish(x)
x = self.conv1(x)
x = self.norm2(x)
x = swish(x)
x = self.conv2(x)
if self.in_channels != self.out_channels:
x_in = self.conv_out(x_in)
return x + x_in
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = normalize(in_channels)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1)
k = k.reshape(b, c, h * w)
w_ = torch.bmm(q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = F.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x + h_
class Encoder(nn.Module):
def __init__(
self,
in_channels,
nf,
emb_dim,
ch_mult,
num_res_blocks,
resolution,
attn_resolutions,
):
super().__init__()
self.nf = nf
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.attn_resolutions = attn_resolutions
curr_res = self.resolution
in_ch_mult = (1,) + tuple(ch_mult)
blocks = []
# initial convultion
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
# residual and downsampling blocks, with attention on smaller res (16x16)
for i in range(self.num_resolutions):
block_in_ch = nf * in_ch_mult[i]
block_out_ch = nf * ch_mult[i]
for _ in range(self.num_res_blocks):
blocks.append(ResBlock(block_in_ch, block_out_ch))
block_in_ch = block_out_ch
if curr_res in attn_resolutions:
blocks.append(AttnBlock(block_in_ch))
if i != self.num_resolutions - 1:
blocks.append(Downsample(block_in_ch))
curr_res = curr_res // 2
# non-local attention block
blocks.append(ResBlock(block_in_ch, block_in_ch))
blocks.append(AttnBlock(block_in_ch))
blocks.append(ResBlock(block_in_ch, block_in_ch))
# normalise and convert to latent size
blocks.append(normalize(block_in_ch))
blocks.append(
nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1)
)
self.blocks = nn.ModuleList(blocks)
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class Generator(nn.Module):
def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
super().__init__()
self.nf = nf
self.ch_mult = ch_mult
self.num_resolutions = len(self.ch_mult)
self.num_res_blocks = res_blocks
self.resolution = img_size
self.attn_resolutions = attn_resolutions
self.in_channels = emb_dim
self.out_channels = 3
block_in_ch = self.nf * self.ch_mult[-1]
curr_res = self.resolution // 2 ** (self.num_resolutions - 1)
blocks = []
# initial conv
blocks.append(
nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)
)
# non-local attention block
blocks.append(ResBlock(block_in_ch, block_in_ch))
blocks.append(AttnBlock(block_in_ch))
blocks.append(ResBlock(block_in_ch, block_in_ch))
for i in reversed(range(self.num_resolutions)):
block_out_ch = self.nf * self.ch_mult[i]
for _ in range(self.num_res_blocks):
blocks.append(ResBlock(block_in_ch, block_out_ch))
block_in_ch = block_out_ch
if curr_res in self.attn_resolutions:
blocks.append(AttnBlock(block_in_ch))
if i != 0:
blocks.append(Upsample(block_in_ch))
curr_res = curr_res * 2
blocks.append(normalize(block_in_ch))
blocks.append(
nn.Conv2d(
block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1
)
)
self.blocks = nn.ModuleList(blocks)
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
@ARCH_REGISTRY.register()
class VQAutoEncoder(nn.Module):
def __init__(
self,
img_size,
nf,
ch_mult,
quantizer="nearest",
res_blocks=2,
attn_resolutions=[16],
codebook_size=1024,
emb_dim=256,
beta=0.25,
gumbel_straight_through=False,
gumbel_kl_weight=1e-8,
model_path=None,
):
super().__init__()
logger = get_root_logger()
self.in_channels = 3
self.nf = nf
self.n_blocks = res_blocks
self.codebook_size = codebook_size
self.embed_dim = emb_dim
self.ch_mult = ch_mult
self.resolution = img_size
self.attn_resolutions = attn_resolutions
self.quantizer_type = quantizer
self.encoder = Encoder(
self.in_channels,
self.nf,
self.embed_dim,
self.ch_mult,
self.n_blocks,
self.resolution,
self.attn_resolutions,
)
if self.quantizer_type == "nearest":
self.beta = beta # 0.25
self.quantize = VectorQuantizer(
self.codebook_size, self.embed_dim, self.beta
)
elif self.quantizer_type == "gumbel":
self.gumbel_num_hiddens = emb_dim
self.straight_through = gumbel_straight_through
self.kl_weight = gumbel_kl_weight
self.quantize = GumbelQuantizer(
self.codebook_size,
self.embed_dim,
self.gumbel_num_hiddens,
self.straight_through,
self.kl_weight,
)
self.generator = Generator(
self.nf,
self.embed_dim,
self.ch_mult,
self.n_blocks,
self.resolution,
self.attn_resolutions,
)
if model_path is not None:
chkpt = torch.load(model_path, map_location="cpu")
if "params_ema" in chkpt:
self.load_state_dict(
torch.load(model_path, map_location="cpu")["params_ema"]
)
logger.info(f"vqgan is loaded from: {model_path} [params_ema]")
elif "params" in chkpt:
self.load_state_dict(
torch.load(model_path, map_location="cpu")["params"]
)
logger.info(f"vqgan is loaded from: {model_path} [params]")
else:
raise ValueError(f"Wrong params!")
def forward(self, x):
x = self.encoder(x)
quant, codebook_loss, quant_stats = self.quantize(x)
x = self.generator(quant)
return x, codebook_loss, quant_stats
# patch based discriminator
@ARCH_REGISTRY.register()
class VQGANDiscriminator(nn.Module):
def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
super().__init__()
layers = [
nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, True),
]
ndf_mult = 1
ndf_mult_prev = 1
for n in range(1, n_layers): # gradually increase the number of filters
ndf_mult_prev = ndf_mult
ndf_mult = min(2**n, 8)
layers += [
nn.Conv2d(
ndf * ndf_mult_prev,
ndf * ndf_mult,
kernel_size=4,
stride=2,
padding=1,
bias=False,
),
nn.BatchNorm2d(ndf * ndf_mult),
nn.LeakyReLU(0.2, True),
]
ndf_mult_prev = ndf_mult
ndf_mult = min(2**n_layers, 8)
layers += [
nn.Conv2d(
ndf * ndf_mult_prev,
ndf * ndf_mult,
kernel_size=4,
stride=1,
padding=1,
bias=False,
),
nn.BatchNorm2d(ndf * ndf_mult),
nn.LeakyReLU(0.2, True),
]
layers += [
nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)
] # output 1 channel prediction map
self.main = nn.Sequential(*layers)
if model_path is not None:
chkpt = torch.load(model_path, map_location="cpu")
if "params_d" in chkpt:
self.load_state_dict(
torch.load(model_path, map_location="cpu")["params_d"]
)
elif "params" in chkpt:
self.load_state_dict(
torch.load(model_path, map_location="cpu")["params"]
)
else:
raise ValueError(f"Wrong params!")
def forward(self, x):
return self.main(x)

View File

@ -221,7 +221,7 @@ class ControlNetData:
control_mode: str = Field(default="balanced")
@dataclass(frozen=True)
@dataclass
class ConditioningData:
unconditioned_embeddings: torch.Tensor
text_embeddings: torch.Tensor
@ -422,7 +422,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
noise: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None] = None,
run_id=None,
**kwargs,
) -> InvokeAIStableDiffusionPipelineOutput:
r"""
Function invoked when calling the pipeline for generation.
@ -443,7 +442,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
noise=noise,
run_id=run_id,
callback=callback,
**kwargs,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@ -469,7 +467,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
run_id=None,
callback: Callable[[PipelineIntermediateState], None] = None,
control_data: List[ControlNetData] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
if self.scheduler.config.get("cpu_only", False):
scheduler_device = torch.device('cpu')
@ -487,11 +484,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
timesteps,
conditioning_data,
noise=noise,
additional_guidance=additional_guidance,
run_id=run_id,
callback=callback,
additional_guidance=additional_guidance,
control_data=control_data,
**kwargs,
callback=callback,
)
return result.latents, result.attention_map_saver
@ -505,7 +502,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
run_id: str = None,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
**kwargs,
):
self._adjust_memory_efficient_attention(latents)
if run_id is None:
@ -546,7 +542,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
total_step_count=len(timesteps),
additional_guidance=additional_guidance,
control_data=control_data,
**kwargs,
)
latents = step_output.prev_sample
@ -588,7 +583,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
total_step_count: int,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
**kwargs,
):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
@ -632,9 +626,12 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if cfg_injection: # only applying ControlNet to conditional instead of in unconditioned
encoder_hidden_states = conditioning_data.text_embeddings
encoder_attention_mask = None
else:
encoder_hidden_states = torch.cat([conditioning_data.unconditioned_embeddings,
conditioning_data.text_embeddings])
encoder_hidden_states, encoder_attention_mask = self.invokeai_diffuser._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings,
conditioning_data.text_embeddings,
)
if isinstance(control_datum.weight, list):
# if controlnet has multiple weights, use the weight for the current step
controlnet_weight = control_datum.weight[step_index]
@ -649,6 +646,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=control_datum.image_tensor,
conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale
encoder_attention_mask=encoder_attention_mask,
guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel
return_dict=False,
)

View File

@ -237,11 +237,7 @@ class InvokeAIDiffuserComponent:
)
return latents
# methods below are called from do_diffusion_step and should be considered private to this class.
def _apply_standard_conditioning(self, x, sigma, unconditioning, conditioning, **kwargs):
# fast batched path
def _concat_conditionings_for_batch(self, unconditioning, conditioning):
def _pad_conditioning(cond, target_len, encoder_attention_mask):
conditioning_attention_mask = torch.ones((cond.shape[0], cond.shape[1]), device=cond.device, dtype=cond.dtype)
@ -266,16 +262,24 @@ class InvokeAIDiffuserComponent:
return cond, encoder_attention_mask
x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2)
encoder_attention_mask = None
if unconditioning.shape[1] != conditioning.shape[1]:
max_len = max(unconditioning.shape[1], conditioning.shape[1])
unconditioning, encoder_attention_mask = _pad_conditioning(unconditioning, max_len, encoder_attention_mask)
conditioning, encoder_attention_mask = _pad_conditioning(conditioning, max_len, encoder_attention_mask)
both_conditionings = torch.cat([unconditioning, conditioning])
return torch.cat([unconditioning, conditioning]), encoder_attention_mask
# methods below are called from do_diffusion_step and should be considered private to this class.
def _apply_standard_conditioning(self, x, sigma, unconditioning, conditioning, **kwargs):
# fast batched path
x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2)
both_conditionings, encoder_attention_mask = self._concat_conditionings_for_batch(
unconditioning, conditioning
)
both_results = self.model_forward_callback(
x_twice, sigma_twice, both_conditionings,
encoder_attention_mask=encoder_attention_mask,
@ -293,8 +297,32 @@ class InvokeAIDiffuserComponent:
**kwargs,
):
# low-memory sequential path
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning, **kwargs)
conditioned_next_x = self.model_forward_callback(x, sigma, conditioning, **kwargs)
uncond_down_block, cond_down_block = None, None
down_block_additional_residuals = kwargs.pop("down_block_additional_residuals", None)
if down_block_additional_residuals is not None:
uncond_down_block, cond_down_block = [], []
for down_block in down_block_additional_residuals:
_uncond_down, _cond_down = down_block.chunk(2)
uncond_down_block.append(_uncond_down)
cond_down_block.append(_cond_down)
uncond_mid_block, cond_mid_block = None, None
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
if mid_block_additional_residual is not None:
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
unconditioned_next_x = self.model_forward_callback(
x, sigma, unconditioning,
down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block,
**kwargs,
)
conditioned_next_x = self.model_forward_callback(
x, sigma, conditioning,
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,
**kwargs,
)
return unconditioned_next_x, conditioned_next_x
# TODO: looks unused
@ -328,6 +356,20 @@ class InvokeAIDiffuserComponent:
):
context: Context = self.cross_attention_control_context
uncond_down_block, cond_down_block = None, None
down_block_additional_residuals = kwargs.pop("down_block_additional_residuals", None)
if down_block_additional_residuals is not None:
uncond_down_block, cond_down_block = [], []
for down_block in down_block_additional_residuals:
_uncond_down, _cond_down = down_block.chunk(2)
uncond_down_block.append(_uncond_down)
cond_down_block.append(_cond_down)
uncond_mid_block, cond_mid_block = None, None
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
if mid_block_additional_residual is not None:
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
cross_attn_processor_context = SwapCrossAttnContext(
modified_text_embeddings=context.arguments.edited_conditioning,
index_map=context.cross_attention_index_map,
@ -340,6 +382,8 @@ class InvokeAIDiffuserComponent:
sigma,
unconditioning,
{"swap_cross_attn_context": cross_attn_processor_context},
down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block,
**kwargs,
)
@ -352,6 +396,8 @@ class InvokeAIDiffuserComponent:
sigma,
conditioning,
{"swap_cross_attn_context": cross_attn_processor_context},
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,
**kwargs,
)
return unconditioned_next_x, conditioned_next_x

View File

@ -0,0 +1,634 @@
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import (
CrossAttnDownBlock2D,
DownBlock2D,
UNetMidBlock2DCrossAttn,
get_down_block,
)
from diffusers.models.unet_2d_condition import UNet2DConditionModel
import diffusers
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
# Modified ControlNetModel with encoder_attention_mask argument added
class ControlNetModel(ModelMixin, ConfigMixin):
"""
A ControlNet model.
Args:
in_channels (`int`, defaults to 4):
The number of channels in the input sample.
flip_sin_to_cos (`bool`, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, defaults to 0):
The frequency shift to apply to the time embedding.
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
The tuple of downsample blocks to use.
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, defaults to 2):
The number of layers per block.
downsample_padding (`int`, defaults to 1):
The padding to use for the downsampling convolution.
mid_block_scale_factor (`float`, defaults to 1):
The scale factor to use for the mid block.
act_fn (`str`, defaults to "silu"):
The activation function to use.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
in post-processing.
norm_eps (`float`, defaults to 1e-5):
The epsilon to use for the normalization.
cross_attention_dim (`int`, defaults to 1280):
The dimension of the cross attention features.
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
The dimension of the attention heads.
use_linear_projection (`bool`, defaults to `False`):
class_embed_type (`str`, *optional*, defaults to `None`):
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
num_class_embeds (`int`, *optional*, defaults to 0):
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
class conditioning with `class_embed_type` equal to `None`.
upcast_attention (`bool`, defaults to `False`):
resnet_time_scale_shift (`str`, defaults to `"default"`):
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
`class_embed_type="projection"`.
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
The tuple of output channel for each block in the `conditioning_embedding` layer.
global_pool_conditions (`bool`, defaults to `False`):
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 4,
conditioning_channels: int = 3,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: Optional[int] = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
attention_head_dim: Union[int, Tuple[int]] = 8,
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
projection_class_embeddings_input_dim: Optional[int] = None,
controlnet_conditioning_channel_order: str = "rgb",
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
global_pool_conditions: bool = False,
):
super().__init__()
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
num_attention_heads = num_attention_heads or attention_head_dim
# Check inputs
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
# input
conv_in_kernel = 3
conv_in_padding = (conv_in_kernel - 1) // 2
self.conv_in = nn.Conv2d(
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
)
# time
time_embed_dim = block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(
timestep_input_dim,
time_embed_dim,
act_fn=act_fn,
)
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
elif class_embed_type == "projection":
if projection_class_embeddings_input_dim is None:
raise ValueError(
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
)
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
# 2. it projects from an arbitrary input dimension.
#
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
else:
self.class_embedding = None
# control net conditioning embedding
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0],
block_out_channels=conditioning_embedding_out_channels,
conditioning_channels=conditioning_channels,
)
self.down_blocks = nn.ModuleList([])
self.controlnet_down_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
only_cross_attention = [only_cross_attention] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(down_block_types)
# down
output_channel = block_out_channels[0]
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_down_blocks.append(controlnet_block)
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[i],
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
downsample_padding=downsample_padding,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
)
self.down_blocks.append(down_block)
for _ in range(layers_per_block):
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_down_blocks.append(controlnet_block)
if not is_final_block:
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_down_blocks.append(controlnet_block)
# mid
mid_block_channel = block_out_channels[-1]
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_mid_block = controlnet_block
self.mid_block = UNetMidBlock2DCrossAttn(
in_channels=mid_block_channel,
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[-1],
resnet_groups=norm_num_groups,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
@classmethod
def from_unet(
cls,
unet: UNet2DConditionModel,
controlnet_conditioning_channel_order: str = "rgb",
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
load_weights_from_unet: bool = True,
):
r"""
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
Parameters:
unet (`UNet2DConditionModel`):
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
where applicable.
"""
controlnet = cls(
in_channels=unet.config.in_channels,
flip_sin_to_cos=unet.config.flip_sin_to_cos,
freq_shift=unet.config.freq_shift,
down_block_types=unet.config.down_block_types,
only_cross_attention=unet.config.only_cross_attention,
block_out_channels=unet.config.block_out_channels,
layers_per_block=unet.config.layers_per_block,
downsample_padding=unet.config.downsample_padding,
mid_block_scale_factor=unet.config.mid_block_scale_factor,
act_fn=unet.config.act_fn,
norm_num_groups=unet.config.norm_num_groups,
norm_eps=unet.config.norm_eps,
cross_attention_dim=unet.config.cross_attention_dim,
attention_head_dim=unet.config.attention_head_dim,
num_attention_heads=unet.config.num_attention_heads,
use_linear_projection=unet.config.use_linear_projection,
class_embed_type=unet.config.class_embed_type,
num_class_embeds=unet.config.num_class_embeds,
upcast_attention=unet.config.upcast_attention,
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
)
if load_weights_from_unet:
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
if controlnet.class_embedding:
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
return controlnet
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "set_processor"):
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(AttnProcessor())
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_sliceable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_sliceable_dims(module)
num_sliceable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_sliceable_layers * [1]
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
module.gradient_checkpointing = value
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
controlnet_cond: torch.FloatTensor,
conditioning_scale: float = 1.0,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
guess_mode: bool = False,
return_dict: bool = True,
) -> Union[ControlNetOutput, Tuple]:
"""
The [`ControlNetModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor.
timestep (`Union[torch.Tensor, float, int]`):
The number of timesteps to denoise an input.
encoder_hidden_states (`torch.Tensor`):
The encoder hidden states.
controlnet_cond (`torch.FloatTensor`):
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
conditioning_scale (`float`, defaults to `1.0`):
The scale factor for ControlNet outputs.
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
cross_attention_kwargs(`dict[str]`, *optional*, defaults to `None`):
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
encoder_attention_mask (`torch.Tensor`):
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
which adds large negative values to the attention scores corresponding to "discard" tokens.
guess_mode (`bool`, defaults to `False`):
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
Returns:
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
returned where the first element is the sample tensor.
"""
# check channel order
channel_order = self.config.controlnet_conditioning_channel_order
if channel_order == "rgb":
# in rgb order by default
...
elif channel_order == "bgr":
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
else:
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
# 2. pre-process
sample = self.conv_in(sample)
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
sample = sample + controlnet_cond
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.mid_block is not None:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
)
# 5. Control net blocks
controlnet_down_block_res_samples = ()
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
down_block_res_sample = controlnet_block(down_block_res_sample)
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
down_block_res_samples = controlnet_down_block_res_samples
mid_block_res_sample = self.controlnet_mid_block(sample)
# 6. scaling
if guess_mode and not self.config.global_pool_conditions:
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
scales = scales * conditioning_scale
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
else:
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample = mid_block_res_sample * conditioning_scale
if self.config.global_pool_conditions:
down_block_res_samples = [
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
]
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return ControlNetOutput(
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
)
diffusers.ControlNetModel = ControlNetModel
diffusers.models.controlnet.ControlNetModel = ControlNetModel