WIP - experimentation

This commit is contained in:
Ryan Dick 2024-08-09 16:23:37 +00:00 committed by Brandon
parent 3cf0365a35
commit 152da482cd
2 changed files with 183 additions and 0 deletions

View File

@ -0,0 +1,129 @@
import json
import os
import time
from pathlib import Path
from typing import Union
import torch
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.utils import (
CONFIG_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_WEIGHTS_NAME,
_get_checkpoint_shard_files,
is_accelerate_available,
)
from optimum.quanto import qfloat8
from optimum.quanto.models import QuantizedDiffusersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from invokeai.backend.requantize import requantize
class QuantizedFluxTransformer2DModel(QuantizedDiffusersModel):
base_class = FluxTransformer2DModel
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
if cls.base_class is None:
raise ValueError("The `base_class` attribute needs to be configured.")
if not is_accelerate_available():
raise ValueError("Reloading a quantized diffusers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
# Look for original model config file.
model_config_path = os.path.join(model_name_or_path, CONFIG_NAME)
if not os.path.exists(model_config_path):
raise ValueError(f"{CONFIG_NAME} not found in {model_name_or_path}.")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
with open(model_config_path, "r", encoding="utf-8") as f:
original_model_cls_name = json.load(f)["_class_name"]
configured_cls_name = cls.base_class.__name__
if configured_cls_name != original_model_cls_name:
raise ValueError(
f"Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name})."
)
# Create an empty model
config = cls.base_class.load_config(model_name_or_path)
with init_empty_weights():
model = cls.base_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
_, sharded_metadata = _get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFETENSORS_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")
def load_flux_transformer(path: Path) -> FluxTransformer2DModel:
# model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedFluxTransformer2DModel.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a FluxTransformer2DModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): Loading in float16 and then quantizing seems to result in NaNs. In order to run this on
# GPUs that don't support bfloat16, we would need to host the quantized model instead of generating it
# here.
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
q_model = QuantizedFluxTransformer2DModel.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
assert isinstance(model, FluxTransformer2DModel)
return model
def main():
start = time.time()
model = load_flux_transformer(
Path("/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/")
)
print(f"Time to load: {time.time() - start}s")
print("hi")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,54 @@
from typing import Any, Dict
import torch
from optimum.quanto.nn import QModuleMixin
from optimum.quanto.quantize import _quantize_submodule, freeze
def custom_freeze(model: torch.nn.Module):
for name, m in model.named_modules():
if isinstance(m, QModuleMixin):
m.freeze()
def requantize(
model: torch.nn.Module,
state_dict: Dict[str, Any],
quantization_map: Dict[str, Dict[str, str]],
device: torch.device = None,
):
if device is None:
device = next(model.parameters()).device
if device.type == "meta":
device = torch.device("cpu")
# Quantize the model with parameters from the quantization map
for name, m in model.named_modules():
qconfig = quantization_map.get(name, None)
if qconfig is not None:
weights = qconfig["weights"]
if weights == "none":
weights = None
activations = qconfig["activations"]
if activations == "none":
activations = None
_quantize_submodule(model, name, m, weights=weights, activations=activations)
# Move model parameters and buffers to CPU before materializing quantized weights
for name, m in model.named_modules():
def move_tensor(t, device):
if t.device.type == "meta":
return torch.empty_like(t, device=device)
return t.to(device)
for name, param in m.named_parameters(recurse=False):
setattr(m, name, torch.nn.Parameter(move_tensor(param, "cpu")))
for name, param in m.named_buffers(recurse=False):
setattr(m, name, move_tensor(param, "cpu"))
# Freeze model and move to target device
freeze(model)
model.to(device)
# Load the quantized model weights
model.load_state_dict(state_dict, strict=False)