mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Initial skeleton for IPAdapter model management.
This commit is contained in:
@ -1,29 +1,36 @@
|
||||
import inspect
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import typing
|
||||
import inspect
|
||||
import warnings
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from contextlib import suppress
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from picklescan.scanner import scan_file_path
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Generic,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import onnx
|
||||
import safetensors.torch
|
||||
from diffusers import DiffusionPipeline, ConfigMixin
|
||||
from onnx import numpy_helper
|
||||
from onnxruntime import (
|
||||
InferenceSession,
|
||||
SessionOptions,
|
||||
get_available_providers,
|
||||
)
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
|
||||
import torch
|
||||
from diffusers import ConfigMixin, DiffusionPipeline
|
||||
from diffusers import logging as diffusers_logging
|
||||
from onnx import numpy_helper
|
||||
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
|
||||
from picklescan.scanner import scan_file_path
|
||||
from pydantic import BaseModel, Field
|
||||
from transformers import logging as transformers_logging
|
||||
|
||||
|
||||
@ -54,6 +61,7 @@ class ModelType(str, Enum):
|
||||
Lora = "lora"
|
||||
ControlNet = "controlnet" # used by model_probe
|
||||
TextualInversion = "embedding"
|
||||
IPAdapter = "ipadapter"
|
||||
|
||||
|
||||
class SubModelType(str, Enum):
|
||||
|
53
invokeai/backend/model_management/models/ip_adapter.py
Normal file
53
invokeai/backend/model_management/models/ip_adapter.py
Normal file
@ -0,0 +1,53 @@
|
||||
import os
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_management.models.base import (
|
||||
BaseModelType,
|
||||
ModelBase,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
classproperty,
|
||||
)
|
||||
|
||||
|
||||
class IPAdapterModelFormat(Enum):
|
||||
# The 'official' IP-Adapter model format from Tencent (i.e. https://huggingface.co/h94/IP-Adapter)
|
||||
Tencent = "tencent"
|
||||
|
||||
|
||||
class IPAdapterModel(ModelBase):
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.IPAdapter
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
# TODO(ryand): Check correct files for model size calculation.
|
||||
self.model_size = os.path.getsize(self.model_path)
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, path: str) -> str:
|
||||
if not os.path.exists(path):
|
||||
raise ModuleNotFoundError(f"No IP-Adapter model at path '{path}'.")
|
||||
|
||||
raise NotImplementedError()
|
||||
|
||||
@classproperty
|
||||
def save_to_config(cls) -> bool:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_size(self, child_type: Optional[SubModelType] = None) -> int:
|
||||
if child_type is not None:
|
||||
raise ValueError("There are no child models in an IP-Adapter model.")
|
||||
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
child_type: Optional[SubModelType] = None,
|
||||
) -> Any:
|
||||
if child_type is not None:
|
||||
raise ValueError("There are no child models in an IP-Adapter model.")
|
||||
raise NotImplementedError()
|
Reference in New Issue
Block a user