Initial skeleton for IPAdapter model management.

This commit is contained in:
Ryan Dick 2023-09-11 16:08:15 -04:00
parent aa7d945b23
commit 163ece9aee
4 changed files with 112 additions and 35 deletions
invokeai/backend/model_management

View File

@ -25,6 +25,7 @@ Models are described using four attributes:
ModelType.Lora -- a LoRA or LyCORIS fine-tune
ModelType.TextualInversion -- a textual inversion embedding
ModelType.ControlNet -- a ControlNet model
ModelType.IPAdapter -- an IPAdapter model
3) BaseModelType -- an enum indicating the stable diffusion base model, one of:
BaseModelType.StableDiffusion1
@ -234,8 +235,8 @@ import textwrap
import types
from dataclasses import dataclass
from pathlib import Path
from shutil import rmtree, move
from typing import Optional, List, Literal, Tuple, Union, Dict, Set, Callable
from shutil import move, rmtree
from typing import Callable, Dict, List, Literal, Optional, Set, Tuple, Union
import torch
import yaml
@ -246,20 +247,21 @@ from pydantic import BaseModel, Field
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.util import CUDA_DEVICE, Chdir
from .model_cache import ModelCache, ModelLocker
from .model_search import ModelSearch
from .models import (
BaseModelType,
ModelType,
SubModelType,
ModelError,
SchedulerPredictionType,
MODEL_CLASSES,
ModelConfigBase,
ModelNotFoundException,
InvalidModelException,
BaseModelType,
DuplicateModelException,
InvalidModelException,
ModelBase,
ModelConfigBase,
ModelError,
ModelNotFoundException,
ModelType,
SchedulerPredictionType,
SubModelType,
)
# We are only starting to number the config file with release 3.

View File

@ -1,24 +1,23 @@
import json
import torch
import safetensors.torch
from dataclasses import dataclass
from diffusers import ModelMixin, ConfigMixin
from pathlib import Path
from typing import Callable, Literal, Union, Dict, Optional
from typing import Callable, Dict, Literal, Optional, Union
import safetensors.torch
import torch
from diffusers import ConfigMixin, ModelMixin
from picklescan.scanner import scan_file_path
from .models import (
BaseModelType,
InvalidModelException,
ModelType,
ModelVariantType,
SchedulerPredictionType,
SilenceWarnings,
InvalidModelException,
)
from .util import lora_token_vector_length
from .models.base import read_checkpoint_meta
from .util import lora_token_vector_length
@dataclass
@ -53,6 +52,7 @@ class ModelProbe(object):
"StableDiffusionXLInpaintPipeline": ModelType.Main,
"AutoencoderKL": ModelType.Vae,
"ControlNetModel": ModelType.ControlNet,
"IPAdapterModel": ModelType.IPAdapter,
}
@classmethod
@ -367,6 +367,11 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
raise InvalidModelException("Unable to determine base type for {self.checkpoint_path}")
class IPAdapterCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
########################################################
# classes for probing folders
#######################################################
@ -486,11 +491,11 @@ class ControlNetFolderProbe(FolderProbeBase):
base_model = (
BaseModelType.StableDiffusion1
if dimension == 768
else BaseModelType.StableDiffusion2
else (
BaseModelType.StableDiffusion2
if dimension == 1024
else BaseModelType.StableDiffusionXL
if dimension == 2048
else None
else BaseModelType.StableDiffusionXL if dimension == 2048 else None
)
)
if not base_model:
raise InvalidModelException(f"Unable to determine model base for {self.folder_path}")
@ -510,15 +515,24 @@ class LoRAFolderProbe(FolderProbeBase):
return LoRACheckpointProbe(model_file, None).get_base_type()
class IPAdapterFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
############## register probe classes ######
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Vae, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Lora, LoRAFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe)
ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)

View File

@ -1,29 +1,36 @@
import inspect
import json
import os
import sys
import typing
import inspect
import warnings
from abc import ABCMeta, abstractmethod
from contextlib import suppress
from enum import Enum
from pathlib import Path
from picklescan.scanner import scan_file_path
from typing import (
Any,
Callable,
Dict,
Generic,
List,
Literal,
Optional,
Type,
TypeVar,
Union,
)
import torch
import numpy as np
import onnx
import safetensors.torch
from diffusers import DiffusionPipeline, ConfigMixin
from onnx import numpy_helper
from onnxruntime import (
InferenceSession,
SessionOptions,
get_available_providers,
)
from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
import torch
from diffusers import ConfigMixin, DiffusionPipeline
from diffusers import logging as diffusers_logging
from onnx import numpy_helper
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
from picklescan.scanner import scan_file_path
from pydantic import BaseModel, Field
from transformers import logging as transformers_logging
@ -54,6 +61,7 @@ class ModelType(str, Enum):
Lora = "lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
IPAdapter = "ipadapter"
class SubModelType(str, Enum):

View File

@ -0,0 +1,53 @@
import os
from enum import Enum
from typing import Any, Optional
import torch
from invokeai.backend.model_management.models.base import (
BaseModelType,
ModelBase,
ModelType,
SubModelType,
classproperty,
)
class IPAdapterModelFormat(Enum):
# The 'official' IP-Adapter model format from Tencent (i.e. https://huggingface.co/h94/IP-Adapter)
Tencent = "tencent"
class IPAdapterModel(ModelBase):
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.IPAdapter
super().__init__(model_path, base_model, model_type)
# TODO(ryand): Check correct files for model size calculation.
self.model_size = os.path.getsize(self.model_path)
@classmethod
def detect_format(cls, path: str) -> str:
if not os.path.exists(path):
raise ModuleNotFoundError(f"No IP-Adapter model at path '{path}'.")
raise NotImplementedError()
@classproperty
def save_to_config(cls) -> bool:
raise NotImplementedError()
def get_size(self, child_type: Optional[SubModelType] = None) -> int:
if child_type is not None:
raise ValueError("There are no child models in an IP-Adapter model.")
raise NotImplementedError()
def get_model(
self,
torch_dtype: Optional[torch.dtype],
child_type: Optional[SubModelType] = None,
) -> Any:
if child_type is not None:
raise ValueError("There are no child models in an IP-Adapter model.")
raise NotImplementedError()