mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
cleanup
This commit is contained in:
parent
30228ce2a4
commit
16b3718d6a
@ -261,13 +261,11 @@ async def update_model_metadata(
|
||||
changes: ModelMetadataChanges = Body(description="The changes")
|
||||
) -> Optional[AnyModelRepoMetadata]:
|
||||
"""Updates or creates a model metadata object."""
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
record_store = ApiDependencies.invoker.services.model_manager.store
|
||||
metadata_store = ApiDependencies.invoker.services.model_manager.store.metadata_store
|
||||
|
||||
try:
|
||||
original_metadata = record_store.get_metadata(key)
|
||||
print(original_metadata)
|
||||
if original_metadata:
|
||||
original_metadata.trigger_phrases = changes.trigger_phrases
|
||||
|
||||
@ -275,7 +273,6 @@ async def update_model_metadata(
|
||||
else:
|
||||
metadata_store.add_metadata(key, BaseMetadata(name="", author="",trigger_phrases=changes.trigger_phrases))
|
||||
except Exception as e:
|
||||
ApiDependencies.invoker.services.logger.error(traceback.format_exception(e))
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=f"An error occurred while updating the model metadata: {e}",
|
||||
@ -286,7 +283,6 @@ async def update_model_metadata(
|
||||
return result
|
||||
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
"/tags",
|
||||
operation_id="list_tags",
|
||||
|
@ -1,43 +1,40 @@
|
||||
from typing import Iterator, List, Optional, Tuple, Union
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
from compel import Compel, ReturnedEmbeddingsType
|
||||
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
OutputField,
|
||||
UIComponent,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.model_records import UnknownModelException
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.ti_utils import extract_ti_triggers_from_prompt
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import ModelType
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
|
||||
from invokeai.app.shared.fields import FieldDescriptions
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
BasicConditioningInfo,
|
||||
ConditioningFieldData,
|
||||
ExtraConditioningInfo,
|
||||
SDXLConditioningInfo,
|
||||
)
|
||||
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
||||
from invokeai.backend.util.devices import torch_dtype
|
||||
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.model_management.models import ModelNotFoundException, ModelType
|
||||
from ...backend.util.devices import torch_dtype
|
||||
from ..util.ti_utils import extract_ti_triggers_from_prompt
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Input,
|
||||
InputField,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIComponent,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .model import ClipField
|
||||
|
||||
# unconditioned: Optional[torch.Tensor]
|
||||
|
||||
@dataclass
|
||||
class ConditioningFieldData:
|
||||
conditionings: List[BasicConditioningInfo]
|
||||
# unconditioned: Optional[torch.Tensor]
|
||||
|
||||
|
||||
# class ConditioningAlgo(str, Enum):
|
||||
@ -51,7 +48,7 @@ from .model import ClipField
|
||||
title="Prompt",
|
||||
tags=["prompt", "compel"],
|
||||
category="conditioning",
|
||||
version="1.0.1",
|
||||
version="1.0.0",
|
||||
)
|
||||
class CompelInvocation(BaseInvocation):
|
||||
"""Parse prompt using compel package to conditioning."""
|
||||
@ -69,46 +66,49 @@ class CompelInvocation(BaseInvocation):
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
||||
tokenizer_info = context.models.load(**self.clip.tokenizer.model_dump())
|
||||
text_encoder_info = context.models.load(**self.clip.text_encoder.model_dump())
|
||||
tokenizer_info = context.services.model_manager.get_model(
|
||||
**self.clip.tokenizer.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
text_encoder_info = context.services.model_manager.get_model(
|
||||
**self.clip.text_encoder.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
def _lora_loader():
|
||||
for lora in self.clip.loras:
|
||||
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.model_dump(exclude={"weight"}), context=context
|
||||
)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
|
||||
ti_list = []
|
||||
for trigger in extract_ti_triggers_from_prompt(self.prompt):
|
||||
name_or_key = trigger[1:-1]
|
||||
print(f"name_or_key: {name_or_key}")
|
||||
name = trigger[1:-1]
|
||||
try:
|
||||
loaded_model = context.models.load(key=name_or_key)
|
||||
model = loaded_model.model
|
||||
print(model)
|
||||
assert isinstance(model, TextualInversionModelRaw)
|
||||
ti_list.append((name_or_key, model))
|
||||
except UnknownModelException:
|
||||
try:
|
||||
print(f"base: {text_encoder_info.config.base}")
|
||||
loaded_model = context.models.load_by_attrs(
|
||||
model_name=name_or_key, base_model=text_encoder_info.config.base, model_type=ModelType.TextualInversion
|
||||
ti_list.append(
|
||||
(
|
||||
name,
|
||||
context.services.model_manager.get_model(
|
||||
model_name=name,
|
||||
base_model=self.clip.text_encoder.base_model,
|
||||
model_type=ModelType.TextualInversion,
|
||||
context=context,
|
||||
).context.model,
|
||||
)
|
||||
model = loaded_model.model
|
||||
print(model)
|
||||
assert isinstance(model, TextualInversionModelRaw)
|
||||
ti_list.append((name_or_key, model))
|
||||
except UnknownModelException:
|
||||
logger.warning(f'trigger: "{trigger}" not found')
|
||||
except ValueError:
|
||||
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
|
||||
)
|
||||
except ModelNotFoundException:
|
||||
# print(e)
|
||||
# import traceback
|
||||
# print(traceback.format_exc())
|
||||
print(f'Warn: trigger: "{trigger}" not found')
|
||||
|
||||
with (
|
||||
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
|
||||
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
||||
tokenizer,
|
||||
ti_manager,
|
||||
),
|
||||
@ -116,7 +116,7 @@ class CompelInvocation(BaseInvocation):
|
||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.model, self.clip.skipped_layers),
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
|
||||
):
|
||||
compel = Compel(
|
||||
tokenizer=tokenizer,
|
||||
@ -128,7 +128,7 @@ class CompelInvocation(BaseInvocation):
|
||||
|
||||
conjunction = Compel.parse_prompt_string(self.prompt)
|
||||
|
||||
if context.config.get().log_tokenization:
|
||||
if context.services.configuration.log_tokenization:
|
||||
log_tokenization_for_conjunction(conjunction, tokenizer)
|
||||
|
||||
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
|
||||
@ -149,14 +149,17 @@ class CompelInvocation(BaseInvocation):
|
||||
]
|
||||
)
|
||||
|
||||
conditioning_name = context.conditioning.save(conditioning_data)
|
||||
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||
context.services.latents.save(conditioning_name, conditioning_data)
|
||||
|
||||
return ConditioningOutput.build(conditioning_name)
|
||||
return ConditioningOutput(
|
||||
conditioning=ConditioningField(
|
||||
conditioning_name=conditioning_name,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SDXLPromptInvocationBase:
|
||||
"""Prompt processor for SDXL models."""
|
||||
|
||||
def run_clip_compel(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
@ -165,21 +168,26 @@ class SDXLPromptInvocationBase:
|
||||
get_pooled: bool,
|
||||
lora_prefix: str,
|
||||
zero_on_empty: bool,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
|
||||
tokenizer_info = context.models.load(**clip_field.tokenizer.model_dump())
|
||||
text_encoder_info = context.models.load(**clip_field.text_encoder.model_dump())
|
||||
):
|
||||
tokenizer_info = context.services.model_manager.get_model(
|
||||
**clip_field.tokenizer.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
text_encoder_info = context.services.model_manager.get_model(
|
||||
**clip_field.text_encoder.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
# return zero on empty
|
||||
if prompt == "" and zero_on_empty:
|
||||
cpu_text_encoder = text_encoder_info.model
|
||||
assert isinstance(cpu_text_encoder, torch.nn.Module)
|
||||
cpu_text_encoder = text_encoder_info.context.model
|
||||
c = torch.zeros(
|
||||
(
|
||||
1,
|
||||
cpu_text_encoder.config.max_position_embeddings,
|
||||
cpu_text_encoder.config.hidden_size,
|
||||
),
|
||||
dtype=cpu_text_encoder.dtype,
|
||||
dtype=text_encoder_info.context.cache.precision,
|
||||
)
|
||||
if get_pooled:
|
||||
c_pooled = torch.zeros(
|
||||
@ -190,36 +198,40 @@ class SDXLPromptInvocationBase:
|
||||
c_pooled = None
|
||||
return c, c_pooled, None
|
||||
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
def _lora_loader():
|
||||
for lora in clip_field.loras:
|
||||
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
|
||||
lora_model = lora_info.model
|
||||
assert isinstance(lora_model, LoRAModelRaw)
|
||||
yield (lora_model, lora.weight)
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.model_dump(exclude={"weight"}), context=context
|
||||
)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
|
||||
ti_list = []
|
||||
for trigger in extract_ti_triggers_from_prompt(prompt):
|
||||
name = trigger[1:-1]
|
||||
try:
|
||||
ti_model = context.models.load_by_attrs(
|
||||
model_name=name, base_model=text_encoder_info.config.base, model_type=ModelType.TextualInversion
|
||||
).model
|
||||
assert isinstance(ti_model, TextualInversionModelRaw)
|
||||
ti_list.append((name, ti_model))
|
||||
except UnknownModelException:
|
||||
ti_list.append(
|
||||
(
|
||||
name,
|
||||
context.services.model_manager.get_model(
|
||||
model_name=name,
|
||||
base_model=clip_field.text_encoder.base_model,
|
||||
model_type=ModelType.TextualInversion,
|
||||
context=context,
|
||||
).context.model,
|
||||
)
|
||||
)
|
||||
except ModelNotFoundException:
|
||||
# print(e)
|
||||
# import traceback
|
||||
# print(traceback.format_exc())
|
||||
logger.warning(f'trigger: "{trigger}" not found')
|
||||
except ValueError:
|
||||
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
|
||||
print(f'Warn: trigger: "{trigger}" not found')
|
||||
|
||||
with (
|
||||
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
|
||||
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
||||
tokenizer,
|
||||
ti_manager,
|
||||
),
|
||||
@ -227,7 +239,7 @@ class SDXLPromptInvocationBase:
|
||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.model, clip_field.skipped_layers),
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
|
||||
):
|
||||
compel = Compel(
|
||||
tokenizer=tokenizer,
|
||||
@ -241,7 +253,7 @@ class SDXLPromptInvocationBase:
|
||||
|
||||
conjunction = Compel.parse_prompt_string(prompt)
|
||||
|
||||
if context.config.get().log_tokenization:
|
||||
if context.services.configuration.log_tokenization:
|
||||
# TODO: better logging for and syntax
|
||||
log_tokenization_for_conjunction(conjunction, tokenizer)
|
||||
|
||||
@ -274,7 +286,7 @@ class SDXLPromptInvocationBase:
|
||||
title="SDXL Prompt",
|
||||
tags=["sdxl", "compel", "prompt"],
|
||||
category="conditioning",
|
||||
version="1.0.1",
|
||||
version="1.0.0",
|
||||
)
|
||||
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
"""Parse prompt using compel package to conditioning."""
|
||||
@ -345,7 +357,6 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
dim=1,
|
||||
)
|
||||
|
||||
assert c2_pooled is not None
|
||||
conditioning_data = ConditioningFieldData(
|
||||
conditionings=[
|
||||
SDXLConditioningInfo(
|
||||
@ -357,9 +368,14 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
]
|
||||
)
|
||||
|
||||
conditioning_name = context.conditioning.save(conditioning_data)
|
||||
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||
context.services.latents.save(conditioning_name, conditioning_data)
|
||||
|
||||
return ConditioningOutput.build(conditioning_name)
|
||||
return ConditioningOutput(
|
||||
conditioning=ConditioningField(
|
||||
conditioning_name=conditioning_name,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
@ -367,7 +383,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
title="SDXL Refiner Prompt",
|
||||
tags=["sdxl", "compel", "prompt"],
|
||||
category="conditioning",
|
||||
version="1.0.1",
|
||||
version="1.0.0",
|
||||
)
|
||||
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
"""Parse prompt using compel package to conditioning."""
|
||||
@ -394,7 +410,6 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
|
||||
|
||||
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
|
||||
|
||||
assert c2_pooled is not None
|
||||
conditioning_data = ConditioningFieldData(
|
||||
conditionings=[
|
||||
SDXLConditioningInfo(
|
||||
@ -406,9 +421,14 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
|
||||
]
|
||||
)
|
||||
|
||||
conditioning_name = context.conditioning.save(conditioning_data)
|
||||
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||
context.services.latents.save(conditioning_name, conditioning_data)
|
||||
|
||||
return ConditioningOutput.build(conditioning_name)
|
||||
return ConditioningOutput(
|
||||
conditioning=ConditioningField(
|
||||
conditioning_name=conditioning_name,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@invocation_output("clip_skip_output")
|
||||
@ -429,7 +449,7 @@ class ClipSkipInvocation(BaseInvocation):
|
||||
"""Skip layers in clip text_encoder model."""
|
||||
|
||||
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
|
||||
skipped_layers: int = InputField(default=0, ge=0, description=FieldDescriptions.skipped_layers)
|
||||
skipped_layers: int = InputField(default=0, description=FieldDescriptions.skipped_layers)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
|
||||
self.clip.skipped_layers += self.skipped_layers
|
||||
@ -439,9 +459,9 @@ class ClipSkipInvocation(BaseInvocation):
|
||||
|
||||
|
||||
def get_max_token_count(
|
||||
tokenizer: CLIPTokenizer,
|
||||
tokenizer,
|
||||
prompt: Union[FlattenedPrompt, Blend, Conjunction],
|
||||
truncate_if_too_long: bool = False,
|
||||
truncate_if_too_long=False,
|
||||
) -> int:
|
||||
if type(prompt) is Blend:
|
||||
blend: Blend = prompt
|
||||
@ -453,9 +473,7 @@ def get_max_token_count(
|
||||
return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
|
||||
|
||||
|
||||
def get_tokens_for_prompt_object(
|
||||
tokenizer: CLIPTokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long: bool = True
|
||||
) -> List[str]:
|
||||
def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> List[str]:
|
||||
if type(parsed_prompt) is Blend:
|
||||
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
|
||||
|
||||
@ -468,29 +486,24 @@ def get_tokens_for_prompt_object(
|
||||
for x in parsed_prompt.children
|
||||
]
|
||||
text = " ".join(text_fragments)
|
||||
tokens: List[str] = tokenizer.tokenize(text)
|
||||
tokens = tokenizer.tokenize(text)
|
||||
if truncate_if_too_long:
|
||||
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
|
||||
tokens = tokens[0:max_tokens_length]
|
||||
return tokens
|
||||
|
||||
|
||||
def log_tokenization_for_conjunction(
|
||||
c: Conjunction, tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
|
||||
) -> None:
|
||||
def log_tokenization_for_conjunction(c: Conjunction, tokenizer, display_label_prefix=None):
|
||||
display_label_prefix = display_label_prefix or ""
|
||||
for i, p in enumerate(c.prompts):
|
||||
if len(c.prompts) > 1:
|
||||
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
|
||||
else:
|
||||
assert display_label_prefix is not None
|
||||
this_display_label_prefix = display_label_prefix
|
||||
log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix)
|
||||
|
||||
|
||||
def log_tokenization_for_prompt_object(
|
||||
p: Union[Blend, FlattenedPrompt], tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
|
||||
) -> None:
|
||||
def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None):
|
||||
display_label_prefix = display_label_prefix or ""
|
||||
if type(p) is Blend:
|
||||
blend: Blend = p
|
||||
@ -530,12 +543,7 @@ def log_tokenization_for_prompt_object(
|
||||
log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
|
||||
|
||||
|
||||
def log_tokenization_for_text(
|
||||
text: str,
|
||||
tokenizer: CLIPTokenizer,
|
||||
display_label: Optional[str] = None,
|
||||
truncate_if_too_long: Optional[bool] = False,
|
||||
) -> None:
|
||||
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
|
||||
"""shows how the prompt is tokenized
|
||||
# usually tokens have '</w>' to indicate end-of-word,
|
||||
# but for readability it has been replaced with ' '
|
||||
|
@ -38,8 +38,6 @@ class ModelMetadataStoreSQL(ModelMetadataStoreBase):
|
||||
:param metadata: ModelRepoMetadata object to store
|
||||
"""
|
||||
json_serialized = metadata.model_dump_json()
|
||||
print("json_serialized")
|
||||
print(json_serialized)
|
||||
with self._db.lock:
|
||||
try:
|
||||
self._cursor.execute(
|
||||
@ -55,7 +53,7 @@ class ModelMetadataStoreSQL(ModelMetadataStoreBase):
|
||||
json_serialized,
|
||||
),
|
||||
)
|
||||
# self._update_tags(model_key, metadata.tags)
|
||||
self._update_tags(model_key, metadata.tags)
|
||||
self._db.conn.commit()
|
||||
except sqlite3.IntegrityError as excp: # FOREIGN KEY error: the key was not in model_config table
|
||||
self._db.conn.rollback()
|
||||
@ -63,8 +61,6 @@ class ModelMetadataStoreSQL(ModelMetadataStoreBase):
|
||||
except sqlite3.Error as excp:
|
||||
self._db.conn.rollback()
|
||||
raise excp
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
def get_metadata(self, model_key: str) -> AnyModelRepoMetadata:
|
||||
"""Retrieve the ModelRepoMetadata corresponding to model key."""
|
||||
|
@ -171,8 +171,6 @@ class ModelPatcher:
|
||||
text_encoder: CLIPTextModel,
|
||||
ti_list: List[Tuple[str, TextualInversionModelRaw]],
|
||||
) -> Iterator[Tuple[CLIPTokenizer, TextualInversionManager]]:
|
||||
print("TI LIST")
|
||||
print(ti_list)
|
||||
init_tokens_count = None
|
||||
new_tokens_added = None
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user