Bring main back into a consistent state with other branches

- Due to misuse of rebase command, main was transiently
  in an inconsistent state.

- This repairs the damage, and adds a few post-release
  patches that ensure stable conda installs on Mac and Windows.
This commit is contained in:
Lincoln Stein 2022-11-03 15:44:06 -04:00
commit 174a9b78b0
370 changed files with 32709 additions and 9854 deletions

3
.dockerignore Normal file
View File

@ -0,0 +1,3 @@
*
!environment*.yml
!docker-build

42
.github/workflows/build-container.yml vendored Normal file
View File

@ -0,0 +1,42 @@
# Building the Image without pushing to confirm it is still buildable
# confirum functionality would unfortunately need way more resources
name: build container image
on:
push:
branches:
- 'main'
- 'development'
pull_request:
branches:
- 'main'
- 'development'
jobs:
docker:
runs-on: ubuntu-latest
steps:
- name: prepare docker-tag
env:
repository: ${{ github.repository }}
run: echo "dockertag=${repository,,}" >> $GITHUB_ENV
- name: Checkout
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Cache Docker layers
uses: actions/cache@v2
with:
path: /tmp/.buildx-cache
key: buildx-${{ hashFiles('docker-build/Dockerfile') }}
- name: Build container
uses: docker/build-push-action@v3
with:
context: .
file: docker-build/Dockerfile
platforms: linux/amd64
push: false
tags: ${{ env.dockertag }}:latest
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache

View File

@ -54,27 +54,10 @@ jobs:
[[ -d models/ldm/stable-diffusion-v1 ]] \
|| mkdir -p models/ldm/stable-diffusion-v1
[[ -r models/ldm/stable-diffusion-v1/model.ckpt ]] \
|| curl -o models/ldm/stable-diffusion-v1/model.ckpt ${{ secrets.SD_V1_4_URL }}
- name: Use cached Conda Environment
uses: actions/cache@v3
env:
cache-name: cache-conda-env-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA_ROOT }}/envs/${{ env.CONDA_ENV_NAME }}
key: ${{ env.cache-name }}
restore-keys: ${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Use cached Conda Packages
uses: actions/cache@v3
env:
cache-name: cache-conda-env-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA_PKGS_DIR }}
key: ${{ env.cache-name }}
restore-keys: ${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
|| curl \
-H "Authorization: Bearer ${{ secrets.HUGGINGFACE_TOKEN }}" \
-o models/ldm/stable-diffusion-v1/model.ckpt \
-L https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
- name: Activate Conda Env
uses: conda-incubator/setup-miniconda@v2

View File

@ -1,4 +1,4 @@
name: Test Invoke with Conda
name: Test invoke.py
on:
push:
branches:
@ -11,31 +11,57 @@ on:
- 'development'
jobs:
os_matrix:
strategy:
matrix:
os: [ubuntu-latest, macos-latest]
strategy:
fail-fast: false
matrix:
stable-diffusion-model:
# - 'https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt'
- 'https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt'
os:
- ubuntu-latest
- macOS-12
include:
- os: ubuntu-latest
environment-file: environment.yml
default-shell: bash -l {0}
- os: macos-latest
- os: macOS-12
environment-file: environment-mac.yml
default-shell: bash -l {0}
name: Test invoke.py on ${{ matrix.os }} with conda
# - stable-diffusion-model: https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
# stable-diffusion-model-dl-path: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
# stable-diffusion-model-switch: stable-diffusion-1.4
- stable-diffusion-model: https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt
stable-diffusion-model-dl-path: models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt
stable-diffusion-model-switch: stable-diffusion-1.5
name: ${{ matrix.os }} with ${{ matrix.stable-diffusion-model-switch }}
runs-on: ${{ matrix.os }}
env:
CONDA_ENV_NAME: invokeai
defaults:
run:
shell: ${{ matrix.default-shell }}
steps:
- name: Checkout sources
id: checkout-sources
uses: actions/checkout@v3
- name: setup miniconda
- name: create models.yaml from example
run: cp configs/models.yaml.example configs/models.yaml
- name: Use cached conda packages
id: use-cached-conda-packages
uses: actions/cache@v3
with:
path: ~/conda_pkgs_dir
key: conda-pkgs-${{ runner.os }}-${{ runner.arch }}-${{ hashFiles(matrix.environment-file) }}
- name: Activate Conda Env
id: activate-conda-env
uses: conda-incubator/setup-miniconda@v2
with:
auto-activate-base: false
auto-update-conda: false
activate-environment: ${{ env.CONDA_ENV_NAME }}
environment-file: ${{ matrix.environment-file }}
miniconda-version: latest
- name: set test prompt to main branch validation
@ -48,79 +74,40 @@ jobs:
- name: set test prompt to Pull Request validation
if: ${{ github.ref != 'refs/heads/main' && github.ref != 'refs/heads/development' }}
run: echo "TEST_PROMPTS=tests/pr_prompt.txt" >> $GITHUB_ENV
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> $GITHUB_ENV
- name: set conda environment name
run: echo "CONDA_ENV_NAME=invokeai" >> $GITHUB_ENV
- name: Use Cached Stable Diffusion v1.4 Model
id: cache-sd-v1-4
uses: actions/cache@v3
env:
cache-name: cache-sd-v1-4
with:
path: models/ldm/stable-diffusion-v1/model.ckpt
key: ${{ env.cache-name }}
restore-keys: ${{ env.cache-name }}
- name: Download Stable Diffusion v1.4 Model
if: ${{ steps.cache-sd-v1-4.outputs.cache-hit != 'true' }}
- name: Download ${{ matrix.stable-diffusion-model-switch }}
id: download-stable-diffusion-model
run: |
[[ -d models/ldm/stable-diffusion-v1 ]] \
|| mkdir -p models/ldm/stable-diffusion-v1
[[ -r models/ldm/stable-diffusion-v1/model.ckpt ]] \
|| curl -o models/ldm/stable-diffusion-v1/model.ckpt ${{ secrets.SD_V1_4_URL }}
- name: Use cached Conda Environment
uses: actions/cache@v3
env:
cache-name: cache-conda-env-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA }}/envs/${{ env.CONDA_ENV_NAME }}
key: env-${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Use cached Conda Packages
uses: actions/cache@v3
env:
cache-name: cache-conda-pkgs-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA_PKGS_DIR }}
key: pkgs-${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Activate Conda Env
uses: conda-incubator/setup-miniconda@v2
with:
activate-environment: ${{ env.CONDA_ENV_NAME }}
environment-file: ${{ matrix.environment-file }}
- name: Use Cached Huggingface and Torch models
id: cache-hugginface-torch
uses: actions/cache@v3
env:
cache-name: cache-hugginface-torch
with:
path: ~/.cache
key: ${{ env.cache-name }}
restore-keys: |
${{ env.cache-name }}-${{ hashFiles('scripts/preload_models.py') }}
curl \
-H "Authorization: Bearer ${{ secrets.HUGGINGFACE_TOKEN }}" \
-o ${{ matrix.stable-diffusion-model-dl-path }} \
-L ${{ matrix.stable-diffusion-model }}
- name: run preload_models.py
run: python scripts/preload_models.py
id: run-preload-models
run: |
python scripts/preload_models.py \
--no-interactive
- name: Run the tests
id: run-tests
run: |
time python scripts/invoke.py \
--model ${{ matrix.stable-diffusion-model-switch }} \
--from_file ${{ env.TEST_PROMPTS }}
- name: export conda env
id: export-conda-env
run: |
mkdir -p outputs/img-samples
conda env export --name ${{ env.CONDA_ENV_NAME }} > outputs/img-samples/environment-${{ runner.os }}.yml
conda env export --name ${{ env.CONDA_ENV_NAME }} > outputs/img-samples/environment-${{ runner.os }}-${{ runner.arch }}.yml
- name: Archive results
id: archive-results
uses: actions/upload-artifact@v3
with:
name: results_${{ matrix.os }}
name: results_${{ matrix.os }}_${{ matrix.stable-diffusion-model-switch }}
path: outputs/img-samples

12
.gitignore vendored
View File

@ -3,6 +3,10 @@ outputs/
models/ldm/stable-diffusion-v1/model.ckpt
**/restoration/codeformer/weights
# ignore user models config
configs/models.user.yaml
config/models.user.yml
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
@ -195,7 +199,13 @@ checkpoints
.scratch/
.vscode/
gfpgan/
models/ldm/stable-diffusion-v1/model.sha256
models/ldm/stable-diffusion-v1/*.sha256
# GFPGAN model files
gfpgan/
# config file (will be created by installer)
configs/models.yaml
# weights (will be created by installer)
models/ldm/stable-diffusion-v1/*.ckpt

View File

@ -2,7 +2,7 @@
# InvokeAI: A Stable Diffusion Toolkit
_Formally known as lstein/stable-diffusion_
_Formerly known as lstein/stable-diffusion_
![project logo](docs/assets/logo.png)

BIN
assets/caution.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

File diff suppressed because it is too large Load Diff

View File

@ -1,822 +0,0 @@
import mimetypes
import transformers
import json
import os
import traceback
import eventlet
import glob
import shlex
import math
import shutil
import sys
sys.path.append(".")
from argparse import ArgumentTypeError
from modules.create_cmd_parser import create_cmd_parser
parser = create_cmd_parser()
opt = parser.parse_args()
from flask_socketio import SocketIO
from flask import Flask, send_from_directory, url_for, jsonify
from pathlib import Path
from PIL import Image
from pytorch_lightning import logging
from threading import Event
from uuid import uuid4
from send2trash import send2trash
from ldm.generate import Generate
from ldm.invoke.restoration import Restoration
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata
from ldm.invoke.args import APP_ID, APP_VERSION, calculate_init_img_hash
from ldm.invoke.conditioning import split_weighted_subprompts
from modules.parameters import parameters_to_command
"""
USER CONFIG
"""
if opt.cors and "*" in opt.cors:
raise ArgumentTypeError('"*" is not an allowed CORS origin')
output_dir = "outputs/" # Base output directory for images
host = opt.host # Web & socket.io host
port = opt.port # Web & socket.io port
verbose = opt.verbose # enables copious socket.io logging
precision = opt.precision
free_gpu_mem = opt.free_gpu_mem
embedding_path = opt.embedding_path
additional_allowed_origins = (
opt.cors if opt.cors else []
) # additional CORS allowed origins
model = "stable-diffusion-1.4"
"""
END USER CONFIG
"""
print("* Initializing, be patient...\n")
"""
SERVER SETUP
"""
# fix missing mimetypes on windows due to registry wonkiness
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
app = Flask(__name__, static_url_path="", static_folder="../frontend/dist/")
app.config["OUTPUTS_FOLDER"] = "../outputs"
@app.route("/outputs/<path:filename>")
def outputs(filename):
return send_from_directory(app.config["OUTPUTS_FOLDER"], filename)
@app.route("/", defaults={"path": ""})
def serve(path):
return send_from_directory(app.static_folder, "index.html")
logger = True if verbose else False
engineio_logger = True if verbose else False
# default 1,000,000, needs to be higher for socketio to accept larger images
max_http_buffer_size = 10000000
cors_allowed_origins = [f"http://{host}:{port}"] + additional_allowed_origins
socketio = SocketIO(
app,
logger=logger,
engineio_logger=engineio_logger,
max_http_buffer_size=max_http_buffer_size,
cors_allowed_origins=cors_allowed_origins,
ping_interval=(50, 50),
ping_timeout=60,
)
"""
END SERVER SETUP
"""
"""
APP SETUP
"""
class CanceledException(Exception):
pass
try:
gfpgan, codeformer, esrgan = None, None, None
from ldm.invoke.restoration.base import Restoration
restoration = Restoration()
gfpgan, codeformer = restoration.load_face_restore_models()
esrgan = restoration.load_esrgan()
# coreformer.process(self, image, strength, device, seed=None, fidelity=0.75)
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
canceled = Event()
# reduce logging outputs to error
transformers.logging.set_verbosity_error()
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
# Initialize and load model
generate = Generate(
model,
precision=precision,
embedding_path=embedding_path,
)
generate.free_gpu_mem = free_gpu_mem
generate.load_model()
# location for "finished" images
result_path = os.path.join(output_dir, "img-samples/")
# temporary path for intermediates
intermediate_path = os.path.join(result_path, "intermediates/")
# path for user-uploaded init images and masks
init_image_path = os.path.join(result_path, "init-images/")
mask_image_path = os.path.join(result_path, "mask-images/")
# txt log
log_path = os.path.join(result_path, "invoke_log.txt")
# make all output paths
[
os.makedirs(path, exist_ok=True)
for path in [result_path, intermediate_path, init_image_path, mask_image_path]
]
"""
END APP SETUP
"""
"""
SOCKET.IO LISTENERS
"""
@socketio.on("requestSystemConfig")
def handle_request_capabilities():
print(f">> System config requested")
config = get_system_config()
socketio.emit("systemConfig", config)
@socketio.on("requestImages")
def handle_request_images(page=1, offset=0, last_mtime=None):
chunk_size = 50
if last_mtime:
print(f">> Latest images requested")
else:
print(
f">> Page {page} of images requested (page size {chunk_size} offset {offset})"
)
paths = glob.glob(os.path.join(result_path, "*.png"))
sorted_paths = sorted(paths, key=lambda x: os.path.getmtime(x), reverse=True)
if last_mtime:
image_paths = filter(lambda x: os.path.getmtime(x) > last_mtime, sorted_paths)
else:
image_paths = sorted_paths[
slice(chunk_size * (page - 1) + offset, chunk_size * page + offset)
]
page = page + 1
image_array = []
for path in image_paths:
metadata = retrieve_metadata(path)
image_array.append(
{
"url": path,
"mtime": os.path.getmtime(path),
"metadata": metadata["sd-metadata"],
}
)
socketio.emit(
"galleryImages",
{
"images": image_array,
"nextPage": page,
"offset": offset,
"onlyNewImages": True if last_mtime else False,
},
)
@socketio.on("generateImage")
def handle_generate_image_event(
generation_parameters, esrgan_parameters, gfpgan_parameters
):
print(
f">> Image generation requested: {generation_parameters}\nESRGAN parameters: {esrgan_parameters}\nGFPGAN parameters: {gfpgan_parameters}"
)
generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters)
@socketio.on("runESRGAN")
def handle_run_esrgan_event(original_image, esrgan_parameters):
print(
f'>> ESRGAN upscale requested for "{original_image["url"]}": {esrgan_parameters}'
)
progress = {
"currentStep": 1,
"totalSteps": 1,
"currentIteration": 1,
"totalIterations": 1,
"currentStatus": "Preparing",
"isProcessing": True,
"currentStatusHasSteps": False,
}
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = Image.open(original_image["url"])
seed = (
original_image["metadata"]["seed"]
if "seed" in original_image["metadata"]
else "unknown_seed"
)
progress["currentStatus"] = "Upscaling"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = esrgan.process(
image=image,
upsampler_scale=esrgan_parameters["upscale"][0],
strength=esrgan_parameters["upscale"][1],
seed=seed,
)
progress["currentStatus"] = "Saving image"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
esrgan_parameters["seed"] = seed
metadata = parameters_to_post_processed_image_metadata(
parameters=esrgan_parameters,
original_image_path=original_image["url"],
type="esrgan",
)
command = parameters_to_command(esrgan_parameters)
path = save_image(image, command, metadata, result_path, postprocessing="esrgan")
write_log_message(f'[Upscaled] "{original_image["url"]}" > "{path}": {command}')
progress["currentStatus"] = "Finished"
progress["currentStep"] = 0
progress["totalSteps"] = 0
progress["currentIteration"] = 0
progress["totalIterations"] = 0
progress["isProcessing"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
socketio.emit(
"esrganResult",
{
"url": os.path.relpath(path),
"mtime": os.path.getmtime(path),
"metadata": metadata,
},
)
@socketio.on("runGFPGAN")
def handle_run_gfpgan_event(original_image, gfpgan_parameters):
print(
f'>> GFPGAN face fix requested for "{original_image["url"]}": {gfpgan_parameters}'
)
progress = {
"currentStep": 1,
"totalSteps": 1,
"currentIteration": 1,
"totalIterations": 1,
"currentStatus": "Preparing",
"isProcessing": True,
"currentStatusHasSteps": False,
}
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = Image.open(original_image["url"])
seed = (
original_image["metadata"]["seed"]
if "seed" in original_image["metadata"]
else "unknown_seed"
)
progress["currentStatus"] = "Fixing faces"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = gfpgan.process(
image=image, strength=gfpgan_parameters["facetool_strength"], seed=seed
)
progress["currentStatus"] = "Saving image"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
gfpgan_parameters["seed"] = seed
metadata = parameters_to_post_processed_image_metadata(
parameters=gfpgan_parameters,
original_image_path=original_image["url"],
type="gfpgan",
)
command = parameters_to_command(gfpgan_parameters)
path = save_image(image, command, metadata, result_path, postprocessing="gfpgan")
write_log_message(f'[Fixed faces] "{original_image["url"]}" > "{path}": {command}')
progress["currentStatus"] = "Finished"
progress["currentStep"] = 0
progress["totalSteps"] = 0
progress["currentIteration"] = 0
progress["totalIterations"] = 0
progress["isProcessing"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
socketio.emit(
"gfpganResult",
{
"url": os.path.relpath(path),
"mtime": os.path.mtime(path),
"metadata": metadata,
},
)
@socketio.on("cancel")
def handle_cancel():
print(f">> Cancel processing requested")
canceled.set()
socketio.emit("processingCanceled")
# TODO: I think this needs a safety mechanism.
@socketio.on("deleteImage")
def handle_delete_image(path, uuid):
print(f'>> Delete requested "{path}"')
send2trash(path)
socketio.emit("imageDeleted", {"url": path, "uuid": uuid})
# TODO: I think this needs a safety mechanism.
@socketio.on("uploadInitialImage")
def handle_upload_initial_image(bytes, name):
print(f'>> Init image upload requested "{name}"')
uuid = uuid4().hex
split = os.path.splitext(name)
name = f"{split[0]}.{uuid}{split[1]}"
file_path = os.path.join(init_image_path, name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
newFile = open(file_path, "wb")
newFile.write(bytes)
socketio.emit("initialImageUploaded", {"url": file_path, "uuid": ""})
# TODO: I think this needs a safety mechanism.
@socketio.on("uploadMaskImage")
def handle_upload_mask_image(bytes, name):
print(f'>> Mask image upload requested "{name}"')
uuid = uuid4().hex
split = os.path.splitext(name)
name = f"{split[0]}.{uuid}{split[1]}"
file_path = os.path.join(mask_image_path, name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
newFile = open(file_path, "wb")
newFile.write(bytes)
socketio.emit("maskImageUploaded", {"url": file_path, "uuid": ""})
"""
END SOCKET.IO LISTENERS
"""
"""
ADDITIONAL FUNCTIONS
"""
def get_system_config():
return {
"model": "stable diffusion",
"model_id": model,
"model_hash": generate.model_hash,
"app_id": APP_ID,
"app_version": APP_VERSION,
}
def parameters_to_post_processed_image_metadata(parameters, original_image_path, type):
# top-level metadata minus `image` or `images`
metadata = get_system_config()
orig_hash = calculate_init_img_hash(original_image_path)
image = {"orig_path": original_image_path, "orig_hash": orig_hash}
if type == "esrgan":
image["type"] = "esrgan"
image["scale"] = parameters["upscale"][0]
image["strength"] = parameters["upscale"][1]
elif type == "gfpgan":
image["type"] = "gfpgan"
image["strength"] = parameters["facetool_strength"]
else:
raise TypeError(f"Invalid type: {type}")
metadata["image"] = image
return metadata
def parameters_to_generated_image_metadata(parameters):
# top-level metadata minus `image` or `images`
metadata = get_system_config()
# remove any image keys not mentioned in RFC #266
rfc266_img_fields = [
"type",
"postprocessing",
"sampler",
"prompt",
"seed",
"variations",
"steps",
"cfg_scale",
"threshold",
"perlin",
"step_number",
"width",
"height",
"extra",
"seamless",
"hires_fix",
]
rfc_dict = {}
for item in parameters.items():
key, value = item
if key in rfc266_img_fields:
rfc_dict[key] = value
postprocessing = []
# 'postprocessing' is either null or an
if "facetool_strength" in parameters:
postprocessing.append(
{"type": "gfpgan", "strength": float(parameters["facetool_strength"])}
)
if "upscale" in parameters:
postprocessing.append(
{
"type": "esrgan",
"scale": int(parameters["upscale"][0]),
"strength": float(parameters["upscale"][1]),
}
)
rfc_dict["postprocessing"] = postprocessing if len(postprocessing) > 0 else None
# semantic drift
rfc_dict["sampler"] = parameters["sampler_name"]
# display weighted subprompts (liable to change)
subprompts = split_weighted_subprompts(parameters["prompt"])
subprompts = [{"prompt": x[0], "weight": x[1]} for x in subprompts]
rfc_dict["prompt"] = subprompts
# 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs
variations = []
if "with_variations" in parameters:
variations = [
{"seed": x[0], "weight": x[1]} for x in parameters["with_variations"]
]
rfc_dict["variations"] = variations
if "init_img" in parameters:
rfc_dict["type"] = "img2img"
rfc_dict["strength"] = parameters["strength"]
rfc_dict["fit"] = parameters["fit"] # TODO: Noncompliant
rfc_dict["orig_hash"] = calculate_init_img_hash(parameters["init_img"])
rfc_dict["init_image_path"] = parameters["init_img"] # TODO: Noncompliant
rfc_dict["sampler"] = "ddim" # TODO: FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
if "init_mask" in parameters:
rfc_dict["mask_hash"] = calculate_init_img_hash(
parameters["init_mask"]
) # TODO: Noncompliant
rfc_dict["mask_image_path"] = parameters["init_mask"] # TODO: Noncompliant
else:
rfc_dict["type"] = "txt2img"
metadata["image"] = rfc_dict
return metadata
def make_unique_init_image_filename(name):
uuid = uuid4().hex
split = os.path.splitext(name)
name = f"{split[0]}.{uuid}{split[1]}"
return name
def write_log_message(message, log_path=log_path):
"""Logs the filename and parameters used to generate or process that image to log file"""
message = f"{message}\n"
with open(log_path, "a", encoding="utf-8") as file:
file.writelines(message)
def save_image(
image, command, metadata, output_dir, step_index=None, postprocessing=False
):
pngwriter = PngWriter(output_dir)
prefix = pngwriter.unique_prefix()
seed = "unknown_seed"
if "image" in metadata:
if "seed" in metadata["image"]:
seed = metadata["image"]["seed"]
filename = f"{prefix}.{seed}"
if step_index:
filename += f".{step_index}"
if postprocessing:
filename += f".postprocessed"
filename += ".png"
path = pngwriter.save_image_and_prompt_to_png(
image=image, dream_prompt=command, metadata=metadata, name=filename
)
return path
def calculate_real_steps(steps, strength, has_init_image):
return math.floor(strength * steps) if has_init_image else steps
def generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters):
canceled.clear()
step_index = 1
prior_variations = (
generation_parameters["with_variations"]
if "with_variations" in generation_parameters
else []
)
"""
If a result image is used as an init image, and then deleted, we will want to be
able to use it as an init image in the future. Need to copy it.
If the init/mask image doesn't exist in the init_image_path/mask_image_path,
make a unique filename for it and copy it there.
"""
if "init_img" in generation_parameters:
filename = os.path.basename(generation_parameters["init_img"])
if not os.path.exists(os.path.join(init_image_path, filename)):
unique_filename = make_unique_init_image_filename(filename)
new_path = os.path.join(init_image_path, unique_filename)
shutil.copy(generation_parameters["init_img"], new_path)
generation_parameters["init_img"] = new_path
if "init_mask" in generation_parameters:
filename = os.path.basename(generation_parameters["init_mask"])
if not os.path.exists(os.path.join(mask_image_path, filename)):
unique_filename = make_unique_init_image_filename(filename)
new_path = os.path.join(init_image_path, unique_filename)
shutil.copy(generation_parameters["init_img"], new_path)
generation_parameters["init_mask"] = new_path
totalSteps = calculate_real_steps(
steps=generation_parameters["steps"],
strength=generation_parameters["strength"]
if "strength" in generation_parameters
else None,
has_init_image="init_img" in generation_parameters,
)
progress = {
"currentStep": 1,
"totalSteps": totalSteps,
"currentIteration": 1,
"totalIterations": generation_parameters["iterations"],
"currentStatus": "Preparing",
"isProcessing": True,
"currentStatusHasSteps": False,
}
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
def image_progress(sample, step):
if canceled.is_set():
raise CanceledException
nonlocal step_index
nonlocal generation_parameters
nonlocal progress
progress["currentStep"] = step + 1
progress["currentStatus"] = "Generating"
progress["currentStatusHasSteps"] = True
if (
generation_parameters["progress_images"]
and step % 5 == 0
and step < generation_parameters["steps"] - 1
):
image = generate.sample_to_image(sample)
metadata = parameters_to_generated_image_metadata(generation_parameters)
command = parameters_to_command(generation_parameters)
path = save_image(image, command, metadata, intermediate_path, step_index=step_index, postprocessing=False)
step_index += 1
socketio.emit(
"intermediateResult",
{
"url": os.path.relpath(path),
"mtime": os.path.getmtime(path),
"metadata": metadata,
},
)
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
def image_done(image, seed, first_seed):
nonlocal generation_parameters
nonlocal esrgan_parameters
nonlocal gfpgan_parameters
nonlocal progress
step_index = 1
nonlocal prior_variations
progress["currentStatus"] = "Generation complete"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
all_parameters = generation_parameters
postprocessing = False
if (
"variation_amount" in all_parameters
and all_parameters["variation_amount"] > 0
):
first_seed = first_seed or seed
this_variation = [[seed, all_parameters["variation_amount"]]]
all_parameters["with_variations"] = prior_variations + this_variation
all_parameters["seed"] = first_seed
elif ("with_variations" in all_parameters):
all_parameters["seed"] = first_seed
else:
all_parameters["seed"] = seed
if esrgan_parameters:
progress["currentStatus"] = "Upscaling"
progress["currentStatusHasSteps"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = esrgan.process(
image=image,
upsampler_scale=esrgan_parameters["level"],
strength=esrgan_parameters["strength"],
seed=seed,
)
postprocessing = True
all_parameters["upscale"] = [
esrgan_parameters["level"],
esrgan_parameters["strength"],
]
if gfpgan_parameters:
progress["currentStatus"] = "Fixing faces"
progress["currentStatusHasSteps"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = gfpgan.process(
image=image, strength=gfpgan_parameters["strength"], seed=seed
)
postprocessing = True
all_parameters["facetool_strength"] = gfpgan_parameters["strength"]
progress["currentStatus"] = "Saving image"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
metadata = parameters_to_generated_image_metadata(all_parameters)
command = parameters_to_command(all_parameters)
path = save_image(
image, command, metadata, result_path, postprocessing=postprocessing
)
print(f'>> Image generated: "{path}"')
write_log_message(f'[Generated] "{path}": {command}')
if progress["totalIterations"] > progress["currentIteration"]:
progress["currentStep"] = 1
progress["currentIteration"] += 1
progress["currentStatus"] = "Iteration finished"
progress["currentStatusHasSteps"] = False
else:
progress["currentStep"] = 0
progress["totalSteps"] = 0
progress["currentIteration"] = 0
progress["totalIterations"] = 0
progress["currentStatus"] = "Finished"
progress["isProcessing"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
socketio.emit(
"generationResult",
{
"url": os.path.relpath(path),
"mtime": os.path.getmtime(path),
"metadata": metadata,
},
)
eventlet.sleep(0)
try:
generate.prompt2image(
**generation_parameters,
step_callback=image_progress,
image_callback=image_done,
)
except KeyboardInterrupt:
raise
except CanceledException:
pass
except Exception as e:
socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
"""
END ADDITIONAL FUNCTIONS
"""
if __name__ == "__main__":
print(f">> Starting server at http://{host}:{port}")
socketio.run(app, host=host, port=port)

View File

@ -1,54 +0,0 @@
model:
base_learning_rate: 4.5e-6
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: "val/rec_loss"
embed_dim: 16
lossconfig:
target: ldm.modules.losses.LPIPSWithDiscriminator
params:
disc_start: 50001
kl_weight: 0.000001
disc_weight: 0.5
ddconfig:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,1,2,2,4] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [16]
dropout: 0.0
data:
target: main.DataModuleFromConfig
params:
batch_size: 12
wrap: True
train:
target: ldm.data.imagenet.ImageNetSRTrain
params:
size: 256
degradation: pil_nearest
validation:
target: ldm.data.imagenet.ImageNetSRValidation
params:
size: 256
degradation: pil_nearest
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 1000
max_images: 8
increase_log_steps: True
trainer:
benchmark: True
accumulate_grad_batches: 2

View File

@ -1,53 +0,0 @@
model:
base_learning_rate: 4.5e-6
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: "val/rec_loss"
embed_dim: 4
lossconfig:
target: ldm.modules.losses.LPIPSWithDiscriminator
params:
disc_start: 50001
kl_weight: 0.000001
disc_weight: 0.5
ddconfig:
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
data:
target: main.DataModuleFromConfig
params:
batch_size: 12
wrap: True
train:
target: ldm.data.imagenet.ImageNetSRTrain
params:
size: 256
degradation: pil_nearest
validation:
target: ldm.data.imagenet.ImageNetSRValidation
params:
size: 256
degradation: pil_nearest
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 1000
max_images: 8
increase_log_steps: True
trainer:
benchmark: True
accumulate_grad_batches: 2

View File

@ -1,54 +0,0 @@
model:
base_learning_rate: 4.5e-6
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: "val/rec_loss"
embed_dim: 3
lossconfig:
target: ldm.modules.losses.LPIPSWithDiscriminator
params:
disc_start: 50001
kl_weight: 0.000001
disc_weight: 0.5
ddconfig:
double_z: True
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
data:
target: main.DataModuleFromConfig
params:
batch_size: 12
wrap: True
train:
target: ldm.data.imagenet.ImageNetSRTrain
params:
size: 256
degradation: pil_nearest
validation:
target: ldm.data.imagenet.ImageNetSRValidation
params:
size: 256
degradation: pil_nearest
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 1000
max_images: 8
increase_log_steps: True
trainer:
benchmark: True
accumulate_grad_batches: 2

View File

@ -1,53 +0,0 @@
model:
base_learning_rate: 4.5e-6
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: "val/rec_loss"
embed_dim: 64
lossconfig:
target: ldm.modules.losses.LPIPSWithDiscriminator
params:
disc_start: 50001
kl_weight: 0.000001
disc_weight: 0.5
ddconfig:
double_z: True
z_channels: 64
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,1,2,2,4,4] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [16,8]
dropout: 0.0
data:
target: main.DataModuleFromConfig
params:
batch_size: 12
wrap: True
train:
target: ldm.data.imagenet.ImageNetSRTrain
params:
size: 256
degradation: pil_nearest
validation:
target: ldm.data.imagenet.ImageNetSRValidation
params:
size: 256
degradation: pil_nearest
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 1000
max_images: 8
increase_log_steps: True
trainer:
benchmark: True
accumulate_grad_batches: 2

View File

@ -1,86 +0,0 @@
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
image_size: 64
channels: 3
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
# note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 64 for f4
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ckpt_path: models/first_stage_models/vq-f4/model.ckpt
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 48
num_workers: 5
wrap: false
train:
target: taming.data.faceshq.CelebAHQTrain
params:
size: 256
validation:
target: taming.data.faceshq.CelebAHQValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -1,98 +0,0 @@
model:
base_learning_rate: 1.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: class_label
image_size: 32
channels: 4
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 256
attention_resolutions:
#note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 32 for f8
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 4
num_head_channels: 32
use_spatial_transformer: true
transformer_depth: 1
context_dim: 512
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 4
n_embed: 16384
ckpt_path: configs/first_stage_models/vq-f8/model.yaml
ddconfig:
double_z: false
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 2
- 4
num_res_blocks: 2
attn_resolutions:
- 32
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.ClassEmbedder
params:
embed_dim: 512
key: class_label
data:
target: main.DataModuleFromConfig
params:
batch_size: 64
num_workers: 12
wrap: false
train:
target: ldm.data.imagenet.ImageNetTrain
params:
config:
size: 256
validation:
target: ldm.data.imagenet.ImageNetValidation
params:
config:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -1,68 +0,0 @@
model:
base_learning_rate: 0.0001
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: class_label
image_size: 64
channels: 3
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss
use_ema: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 192
attention_resolutions:
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 5
num_heads: 1
use_spatial_transformer: true
transformer_depth: 1
context_dim: 512
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.ClassEmbedder
params:
n_classes: 1001
embed_dim: 512
key: class_label

View File

@ -1,85 +0,0 @@
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
image_size: 64
channels: 3
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
# note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 64 for f4
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 42
num_workers: 5
wrap: false
train:
target: taming.data.faceshq.FFHQTrain
params:
size: 256
validation:
target: taming.data.faceshq.FFHQValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -1,85 +0,0 @@
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
image_size: 64
channels: 3
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
# note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 64 for f4
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 48
num_workers: 5
wrap: false
train:
target: ldm.data.lsun.LSUNBedroomsTrain
params:
size: 256
validation:
target: ldm.data.lsun.LSUNBedroomsValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -1,91 +0,0 @@
model:
base_learning_rate: 5.0e-5 # set to target_lr by starting main.py with '--scale_lr False'
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0155
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
loss_type: l1
first_stage_key: "image"
cond_stage_key: "image"
image_size: 32
channels: 4
cond_stage_trainable: False
concat_mode: False
scale_by_std: True
monitor: 'val/loss_simple_ema'
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [10000]
cycle_lengths: [10000000000000]
f_start: [1.e-6]
f_max: [1.]
f_min: [ 1.]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 192
attention_resolutions: [ 1, 2, 4, 8 ] # 32, 16, 8, 4
num_res_blocks: 2
channel_mult: [ 1,2,2,4,4 ] # 32, 16, 8, 4, 2
num_heads: 8
use_scale_shift_norm: True
resblock_updown: True
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: "val/rec_loss"
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
ddconfig:
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: "__is_unconditional__"
data:
target: main.DataModuleFromConfig
params:
batch_size: 96
num_workers: 5
wrap: False
train:
target: ldm.data.lsun.LSUNChurchesTrain
params:
size: 256
validation:
target: ldm.data.lsun.LSUNChurchesValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -1,71 +0,0 @@
model:
base_learning_rate: 5.0e-05
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.012
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: caption
image_size: 32
channels: 4
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions:
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 4
- 4
num_heads: 8
use_spatial_transformer: true
transformer_depth: 1
context_dim: 1280
use_checkpoint: true
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.BERTEmbedder
params:
n_embed: 1280
n_layer: 32

View File

@ -1,20 +0,0 @@
# This file describes the alternative machine learning models
# available to the dream script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
laion400m:
config: configs/latent-diffusion/txt2img-1p4B-eval.yaml
weights: models/ldm/text2img-large/model.ckpt
description: Latent Diffusion LAION400M model
width: 256
height: 256
stable-diffusion-1.4:
config: configs/stable-diffusion/v1-inference.yaml
weights: models/ldm/stable-diffusion-v1/model.ckpt
description: Stable Diffusion inference model version 1.4
width: 512
height: 512

View File

@ -0,0 +1,27 @@
# This file describes the alternative machine learning models
# available to InvokeAI script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
stable-diffusion-1.5:
description: The newest Stable Diffusion version 1.5 weight file (4.27 GB)
weights: ./models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt
config: ./configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512
vae: ./models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
default: true
stable-diffusion-1.4:
description: Stable Diffusion inference model version 1.4
config: configs/stable-diffusion/v1-inference.yaml
weights: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
width: 512
height: 512
inpainting-1.5:
weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
description: RunwayML SD 1.5 model optimized for inpainting

View File

@ -1,68 +0,0 @@
model:
base_learning_rate: 0.0001
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.015
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: jpg
cond_stage_key: nix
image_size: 48
channels: 16
cond_stage_trainable: false
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_by_std: false
scale_factor: 0.22765929
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 48
in_channels: 16
out_channels: 16
model_channels: 448
attention_resolutions:
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
use_scale_shift_norm: false
resblock_updown: false
num_head_channels: 32
use_spatial_transformer: true
transformer_depth: 1
context_dim: 768
use_checkpoint: true
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: val/rec_loss
embed_dim: 16
ddconfig:
double_z: true
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 1
- 2
- 2
- 4
num_res_blocks: 2
attn_resolutions:
- 16
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: torch.nn.Identity

View File

@ -76,4 +76,4 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
target: ldm.modules.encoders.modules.WeightedFrozenCLIPEmbedder

View File

@ -0,0 +1,79 @@
model:
base_learning_rate: 7.5e-05
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: hybrid # important
monitor: val/loss_simple_ema
scale_factor: 0.18215
finetune_keys: null
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
personalization_config:
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ['face', 'man', 'photo', 'africanmale']
per_image_tokens: false
num_vectors_per_token: 1
progressive_words: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.WeightedFrozenCLIPEmbedder

View File

@ -1,57 +1,74 @@
FROM debian
ARG gsd
ENV GITHUB_STABLE_DIFFUSION $gsd
ARG rsd
ENV REQS $rsd
ARG cs
ENV CONDA_SUBDIR $cs
ENV PIP_EXISTS_ACTION="w"
# TODO: Optimize image size
FROM ubuntu AS get_miniconda
SHELL ["/bin/bash", "-c"]
WORKDIR /
RUN apt update && apt upgrade -y \
&& apt install -y \
# install wget
RUN apt-get update \
&& apt-get install -y \
wget \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# download and install miniconda
ARG conda_version=py39_4.12.0-Linux-x86_64
ARG conda_prefix=/opt/conda
RUN wget --progress=dot:giga -O /miniconda.sh \
https://repo.anaconda.com/miniconda/Miniconda3-${conda_version}.sh \
&& bash /miniconda.sh -b -p ${conda_prefix} \
&& rm -f /miniconda.sh
FROM ubuntu AS invokeai
# use bash
SHELL [ "/bin/bash", "-c" ]
# clean bashrc
RUN echo "" > ~/.bashrc
# Install necesarry packages
RUN apt-get update \
&& apt-get install -y \
--no-install-recommends \
gcc \
git \
libgl1-mesa-glx \
libglib2.0-0 \
pip \
python3 \
&& git clone $GITHUB_STABLE_DIFFUSION
python3-dev \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# Install Anaconda or Miniconda
COPY anaconda.sh .
RUN bash anaconda.sh -b -u -p /anaconda && /anaconda/bin/conda init bash
# clone repository and create symlinks
ARG invokeai_git=https://github.com/invoke-ai/InvokeAI.git
ARG project_name=invokeai
RUN git clone ${invokeai_git} /${project_name} \
&& mkdir /${project_name}/models/ldm/stable-diffusion-v1 \
&& ln -s /data/models/sd-v1-4.ckpt /${project_name}/models/ldm/stable-diffusion-v1/model.ckpt \
&& ln -s /data/outputs/ /${project_name}/outputs
# SD
WORKDIR /stable-diffusion
RUN source ~/.bashrc \
&& conda create -y --name ldm && conda activate ldm \
&& conda config --env --set subdir $CONDA_SUBDIR \
&& pip3 install -r $REQS \
&& pip3 install basicsr facexlib realesrgan \
&& mkdir models/ldm/stable-diffusion-v1 \
&& ln -s "/data/sd-v1-4.ckpt" models/ldm/stable-diffusion-v1/model.ckpt
# set workdir
WORKDIR /${project_name}
# Face restoreation
# by default expected in a sibling directory to stable-diffusion
WORKDIR /
RUN git clone https://github.com/TencentARC/GFPGAN.git
# install conda env and preload models
ARG conda_prefix=/opt/conda
ARG conda_env_file=environment.yml
COPY --from=get_miniconda ${conda_prefix} ${conda_prefix}
RUN source ${conda_prefix}/etc/profile.d/conda.sh \
&& conda init bash \
&& source ~/.bashrc \
&& conda env create \
--name ${project_name} \
--file ${conda_env_file} \
&& rm -Rf ~/.cache \
&& conda clean -afy \
&& echo "conda activate ${project_name}" >> ~/.bashrc \
&& ln -s /data/models/GFPGANv1.4.pth ./src/gfpgan/experiments/pretrained_models/GFPGANv1.4.pth \
&& conda activate ${project_name} \
&& python scripts/preload_models.py
WORKDIR /GFPGAN
RUN pip3 install -r requirements.txt \
&& python3 setup.py develop \
&& ln -s "/data/GFPGANv1.4.pth" experiments/pretrained_models/GFPGANv1.4.pth
WORKDIR /stable-diffusion
RUN python3 scripts/preload_models.py
WORKDIR /
COPY entrypoint.sh .
# Copy entrypoint and set env
ENV CONDA_PREFIX=${conda_prefix}
ENV PROJECT_NAME=${project_name}
COPY docker-build/entrypoint.sh /
ENTRYPOINT [ "/entrypoint.sh" ]

81
docker-build/build.sh Executable file
View File

@ -0,0 +1,81 @@
#!/usr/bin/env bash
set -e
# IMPORTANT: You need to have a token on huggingface.co to be able to download the checkpoint!!!
# configure values by using env when executing build.sh
# f.e. env ARCH=aarch64 GITHUB_INVOKE_AI=https://github.com/yourname/yourfork.git ./build.sh
source ./docker-build/env.sh || echo "please run from repository root" || exit 1
invokeai_conda_version=${INVOKEAI_CONDA_VERSION:-py39_4.12.0-${platform/\//-}}
invokeai_conda_prefix=${INVOKEAI_CONDA_PREFIX:-\/opt\/conda}
invokeai_conda_env_file=${INVOKEAI_CONDA_ENV_FILE:-environment.yml}
invokeai_git=${INVOKEAI_GIT:-https://github.com/invoke-ai/InvokeAI.git}
huggingface_token=${HUGGINGFACE_TOKEN?}
# print the settings
echo "You are using these values:"
echo -e "project_name:\t\t ${project_name}"
echo -e "volumename:\t\t ${volumename}"
echo -e "arch:\t\t\t ${arch}"
echo -e "platform:\t\t ${platform}"
echo -e "invokeai_conda_version:\t ${invokeai_conda_version}"
echo -e "invokeai_conda_prefix:\t ${invokeai_conda_prefix}"
echo -e "invokeai_conda_env_file: ${invokeai_conda_env_file}"
echo -e "invokeai_git:\t\t ${invokeai_git}"
echo -e "invokeai_tag:\t\t ${invokeai_tag}\n"
_runAlpine() {
docker run \
--rm \
--interactive \
--tty \
--mount source="$volumename",target=/data \
--workdir /data \
alpine "$@"
}
_copyCheckpoints() {
echo "creating subfolders for models and outputs"
_runAlpine mkdir models
_runAlpine mkdir outputs
echo -n "downloading sd-v1-4.ckpt"
_runAlpine wget --header="Authorization: Bearer ${huggingface_token}" -O models/sd-v1-4.ckpt https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
echo "done"
echo "downloading GFPGANv1.4.pth"
_runAlpine wget -O models/GFPGANv1.4.pth https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
}
_checkVolumeContent() {
_runAlpine ls -lhA /data/models
}
_getModelMd5s() {
_runAlpine \
alpine sh -c "md5sum /data/models/*"
}
if [[ -n "$(docker volume ls -f name="${volumename}" -q)" ]]; then
echo "Volume already exists"
if [[ -z "$(_checkVolumeContent)" ]]; then
echo "looks empty, copying checkpoint"
_copyCheckpoints
fi
echo "Models in ${volumename}:"
_checkVolumeContent
else
echo -n "createing docker volume "
docker volume create "${volumename}"
_copyCheckpoints
fi
# Build Container
docker build \
--platform="${platform}" \
--tag "${invokeai_tag}" \
--build-arg project_name="${project_name}" \
--build-arg conda_version="${invokeai_conda_version}" \
--build-arg conda_prefix="${invokeai_conda_prefix}" \
--build-arg conda_env_file="${invokeai_conda_env_file}" \
--build-arg invokeai_git="${invokeai_git}" \
--file ./docker-build/Dockerfile \
.

View File

@ -1,10 +1,8 @@
#!/bin/bash
set -e
cd /stable-diffusion
source "${CONDA_PREFIX}/etc/profile.d/conda.sh"
conda activate "${PROJECT_NAME}"
if [ $# -eq 0 ]; then
python3 scripts/dream.py --full_precision -o /data
# bash
else
python3 scripts/dream.py --full_precision -o /data "$@"
fi
python scripts/invoke.py \
${@:---web --host=0.0.0.0}

13
docker-build/env.sh Normal file
View File

@ -0,0 +1,13 @@
#!/usr/bin/env bash
project_name=${PROJECT_NAME:-invokeai}
volumename=${VOLUMENAME:-${project_name}_data}
arch=${ARCH:-x86_64}
platform=${PLATFORM:-Linux/${arch}}
invokeai_tag=${INVOKEAI_TAG:-${project_name}-${arch}}
export project_name
export volumename
export arch
export platform
export invokeai_tag

15
docker-build/run.sh Executable file
View File

@ -0,0 +1,15 @@
#!/usr/bin/env bash
set -e
source ./docker-build/env.sh || echo "please run from repository root" || exit 1
docker run \
--interactive \
--tty \
--rm \
--platform "$platform" \
--name "$project_name" \
--hostname "$project_name" \
--mount source="$volumename",target=/data \
--publish 9090:9090 \
"$invokeai_tag" ${1:+$@}

Binary file not shown.

After

Width:  |  Height:  |  Size: 519 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 519 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 439 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 635 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 284 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 252 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 428 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 331 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 369 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 362 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 329 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 329 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 377 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 328 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 380 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 372 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 401 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 441 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 451 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 338 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 271 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 353 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 330 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 439 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 463 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 444 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 468 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 466 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 475 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 429 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 429 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 477 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 476 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 434 KiB

View File

@ -0,0 +1,116 @@
## 000001.1863159593.png
![](000001.1863159593.png)
banana sushi -s 50 -S 1863159593 -W 512 -H 512 -C 7.5 -A k_lms
## 000002.1151955949.png
![](000002.1151955949.png)
banana sushi -s 50 -S 1151955949 -W 512 -H 512 -C 7.5 -A plms
## 000003.2736230502.png
![](000003.2736230502.png)
banana sushi -s 50 -S 2736230502 -W 512 -H 512 -C 7.5 -A ddim
## 000004.42.png
![](000004.42.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
## 000005.42.png
![](000005.42.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
## 000006.478163327.png
![](000006.478163327.png)
banana sushi -s 50 -S 478163327 -W 640 -H 448 -C 7.5 -A k_lms
## 000007.2407640369.png
![](000007.2407640369.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2407640369:0.1
## 000008.2772421987.png
![](000008.2772421987.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2772421987:0.1
## 000009.3532317557.png
![](000009.3532317557.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 3532317557:0.1
## 000010.2028635318.png
![](000010.2028635318.png)
banana sushi -s 50 -S 2028635318 -W 512 -H 512 -C 7.5 -A k_lms
## 000011.1111168647.png
![](000011.1111168647.png)
pond with waterlillies -s 50 -S 1111168647 -W 512 -H 512 -C 7.5 -A k_lms
## 000012.1476370516.png
![](000012.1476370516.png)
pond with waterlillies -s 50 -S 1476370516 -W 512 -H 512 -C 7.5 -A k_lms
## 000013.4281108706.png
![](000013.4281108706.png)
banana sushi -s 50 -S 4281108706 -W 960 -H 960 -C 7.5 -A k_lms
## 000014.2396987386.png
![](000014.2396987386.png)
old sea captain with crow on shoulder -s 50 -S 2396987386 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_lms -f 0.75
## 000015.1252923272.png
![](000015.1252923272.png)
old sea captain with crow on shoulder -s 50 -S 1252923272 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512-transparent.png -A k_lms -f 0.75
## 000016.2633891320.png
![](000016.2633891320.png)
old sea captain with crow on shoulder -s 50 -S 2633891320 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A plms -f 0.75
## 000017.1134411920.png
![](000017.1134411920.png)
old sea captain with crow on shoulder -s 50 -S 1134411920 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_euler_a -f 0.75
## 000018.47.png
![](000018.47.png)
big red dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000019.47.png
![](000019.47.png)
big red++++ dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000020.47.png
![](000020.47.png)
big red dog playing with cat+++ -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000021.47.png
![](000021.47.png)
big (red dog).swap(tiger) playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000022.47.png
![](000022.47.png)
dog:1,cat:2 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000023.47.png
![](000023.47.png)
dog:2,cat:1 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000024.1029061431.png
![](000024.1029061431.png)
medusa with cobras -s 50 -S 1029061431 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm hair
## 000025.1284519352.png
![](000025.1284519352.png)
bearded man -s 50 -S 1284519352 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm face
## curly.942491079.gfpgan.png
![](curly.942491079.gfpgan.png)
!fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8 -ft gfpgan -U 2.0 0.75
## curly.942491079.outcrop.png
![](curly.942491079.outcrop.png)
!fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64
## curly.942491079.outpaint.png
![](curly.942491079.outpaint.png)
!fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -D top 64
## curly.942491079.outcrop-01.png
![](curly.942491079.outcrop-01.png)
!fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64

View File

@ -0,0 +1,29 @@
outputs/preflight/000001.1863159593.png: banana sushi -s 50 -S 1863159593 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000002.1151955949.png: banana sushi -s 50 -S 1151955949 -W 512 -H 512 -C 7.5 -A plms
outputs/preflight/000003.2736230502.png: banana sushi -s 50 -S 2736230502 -W 512 -H 512 -C 7.5 -A ddim
outputs/preflight/000004.42.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000005.42.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000006.478163327.png: banana sushi -s 50 -S 478163327 -W 640 -H 448 -C 7.5 -A k_lms
outputs/preflight/000007.2407640369.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2407640369:0.1
outputs/preflight/000008.2772421987.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2772421987:0.1
outputs/preflight/000009.3532317557.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 3532317557:0.1
outputs/preflight/000010.2028635318.png: banana sushi -s 50 -S 2028635318 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000011.1111168647.png: pond with waterlillies -s 50 -S 1111168647 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000012.1476370516.png: pond with waterlillies -s 50 -S 1476370516 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000013.4281108706.png: banana sushi -s 50 -S 4281108706 -W 960 -H 960 -C 7.5 -A k_lms
outputs/preflight/000014.2396987386.png: old sea captain with crow on shoulder -s 50 -S 2396987386 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_lms -f 0.75
outputs/preflight/000015.1252923272.png: old sea captain with crow on shoulder -s 50 -S 1252923272 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512-transparent.png -A k_lms -f 0.75
outputs/preflight/000016.2633891320.png: old sea captain with crow on shoulder -s 50 -S 2633891320 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A plms -f 0.75
outputs/preflight/000017.1134411920.png: old sea captain with crow on shoulder -s 50 -S 1134411920 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_euler_a -f 0.75
outputs/preflight/000018.47.png: big red dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000019.47.png: big red++++ dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000020.47.png: big red dog playing with cat+++ -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000021.47.png: big (red dog).swap(tiger) playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000022.47.png: dog:1,cat:2 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000023.47.png: dog:2,cat:1 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000024.1029061431.png: medusa with cobras -s 50 -S 1029061431 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm hair
outputs/preflight/000025.1284519352.png: bearded man -s 50 -S 1284519352 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm face
outputs/preflight/curly.942491079.gfpgan.png: !fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8 -ft gfpgan -U 2.0 0.75
outputs/preflight/curly.942491079.outcrop.png: !fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64
outputs/preflight/curly.942491079.outpaint.png: !fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -D top 64
outputs/preflight/curly.942491079.outcrop-01.png: !fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64

View File

@ -0,0 +1,61 @@
# outputs/preflight/000001.1863159593.png
banana sushi -s 50 -S 1863159593 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000002.1151955949.png
banana sushi -s 50 -S 1151955949 -W 512 -H 512 -C 7.5 -A plms
# outputs/preflight/000003.2736230502.png
banana sushi -s 50 -S 2736230502 -W 512 -H 512 -C 7.5 -A ddim
# outputs/preflight/000004.42.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000005.42.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000006.478163327.png
banana sushi -s 50 -S 478163327 -W 640 -H 448 -C 7.5 -A k_lms
# outputs/preflight/000007.2407640369.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2407640369:0.1
# outputs/preflight/000007.2772421987.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2772421987:0.1
# outputs/preflight/000007.3532317557.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 3532317557:0.1
# outputs/preflight/000008.2028635318.png
banana sushi -s 50 -S 2028635318 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000009.1111168647.png
pond with waterlillies -s 50 -S 1111168647 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000010.1476370516.png
pond with waterlillies -s 50 -S 1476370516 -W 512 -H 512 -C 7.5 -A k_lms --seamless
# outputs/preflight/000011.4281108706.png
banana sushi -s 50 -S 4281108706 -W 960 -H 960 -C 7.5 -A k_lms
# outputs/preflight/000012.2396987386.png
old sea captain with crow on shoulder -s 50 -S 2396987386 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_lms -f 0.75
# outputs/preflight/000013.1252923272.png
old sea captain with crow on shoulder -s 50 -S 1252923272 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512-transparent.png -A k_lms -f 0.75
# outputs/preflight/000014.2633891320.png
old sea captain with crow on shoulder -s 50 -S 2633891320 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A plms -f 0.75
# outputs/preflight/000015.1134411920.png
old sea captain with crow on shoulder -s 50 -S 1134411920 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_euler_a -f 0.75
# outputs/preflight/000016.42.png
big red dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000017.42.png
big red++++ dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000018.42.png
big red dog playing with cat+++ -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000019.42.png
big (red dog).swap(tiger) playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000020.42.png
dog:1,cat:2 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000021.42.png
dog:2,cat:1 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000022.1029061431.png
medusa with cobras -s 50 -S 1029061431 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm hair
# outputs/preflight/000023.1284519352.png
bearded man -s 50 -S 1284519352 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm face
# outputs/preflight/000024.curly.hair.deselected.png
!mask -I docs/assets/preflight-checks/inputs/curly.png -tm hair
# outputs/preflight/curly.942491079.gfpgan.png
!fix ./docs/assets/preflight-checks/inputs/curly.png -U2 -G0.8
# outputs/preflight/curly.942491079.outcrop.png
!fix ./docs/assets/preflight-checks/inputs/curly.png -c top 64
# outputs/preflight/curly.942491079.outpaint.png
!fix ./docs/assets/preflight-checks/inputs/curly.png -D top 64
# outputs/preflight/curly.942491079.outcrop-01.png
!switch inpainting-1.5
!fix ./docs/assets/preflight-checks/inputs/curly.png -c top 64

Binary file not shown.

After

Width:  |  Height:  |  Size: 587 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 572 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 557 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 571 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 570 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 568 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 527 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 489 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 503 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 488 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 499 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 524 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 593 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 598 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 488 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 487 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 489 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 338 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

View File

@ -8,7 +8,7 @@ hide:
## **Interactive Command Line Interface**
The `invoke.py` script, located in `scripts/dream.py`, provides an interactive
The `invoke.py` script, located in `scripts/`, provides an interactive
interface to image generation similar to the "invoke mothership" bot that Stable
AI provided on its Discord server.
@ -86,6 +86,7 @@ overridden on a per-prompt basis (see [List of prompt arguments](#list-of-prompt
| `--model <modelname>` | | `stable-diffusion-1.4` | Loads model specified in configs/models.yaml. Currently one of "stable-diffusion-1.4" or "laion400m" |
| `--full_precision` | `-F` | `False` | Run in slower full-precision mode. Needed for Macintosh M1/M2 hardware and some older video cards. |
| `--png_compression <0-9>` | `-z<0-9>` | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--safety-checker` | | False | Activate safety checker for NSFW and other potentially disturbing imagery |
| `--web` | | `False` | Start in web server mode |
| `--host <ip addr>` | | `localhost` | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
| `--port <port>` | | `9090` | Which port web server should listen for requests on. |
@ -97,7 +98,6 @@ overridden on a per-prompt basis (see [List of prompt arguments](#list-of-prompt
| `--embedding_path <path>` | | `None` | Path to pre-trained embedding manager checkpoints, for custom models |
| `--gfpgan_dir` | | `src/gfpgan` | Path to where GFPGAN is installed. |
| `--gfpgan_model_path` | | `experiments/pretrained_models/GFPGANv1.4.pth` | Path to GFPGAN model file, relative to `--gfpgan_dir`. |
| `--device <device>` | `-d<device>` | `torch.cuda.current_device()` | Device to run SD on, e.g. "cuda:0" |
| `--free_gpu_mem` | | `False` | Free GPU memory after sampling, to allow image decoding and saving in low VRAM conditions |
| `--precision` | | `auto` | Set model precision, default is selected by device. Options: auto, float32, float16, autocast |
@ -151,12 +151,14 @@ Here are the invoke> command that apply to txt2img:
| --cfg_scale <float>| -C<float> | 7.5 | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
| --seed <int> | -S<int> | None | Set the random seed for the next series of images. This can be used to recreate an image generated previously.|
| --sampler <sampler>| -A<sampler>| k_lms | Sampler to use. Use -h to get list of available samplers. |
| --karras_max <int> | | 29 | When using k_* samplers, set the maximum number of steps before shifting from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts) This value is sticky. [29] |
| --hires_fix | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
| `--png_compression <0-9>` | `-z<0-9>` | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| --png_compression <0-9> | -z<0-9> | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| --grid | -g | False | Turn on grid mode to return a single image combining all the images generated by this prompt |
| --individual | -i | True | Turn off grid mode (deprecated; leave off --grid instead) |
| --outdir <path> | -o<path> | outputs/img_samples | Temporarily change the location of these images |
| --seamless | | False | Activate seamless tiling for interesting effects |
| --seamless_axes | | x,y | Specify which axes to use circular convolution on. |
| --log_tokenization | -t | False | Display a color-coded list of the parsed tokens derived from the prompt |
| --skip_normalization| -x | False | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
| --upscale <int> <float> | -U <int> <float> | -U 1 0.75| Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
@ -210,11 +212,40 @@ accepts additional options:
[Inpainting](./INPAINTING.md) for details.
inpainting accepts all the arguments used for txt2img and img2img, as
well as the --mask (-M) argument:
well as the --mask (-M) and --text_mask (-tm) arguments:
| Argument <img width="100" align="right"/> | Shortcut | Default | Description |
|--------------------|------------|---------------------|--------------|
| `--init_mask <path>` | `-M<path>` | `None` |Path to an image the same size as the initial_image, with areas for inpainting made transparent.|
| `--invert_mask ` | | False |If true, invert the mask so that transparent areas are opaque and vice versa.|
| `--text_mask <prompt> [<float>]` | `-tm <prompt> [<float>]` | <none> | Create a mask from a text prompt describing part of the image|
The mask may either be an image with transparent areas, in which case
the inpainting will occur in the transparent areas only, or a black
and white image, in which case all black areas will be painted into.
`--text_mask` (short form `-tm`) is a way to generate a mask using a
text description of the part of the image to replace. For example, if
you have an image of a breakfast plate with a bagel, toast and
scrambled eggs, you can selectively mask the bagel and replace it with
a piece of cake this way:
~~~
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel
~~~
The algorithm uses <a
href="https://github.com/timojl/clipseg">clipseg</a> to classify
different regions of the image. The classifier puts out a confidence
score for each region it identifies. Generally regions that score
above 0.5 are reliable, but if you are getting too much or too little
masking you can adjust the threshold down (to get more mask), or up
(to get less). In this example, by passing `-tm` a higher value, we
are insisting on a more stringent classification.
~~~
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel 0.6
~~~
# Other Commands
@ -256,12 +287,20 @@ Some examples:
Outputs:
[1] outputs/img-samples/000017.4829112.gfpgan-00.png: !fix "outputs/img-samples/0000045.4829112.png" -s 50 -S -W 512 -H 512 -C 7.5 -A k_lms -G 0.8
# Model selection and importation
### !mask
This command takes an image, a text prompt, and uses the `clipseg`
algorithm to automatically generate a mask of the area that matches
the text prompt. It is useful for debugging the text masking process
prior to inpainting with the `--text_mask` argument. See
[INPAINTING.md] for details.
## Model selection and importation
The CLI allows you to add new models on the fly, as well as to switch
among them rapidly without leaving the script.
## !models
### !models
This prints out a list of the models defined in `config/models.yaml'.
The active model is bold-faced
@ -273,7 +312,7 @@ laion400m not loaded <no description>
waifu-diffusion not loaded Waifu Diffusion v1.3
</pre>
## !switch <model>
### !switch <model>
This quickly switches from one model to another without leaving the
CLI script. `invoke.py` uses a memory caching system; once a model
@ -319,7 +358,7 @@ laion400m not loaded <no description>
waifu-diffusion cached Waifu Diffusion v1.3
</pre>
## !import_model <path/to/model/weights>
### !import_model <path/to/model/weights>
This command imports a new model weights file into InvokeAI, makes it
available for image generation within the script, and writes out the
@ -371,7 +410,7 @@ OK to import [n]? <b>y</b>
invoke>
</pre>
##!edit_model <name_of_model>
###!edit_model <name_of_model>
The `!edit_model` command can be used to modify a model that is
already defined in `config/models.yaml`. Call it with the short
@ -407,20 +446,12 @@ OK to import [n]? y
Outputs:
[2] outputs/img-samples/000018.2273800735.embiggen-00.png: !fix "outputs/img-samples/000017.243781548.gfpgan-00.png" -s 50 -S 2273800735 -W 512 -H 512 -C 7.5 -A k_lms --embiggen 3.0 0.75 0.25
```
# History processing
## History processing
The CLI provides a series of convenient commands for reviewing previous
actions, retrieving them, modifying them, and re-running them.
```bash
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
```
Note that this command may behave unexpectedly if given a PNG file that
was not generated by InvokeAI.
### `!history`
### !history
The invoke script keeps track of all the commands you issue during a
session, allowing you to re-run them. On Mac and Linux systems, it
@ -445,20 +476,41 @@ invoke> !20
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
## !fetch
### !fetch
This command retrieves the generation parameters from a previously
generated image and either loads them into the command line. You may
provide either the name of a file in the current output directory, or
a full file path.
generated image and either loads them into the command line
(Linux|Mac), or prints them out in a comment for copy-and-paste
(Windows). You may provide either the name of a file in the current
output directory, or a full file path. Specify path to a folder with
image png files, and wildcard *.png to retrieve the dream command used
to generate the images, and save them to a file commands.txt for
further processing.
~~~
This example loads the generation command for a single png file:
```bash
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
```
This one fetches the generation commands from a batch of files and
stores them into `selected.txt`:
```bash
invoke> !fetch outputs\selected-imgs\*.png selected.txt
```
### !replay
This command replays a text file generated by !fetch or created manually
~~~
invoke> !replay outputs\selected-imgs\selected.txt
~~~
Note that this command may behave unexpectedly if given a PNG file that
Note that these commands may behave unexpectedly if given a PNG file that
was not generated by InvokeAI.
### !search <search string>

View File

@ -120,8 +120,6 @@ Both of the outputs look kind of like what I was thinking of. With the strength
If you want to try this out yourself, all of these are using a seed of `1592514025` with a width/height of `384`, step count `10`, the default sampler (`k_lms`), and the single-word prompt `"fire"`:
If you want to try this out yourself, all of these are using a seed of `1592514025` with a width/height of `384`, step count `10`, the default sampler (`k_lms`), and the single-word prompt `fire`:
```commandline
invoke> "fire" -s10 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png --strength 0.7
```

View File

@ -34,9 +34,188 @@ original unedited image and the masked (partially transparent) image:
invoke> "man with cat on shoulder" -I./images/man.png -M./images/man-transparent.png
```
We are hoping to get rid of the need for this workaround in an upcoming release.
## **Masking using Text**
### Inpainting is not changing the masked region enough!
You can also create a mask using a text prompt to select the part of
the image you want to alter, using the <a
href="https://github.com/timojl/clipseg">clipseg</a> algorithm. This
works on any image, not just ones generated by InvokeAI.
The `--text_mask` (short form `-tm`) option takes two arguments. The
first argument is a text description of the part of the image you wish
to mask (paint over). If the text description contains a space, you must
surround it with quotation marks. The optional second argument is the
minimum threshold for the mask classifier's confidence score, described
in more detail below.
To see how this works in practice, here's an image of a still life
painting that I got off the web.
<img src="../assets/still-life-scaled.jpg">
You can selectively mask out the
orange and replace it with a baseball in this way:
~~~
invoke> a baseball -I /path/to/still_life.png -tm orange
~~~
<img src="../assets/still-life-inpainted.png">
The clipseg classifier produces a confidence score for each region it
identifies. Generally regions that score above 0.5 are reliable, but
if you are getting too much or too little masking you can adjust the
threshold down (to get more mask), or up (to get less). In this
example, by passing `-tm` a higher value, we are insisting on a tigher
mask. However, if you make it too high, the orange may not be picked
up at all!
~~~
invoke> a baseball -I /path/to/breakfast.png -tm orange 0.6
~~~
The `!mask` command may be useful for debugging problems with the
text2mask feature. The syntax is `!mask /path/to/image.png -tm <text>
<threshold>`
It will generate three files:
- The image with the selected area highlighted.
- it will be named XXXXX.<imagename>.<prompt>.selected.png
- The image with the un-selected area highlighted.
- it will be named XXXXX.<imagename>.<prompt>.deselected.png
- The image with the selected area converted into a black and white
image according to the threshold level
- it will be named XXXXX.<imagename>.<prompt>.masked.png
The `.masked.png` file can then be directly passed to the `invoke>`
prompt in the CLI via the `-M` argument. Do not attempt this with
the `selected.png` or `deselected.png` files, as they contain some
transparency throughout the image and will not produce the desired
results.
Here is an example of how `!mask` works:
```
invoke> !mask ./test-pictures/curly.png -tm hair 0.5
>> generating masks from ./test-pictures/curly.png
>> Initializing clipseg model for text to mask inference
Outputs:
[941.1] outputs/img-samples/000019.curly.hair.deselected.png: !mask ./test-pictures/curly.png -tm hair 0.5
[941.2] outputs/img-samples/000019.curly.hair.selected.png: !mask ./test-pictures/curly.png -tm hair 0.5
[941.3] outputs/img-samples/000019.curly.hair.masked.png: !mask ./test-pictures/curly.png -tm hair 0.5
```
**Original image "curly.png"**
<img src="../assets/outpainting/curly.png">
**000019.curly.hair.selected.png**
<img src="../assets/inpainting/000019.curly.hair.selected.png">
**000019.curly.hair.deselected.png**
<img src="../assets/inpainting/000019.curly.hair.deselected.png">
**000019.curly.hair.masked.png**
<img src="../assets/inpainting/000019.curly.hair.masked.png">
It looks like we selected the hair pretty well at the 0.5 threshold
(which is the default, so we didn't actually have to specify it), so
let's have some fun:
```
invoke> medusa with cobras -I ./test-pictures/curly.png -M 000019.curly.hair.masked.png -C20
>> loaded input image of size 512x512 from ./test-pictures/curly.png
...
Outputs:
[946] outputs/img-samples/000024.801380492.png: "medusa with cobras" -s 50 -S 801380492 -W 512 -H 512 -C 20.0 -I ./test-pictures/curly.png -A k_lms -f 0.75
```
<img src="../assets/inpainting/000024.801380492.png">
You can also skip the `!mask` creation step and just select the masked
region directly:
```
invoke> medusa with cobras -I ./test-pictures/curly.png -tm hair -C20
```
## Using the RunwayML inpainting model
The [RunwayML Inpainting Model
v1.5](https://huggingface.co/runwayml/stable-diffusion-inpainting) is
a specialized version of [Stable Diffusion
v1.5](https://huggingface.co/spaces/runwayml/stable-diffusion-v1-5)
that contains extra channels specifically designed to enhance
inpainting and outpainting. While it can do regular `txt2img` and
`img2img`, it really shines when filling in missing regions. It has an
almost uncanny ability to blend the new regions with existing ones in
a semantically coherent way.
To install the inpainting model, follow the
[instructions](INSTALLING-MODELS.md) for installing a new model. You
may use either the CLI (`invoke.py` script) or directly edit the
`configs/models.yaml` configuration file to do this. The main thing to
watch out for is that the the model `config` option must be set up to
use `v1-inpainting-inference.yaml` rather than the `v1-inference.yaml`
file that is used by Stable Diffusion 1.4 and 1.5.
After installation, your `models.yaml` should contain an entry that
looks like this one:
inpainting-1.5:
weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
description: SD inpainting v1.5
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
width: 512
height: 512
As shown in the example, you may include a VAE fine-tuning weights
file as well. This is strongly recommended.
To use the custom inpainting model, launch `invoke.py` with the
argument `--model inpainting-1.5` or alternatively from within the
script use the `!switch inpainting-1.5` command to load and switch to
the inpainting model.
You can now do inpainting and outpainting exactly as described above,
but there will (likely) be a noticeable improvement in
coherence. Txt2img and Img2img will work as well.
There are a few caveats to be aware of:
1. The inpainting model is larger than the standard model, and will
use nearly 4 GB of GPU VRAM. This makes it unlikely to run on
a 4 GB graphics card.
2. When operating in Img2img mode, the inpainting model is much less
steerable than the standard model. It is great for making small
changes, such as changing the pattern of a fabric, or slightly
changing a subject's expression or hair, but the model will
resist making the dramatic alterations that the standard
model lets you do.
3. While the `--hires` option works fine with the inpainting model,
some special features, such as `--embiggen` are disabled.
4. Prompt weighting (`banana++ sushi`) and merging work well with
the inpainting model, but prompt swapping (a ("fluffy cat").swap("smiling dog") eating a hotdog`)
will not have any effect due to the way the model is set up.
You may use text masking (with `-tm thing-to-mask`) as an
effective replacement.
5. The model tends to oversharpen image if you use high step or CFG
values. If you need to do large steps, use the standard model.
6. The `--strength` (`-f`) option has no effect on the inpainting
model due to its fundamental differences with the standard
model. It will always take the full number of steps you specify.
## Troubleshooting
Here are some troubleshooting tips for inpainting and outpainting.
## Inpainting is not changing the masked region enough!
One of the things to understand about how inpainting works is that it
is equivalent to running img2img on just the masked (transparent)

View File

@ -26,6 +26,12 @@ for each `invoke>` prompt as shown here:
invoke> "pond garden with lotus by claude monet" --seamless -s100 -n4
```
By default this will tile on both the X and Y axes. However, you can also specify specific axes to tile on with `--seamless_axes`.
Possible values are `x`, `y`, and `x,y`:
```python
invoke> "pond garden with lotus by claude monet" --seamless --seamless_axes=x -s100 -n4
```
---
## **Shortcuts: Reusing Seeds**
@ -69,6 +75,23 @@ combination of integers and floating point numbers, and they do not need to add
---
## **Filename Format**
The argument `--fnformat` allows to specify the filename of the
image. Supported wildcards are all arguments what can be set such as
`perlin`, `seed`, `threshold`, `height`, `width`, `gfpgan_strength`,
`sampler_name`, `steps`, `model`, `upscale`, `prompt`, `cfg_scale`,
`prefix`.
The following prompt
```bash
dream> a red car --steps 25 -C 9.8 --perlin 0.1 --fnformat {prompt}_steps.{steps}_cfg.{cfg_scale}_perlin.{perlin}.png
```
generates a file with the name: `outputs/img-samples/a red car_steps.25_cfg.9.8_perlin.0.1.png`
---
## **Thresholding and Perlin Noise Initialization Options**
Two new options are the thresholding (`--threshold`) and the perlin noise initialization (`--perlin`) options. Thresholding limits the range of the latent values during optimization, which helps combat oversaturation with higher CFG scale values. Perlin noise initialization starts with a percentage (a value ranging from 0 to 1) of perlin noise mixed into the initial noise. Both features allow for more variations and options in the course of generating images.

View File

@ -15,13 +15,52 @@ InvokeAI supports two versions of outpainting, one called "outpaint"
and the other "outcrop." They work slightly differently and each has
its advantages and drawbacks.
### Outpainting
Outpainting is the same as inpainting, except that the painting occurs
in the regions outside of the original image. To outpaint using the
`invoke.py` command line script, prepare an image in which the borders
to be extended are pure black. Add an alpha channel (if there isn't one
already), and make the borders completely transparent and the interior
completely opaque. If you wish to modify the interior as well, you may
create transparent holes in the transparency layer, which `img2img` will
paint into as usual.
Pass the image as the argument to the `-I` switch as you would for
regular inpainting:
invoke> a stream by a river -I /path/to/transparent_img.png
You'll likely be delighted by the results.
### Tips
1. Do not try to expand the image too much at once. Generally it is best
to expand the margins in 64-pixel increments. 128 pixels often works,
but your mileage may vary depending on the nature of the image you are
trying to outpaint into.
2. There are a series of switches that can be used to adjust how the
inpainting algorithm operates. In particular, you can use these to
minimize the seam that sometimes appears between the original image
and the extended part. These switches are:
--seam_size SEAM_SIZE Size of the mask around the seam between original and outpainted image (0)
--seam_blur SEAM_BLUR The amount to blur the seam inwards (0)
--seam_strength STRENGTH The img2img strength to use when filling the seam (0.7)
--seam_steps SEAM_STEPS The number of steps to use to fill the seam. (10)
--tile_size TILE_SIZE The tile size to use for filling outpaint areas (32)
### Outcrop
The `outcrop` extension allows you to extend the image in 64 pixel
increments in any dimension. You can apply the module to any image
previously-generated by InvokeAI. Note that it will **not** work with
arbitrary photographs or Stable Diffusion images created by other
implementations.
The `outcrop` extension gives you a convenient `!fix` postprocessing
command that allows you to extend a previously-generated image in 64
pixel increments in any direction. You can apply the module to any
image previously-generated by InvokeAI. Note that it works with
arbitrary PNG photographs, but not currently with JPG or other
formats. Outcropping is particularly effective when combined with the
[runwayML custom inpainting
model](INPAINTING.md#using-the-runwayml-inpainting-model).
Consider this image:
@ -33,23 +72,24 @@ Pretty nice, but it's annoying that the top of her head is cut
off. She's also a bit off center. Let's fix that!
```bash
invoke> !fix images/curly.png --outcrop top 64 right 64
invoke> !fix images/curly.png --outcrop top 128 right 64 bottom 64
```
This is saying to apply the `outcrop` extension by extending the top
of the image by 64 pixels, and the right of the image by the same
amount. You can use any combination of top|left|right|bottom, and
of the image by 128 pixels, and the right and bottom of the image by
64 pixels. You can use any combination of top|left|right|bottom, and
specify any number of pixels to extend. You can also abbreviate
`--outcrop` to `-c`.
The result looks like this:
<figure markdown>
![curly_woman_outcrop](../assets/outpainting/curly-outcrop.png)
![curly_woman_outcrop](../assets/outpainting/curly-outcrop-2.png)
</figure>
The new image is actually slightly larger than the original (576x576,
because 64 pixels were added to the top and right sides.)
The new image is larger than the original (576x704)
because 64 pixels were added to the top and right sides. You will
need enough VRAM to process an image of this size.
A number of caveats:
@ -64,6 +104,17 @@ you'll get a slightly different result. You can run it repeatedly
until you get an image you like. Unfortunately `!fix` does not
currently respect the `-n` (`--iterations`) argument.
3. Your results will be _much_ better if you use the `inpaint-1.5`
model released by runwayML and installed by default by
`scripts/preload_models.py`. This model was trained specifically to
harmoniously fill in image gaps. The standard model will work as well,
but you may notice color discontinuities at the border.
4. When using the `inpaint-1.5` model, you may notice subtle changes
to the area within the original image. This is because the model
performs an encoding/decoding on the image as a whole. This does not
occur with the standard model.
## Outpaint
The `outpaint` extension does the same thing, but with subtle

View File

@ -45,7 +45,7 @@ Here's a prompt that depicts what it does.
original prompt:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
<figure markdown>
![step1](../assets/negative_prompt_walkthru/step1.png)
@ -84,6 +84,109 @@ Getting close - but there's no sense in having a saddle when our horse doesn't h
---
## **Prompt Syntax Features**
The InvokeAI prompting language has the following features:
### Attention weighting
Append a word or phrase with `-` or `+`, or a weight between `0` and `2` (`1`=default), to decrease or increase "attention" (= a mix of per-token CFG weighting multiplier and, for `-`, a weighted blend with the prompt without the term).
The following syntax is recognised:
* single words without parentheses: `a tall thin man picking apricots+`
* single or multiple words with parentheses: `a tall thin man picking (apricots)+` `a tall thin man picking (apricots)-` `a tall thin man (picking apricots)+` `a tall thin man (picking apricots)-`
* more effect with more symbols `a tall thin man (picking apricots)++`
* nesting `a tall thin man (picking apricots+)++` (`apricots` effectively gets `+++`)
* all of the above with explicit numbers `a tall thin man picking (apricots)1.1` `a tall thin man (picking (apricots)1.3)1.1`. (`+` is equivalent to 1.1, `++` is pow(1.1,2), `+++` is pow(1.1,3), etc; `-` means 0.9, `--` means pow(0.9,2), etc.)
* attention also applies to `[unconditioning]` so `a tall thin man picking apricots [(ladder)0.01]` will *very gently* nudge SD away from trying to draw the man on a ladder
You can use this to increase or decrease the amount of something. Starting from this prompt of `a man picking apricots from a tree`, let's see what happens if we increase and decrease how much attention we want Stable Diffusion to pay to the word `apricots`:
![an AI generated image of a man picking apricots from a tree](../assets/prompt_syntax/apricots-0.png)
Using `-` to reduce apricot-ness:
| `a man picking apricots- from a tree` | `a man picking apricots-- from a tree` | `a man picking apricots--- from a tree` |
| -- | -- | -- |
| ![an AI generated image of a man picking apricots from a tree, with smaller apricots](../assets/prompt_syntax/apricots--1.png) | ![an AI generated image of a man picking apricots from a tree, with even smaller and fewer apricots](../assets/prompt_syntax/apricots--2.png) | ![an AI generated image of a man picking apricots from a tree, with very few very small apricots](../assets/prompt_syntax/apricots--3.png) |
Using `+` to increase apricot-ness:
| `a man picking apricots+ from a tree` | `a man picking apricots++ from a tree` | `a man picking apricots+++ from a tree` | `a man picking apricots++++ from a tree` | `a man picking apricots+++++ from a tree` |
| -- | -- | -- | -- | -- |
| ![an AI generated image of a man picking apricots from a tree, with larger, more vibrant apricots](../assets/prompt_syntax/apricots-1.png) | ![an AI generated image of a man picking apricots from a tree with even larger, even more vibrant apricots](../assets/prompt_syntax/apricots-2.png) | ![an AI generated image of a man picking apricots from a tree, but the man has been replaced by a pile of apricots](../assets/prompt_syntax/apricots-3.png) | ![an AI generated image of a man picking apricots from a tree, but the man has been replaced by a mound of giant melting-looking apricots](../assets/prompt_syntax/apricots-4.png) | ![an AI generated image of a man picking apricots from a tree, but the man and the leaves and parts of the ground have all been replaced by giant melting-looking apricots](../assets/prompt_syntax/apricots-5.png) |
You can also change the balance between different parts of a prompt. For example, below is a `mountain man`:
![an AI generated image of a mountain man](../assets/prompt_syntax/mountain-man.png)
And here he is with more mountain:
| `mountain+ man` | `mountain++ man` | `mountain+++ man` |
| -- | -- | -- |
| ![](../assets/prompt_syntax/mountain1-man.png) | ![](../assets/prompt_syntax/mountain2-man.png) | ![](../assets/prompt_syntax/mountain3-man.png) |
Or, alternatively, with more man:
| `mountain man+` | `mountain man++` | `mountain man+++` | `mountain man++++` |
| -- | -- | -- | -- |
| ![](../assets/prompt_syntax/mountain-man1.png) | ![](../assets/prompt_syntax/mountain-man2.png) | ![](../assets/prompt_syntax/mountain-man3.png) | ![](../assets/prompt_syntax/mountain-man4.png) |
### Blending between prompts
* `("a tall thin man picking apricots", "a tall thin man picking pears").blend(1,1)`
* The existing prompt blending using `:<weight>` will continue to be supported - `("a tall thin man picking apricots", "a tall thin man picking pears").blend(1,1)` is equivalent to `a tall thin man picking apricots:1 a tall thin man picking pears:1` in the old syntax.
* Attention weights can be nested inside blends.
* Non-normalized blends are supported by passing `no_normalize` as an additional argument to the blend weights, eg `("a tall thin man picking apricots", "a tall thin man picking pears").blend(1,-1,no_normalize)`. very fun to explore local maxima in the feature space, but also easy to produce garbage output.
See the section below on "Prompt Blending" for more information about how this works.
### Cross-Attention Control ('prompt2prompt')
Sometimes an image you generate is almost right, and you just want to
change one detail without affecting the rest. You could use a photo editor and inpainting
to overpaint the area, but that's a pain. Here's where `prompt2prompt`
comes in handy.
Generate an image with a given prompt, record the seed of the image,
and then use the `prompt2prompt` syntax to substitute words in the
original prompt for words in a new prompt. This works for `img2img` as well.
* `a ("fluffy cat").swap("smiling dog") eating a hotdog`.
* quotes optional: `a (fluffy cat).swap(smiling dog) eating a hotdog`.
* for single word substitutions parentheses are also optional: `a cat.swap(dog) eating a hotdog`.
* Supports options `s_start`, `s_end`, `t_start`, `t_end` (each 0-1) loosely corresponding to bloc97's `prompt_edit_spatial_start/_end` and `prompt_edit_tokens_start/_end` but with the math swapped to make it easier to intuitively understand.
* Example usage:`a (cat).swap(dog, s_end=0.3) eating a hotdog` - the `s_end` argument means that the "spatial" (self-attention) edit will stop having any effect after 30% (=0.3) of the steps have been done, leaving Stable Diffusion with 70% of the steps where it is free to decide for itself how to reshape the cat-form into a dog form.
* The numbers represent a percentage through the step sequence where the edits should happen. 0 means the start (noisy starting image), 1 is the end (final image).
* For img2img, the step sequence does not start at 0 but instead at (1-strength) - so if strength is 0.7, s_start and s_end must both be greater than 0.3 (1-0.7) to have any effect.
* Convenience option `shape_freedom` (0-1) to specify how much "freedom" Stable Diffusion should have to change the shape of the subject being swapped.
* `a (cat).swap(dog, shape_freedom=0.5) eating a hotdog`.
The `prompt2prompt` code is based off [bloc97's
colab](https://github.com/bloc97/CrossAttentionControl).
Note that `prompt2prompt` is not currently working with the runwayML
inpainting model, and may never work due to the way this model is set
up. If you attempt to use `prompt2prompt` you will get the original
image back. However, since this model is so good at inpainting, a
good substitute is to use the `clipseg` text masking option:
```
invoke> a fluffy cat eating a hotdot
Outputs:
[1010] outputs/000025.2182095108.png: a fluffy cat eating a hotdog
invoke> a smiling dog eating a hotdog -I 000025.2182095108.png -tm cat
```
### Escaping parantheses () and speech marks ""
If the model you are using has parentheses () or speech marks "" as
part of its syntax, you will need to "escape" these using a backslash,
so that`(my_keyword)` becomes `\(my_keyword\)`. Otherwise, the prompt
parser will attempt to interpret the parentheses as part of the prompt
syntax and it will get confused.
## **Prompt Blending**
You may blend together different sections of the prompt to explore the

View File

@ -0,0 +1,58 @@
# **WebUI Hotkey List**
## General
| Setting | Hotkey |
| ------------ | ---------------------- |
| a | Set All Parameters |
| s | Set Seed |
| u | Upscale |
| r | Restoration |
| i | Show Metadata |
| Ddl | Delete Image |
| alt + a | Focus prompt input |
| shift + i | Send To Image to Image |
| ctrl + enter | Start processing |
| shift + x | cancel Processing |
| shift + d | Toggle Dark Mode |
| ` | Toggle console |
## Tabs
| Setting | Hotkey |
| ------- | ------------------------- |
| 1 | Go to Text To Image Tab |
| 2 | Go to Image to Image Tab |
| 3 | Go to Inpainting Tab |
| 4 | Go to Outpainting Tab |
| 5 | Go to Nodes Tab |
| 6 | Go to Post Processing Tab |
## Gallery
| Setting | Hotkey |
| ------------ | ------------------------------- |
| g | Toggle Gallery |
| left arrow | Go to previous image in gallery |
| right arrow | Go to next image in gallery |
| shift + p | Pin gallery |
| shift + up | Increase gallery image size |
| shift + down | Decrease gallery image size |
| shift + r | Reset image gallery size |
## Inpainting
| Setting | Hotkey |
| -------------------------- | --------------------- |
| [ | Decrease brush size |
| ] | Increase brush size |
| alt + [ | Decrease mask opacity |
| alt + ] | Increase mask opacity |
| b | Select brush |
| e | Select eraser |
| ctrl + z | Undo brush stroke |
| ctrl + shift + z, ctrl + y | Redo brush stroke |
| h | Hide mask |
| shift + m | Invert mask |
| shift + c | Clear mask |
| shift + j | Expand canvas |

View File

@ -0,0 +1,267 @@
---
title: Installing Models
---
# :octicons-paintbrush-16: Installing Models
## Model Weight Files
The model weight files ('*.ckpt') are the Stable Diffusion "secret
sauce". They are the product of training the AI on millions of
captioned images gathered from multiple sources.
Originally there was only a single Stable Diffusion weights file,
which many people named `model.ckpt`. Now there are dozens or more
that have been "fine tuned" to provide particulary styles, genres, or
other features. InvokeAI allows you to install and run multiple model
weight files and switch between them quickly in the command-line and
web interfaces.
This manual will guide you through installing and configuring model
weight files.
## Base Models
InvokeAI comes with support for a good initial set of models listed in
the model configuration file `configs/models.yaml`. They are:
| Model | Weight File | Description | DOWNLOAD FROM |
| ---------------------- | ----------------------------- |--------------------------------- | ----------------|
| stable-diffusion-1.5 | v1-5-pruned-emaonly.ckpt | Most recent version of base Stable Diffusion model| https://huggingface.co/runwayml/stable-diffusion-v1-5 |
| stable-diffusion-1.4 | sd-v1-4.ckpt | Previous version of base Stable Diffusion model | https://huggingface.co/CompVis/stable-diffusion-v-1-4-original |
| inpainting-1.5 | sd-v1-5-inpainting.ckpt | Stable Diffusion 1.5 model specialized for inpainting | https://huggingface.co/runwayml/stable-diffusion-inpainting |
| waifu-diffusion-1.3 | model-epoch09-float32.ckpt | Stable Diffusion 1.4 trained to produce anime images | https://huggingface.co/hakurei/waifu-diffusion-v1-3 |
| <all models> | vae-ft-mse-840000-ema-pruned.ckpt | A fine-tune file add-on file that improves face generation | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/ |
Note that these files are covered by an "Ethical AI" license which
forbids certain uses. You will need to create an account on the
Hugging Face website and accept the license terms before you can
access the files.
The predefined configuration file for InvokeAI (located at
`configs/models.yaml`) provides entries for each of these weights
files. `stable-diffusion-1.5` is the default model used, and we
strongly recommend that you install this weights file if nothing else.
## Community-Contributed Models
There are too many to list here and more are being contributed every
day. Hugging Face maintains a [fast-growing
repository](https://huggingface.co/sd-concepts-library) of fine-tune
(".bin") models that can be imported into InvokeAI by passing the
`--embedding_path` option to the `invoke.py` command.
[This page](https://rentry.org/sdmodels) hosts a large list of
official and unofficial Stable Diffusion models and where they can be
obtained.
## Installation
There are three ways to install weights files:
1. During InvokeAI installation, the `preload_models.py` script can
download them for you.
2. You can use the command-line interface (CLI) to import, configure
and modify new models files.
3. You can download the files manually and add the appropriate entries
to `models.yaml`.
### Installation via `preload_models.py`
This is the most automatic way. Run `scripts/preload_models.py` from
the console. It will ask you to select which models to download and
lead you through the steps of setting up a Hugging Face account if you
haven't done so already.
To start, from within the InvokeAI directory run the command `python
scripts/preload_models.py` (Linux/MacOS) or `python
scripts\preload_models.py` (Windows):
```
Loading Python libraries...
** INTRODUCTION **
Welcome to InvokeAI. This script will help download the Stable Diffusion weight files
and other large models that are needed for text to image generation. At any point you may interrupt
this program and resume later.
** WEIGHT SELECTION **
Would you like to download the Stable Diffusion model weights now? [y]
Choose the weight file(s) you wish to download. Before downloading you
will be given the option to view and change your selections.
[1] stable-diffusion-1.5:
The newest Stable Diffusion version 1.5 weight file (4.27 GB) (recommended)
Download? [y]
[2] inpainting-1.5:
RunwayML SD 1.5 model optimized for inpainting (4.27 GB) (recommended)
Download? [y]
[3] stable-diffusion-1.4:
The original Stable Diffusion version 1.4 weight file (4.27 GB)
Download? [n] n
[4] waifu-diffusion-1.3:
Stable Diffusion 1.4 fine tuned on anime-styled images (4.27)
Download? [n] y
[5] ft-mse-improved-autoencoder-840000:
StabilityAI improved autoencoder fine-tuned for human faces (recommended; 335 MB) (recommended)
Download? [y] y
The following weight files will be downloaded:
[1] stable-diffusion-1.5*
[2] inpainting-1.5
[4] waifu-diffusion-1.3
[5] ft-mse-improved-autoencoder-840000
*default
Ok to download? [y]
** LICENSE AGREEMENT FOR WEIGHT FILES **
1. To download the Stable Diffusion weight files you need to read and accept the
CreativeML Responsible AI license. If you have not already done so, please
create an account using the "Sign Up" button:
https://huggingface.co
You will need to verify your email address as part of the HuggingFace
registration process.
2. After creating the account, login under your account and accept
the license terms located here:
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
Press <enter> when you are ready to continue:
...
```
When the script is complete, you will find the downloaded weights
files in `models/ldm/stable-diffusion-v1` and a matching configuration
file in `configs/models.yaml`.
You can run the script again to add any models you didn't select the
first time. Note that as a safety measure the script will _never_
remove a previously-installed weights file. You will have to do this
manually.
### Installation via the CLI
You can install a new model, including any of the community-supported
ones, via the command-line client's `!import_model` command.
1. First download the desired model weights file and place it under `models/ldm/stable-diffusion-v1/`.
You may rename the weights file to something more memorable if you wish. Record the path of the
weights file (e.g. `models/ldm/stable-diffusion-v1/arabian-nights-1.0.ckpt`)
2. Launch the `invoke.py` CLI with `python scripts/invoke.py`.
3. At the `invoke>` command-line, enter the command `!import_model <path to model>`.
For example:
`invoke> !import_model models/ldm/stable-diffusion-v1/arabian-nights-1.0.ckpt`
(Hint - the CLI supports file path autocompletion. Type a bit of the path
name and hit <tab> in order to get a choice of possible completions.)
4. Follow the wizard's instructions to complete installation as shown in the example
here:
```
invoke> <b>!import_model models/ldm/stable-diffusion-v1/arabian-nights-1.0.ckpt</b>
>> Model import in process. Please enter the values needed to configure this model:
Name for this model: <b>arabian-nights</b>
Description of this model: <b>Arabian Nights Fine Tune v1.0</b>
Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b>
Default image width: <b>512</b>
Default image height: <b>512</b>
>> New configuration:
arabian-nights:
config: configs/stable-diffusion/v1-inference.yaml
description: Arabian Nights Fine Tune v1.0
height: 512
weights: models/ldm/stable-diffusion-v1/arabian-nights-1.0.ckpt
width: 512
OK to import [n]? <b>y</b>
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/arabian-nights-1.0.ckpt
| LatentDiffusion: Running in eps-prediction mode
| DiffusionWrapper has 859.52 M params.
| Making attention of type 'vanilla' with 512 in_channels
| Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
| Making attention of type 'vanilla' with 512 in_channels
| Using faster float16 precision
```
If you've previously installed the fine-tune VAE file `vae-ft-mse-840000-ema-pruned.ckpt`,
the wizard will also ask you if you want to add this VAE to the model.
The appropriate entry for this model will be added to `configs/models.yaml` and it will
be available to use in the CLI immediately.
The CLI has additional commands for switching among, viewing, editing,
deleting the available models. These are described in [Command Line
Client](../features/CLI.md#model-selection-and-importation), but the two most
frequently-used are `!models` and `!switch <name of model>`. The first
prints a table of models that InvokeAI knows about and their load
status. The second will load the requested model and lets you switch
back and forth quickly among loaded models.
### Manually editing of `configs/models.yaml`
If you are comfortable with a text editor then you may simply edit
`models.yaml` directly.
First you need to download the desired .ckpt file and place it in
`models/ldm/stable-diffusion-v1` as descirbed in step #1 in the
previous section. Record the path to the weights file,
e.g. `models/ldm/stable-diffusion-v1/arabian-nights-1.0.ckpt`
Then using a **text** editor (e.g. the Windows Notepad application),
open the file `configs/models.yaml`, and add a new stanza that follows
this model:
```
arabian-nights-1.0:
description: A great fine-tune in Arabian Nights style
weights: ./models/ldm/stable-diffusion-v1/arabian-nights-1.0.ckpt
config: ./configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512
vae: ./models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
default: false
```
* arabian-nights-1.0
- This is the name of the model that you will refer to from within the
CLI and the WebGUI when you need to load and use the model.
* description
- Any description that you want to add to the model to remind you what
it is.
* weights
- Relative path to the .ckpt weights file for this model.
* config
- This is the confusingly-named configuration file for the model itself.
Use `./configs/stable-diffusion/v1-inference.yaml` unless the model happens
to need a custom configuration, in which case the place you downloaded it
from will tell you what to use instead. For example, the runwayML custom
inpainting model requires the file `configs/stable-diffusion/v1-inpainting-inference.yaml`.
This is already inclued in the InvokeAI distribution and is configured automatically
for you by the `preload_models.py` script.
* vae
- If you want to add a VAE file to the model, then enter its path here.
* width, height
- This is the width and height of the images used to train the model.
Currently they are always 512 and 512.
Save the `models.yaml` and relaunch InvokeAI. The new model should now be
available for your use.

View File

@ -36,20 +36,6 @@ another environment with NVIDIA GPUs on-premises or in the cloud.
### Prerequisites
#### Get the data files
Go to
[Hugging Face](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original),
and click "Access repository" to Download the model file `sd-v1-4.ckpt` (~4 GB)
to `~/Downloads`. You'll need to create an account but it's quick and free.
Also download the face restoration model.
```Shell
cd ~/Downloads
wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
```
#### Install [Docker](https://github.com/santisbon/guides#docker)
On the Docker Desktop app, go to Preferences, Resources, Advanced. Increase the
@ -57,86 +43,61 @@ CPUs and Memory to avoid this
[Issue](https://github.com/invoke-ai/InvokeAI/issues/342). You may need to
increase Swap and Disk image size too.
#### Get a Huggingface-Token
Go to [Hugging Face](https://huggingface.co/settings/tokens), create a token and
temporary place it somewhere like a open texteditor window (but dont save it!,
only keep it open, we need it in the next step)
### Setup
Set the fork you want to use and other variables.
```Shell
TAG_STABLE_DIFFUSION="santisbon/stable-diffusion"
PLATFORM="linux/arm64"
GITHUB_STABLE_DIFFUSION="-b orig-gfpgan https://github.com/santisbon/stable-diffusion.git"
REQS_STABLE_DIFFUSION="requirements-linux-arm64.txt"
CONDA_SUBDIR="osx-arm64"
!!! tip
echo $TAG_STABLE_DIFFUSION
echo $PLATFORM
echo $GITHUB_STABLE_DIFFUSION
echo $REQS_STABLE_DIFFUSION
echo $CONDA_SUBDIR
I preffer to save my env vars
in the repository root in a `.env` (or `.envrc`) file to automatically re-apply
them when I come back.
The build- and run- scripts contain default values for almost everything,
besides the [Hugging Face Token](https://huggingface.co/settings/tokens) you
created in the last step.
Some Suggestions of variables you may want to change besides the Token:
| Environment-Variable | Description |
| ------------------------------------------------------------------- | ------------------------------------------------------------------------ |
| `HUGGINGFACE_TOKEN="hg_aewirhghlawrgkjbarug2"` | This is the only required variable, without you can't get the checkpoint |
| `ARCH=aarch64` | if you are using a ARM based CPU |
| `INVOKEAI_TAG=yourname/invokeai:latest` | the Container Repository / Tag which will be used |
| `INVOKEAI_CONDA_ENV_FILE=environment-linux-aarch64.yml` | since environment.yml wouldn't work with aarch |
| `INVOKEAI_GIT="-b branchname https://github.com/username/reponame"` | if you want to use your own fork |
#### Build the Image
I provided a build script, which is located in `docker-build/build.sh` but still
needs to be executed from the Repository root.
```bash
docker-build/build.sh
```
Create a Docker volume for the downloaded model files.
The build Script not only builds the container, but also creates the docker
volume if not existing yet, or if empty it will just download the models. When
it is done you can run the container via the run script
```Shell
docker volume create my-vol
```bash
docker-build/run.sh
```
Copy the data files to the Docker volume using a lightweight Linux container.
We'll need the models at run time. You just need to create the container with
the mountpoint; no need to run this dummy container.
When used without arguments, the container will start the website and provide
you the link to open it. But if you want to use some other parameters you can
also do so.
```Shell
cd ~/Downloads # or wherever you saved the files
!!! warning "Deprecated"
docker create --platform $PLATFORM --name dummy --mount source=my-vol,target=/data alpine
docker cp sd-v1-4.ckpt dummy:/data
docker cp GFPGANv1.4.pth dummy:/data
```
Get the repo and download the Miniconda installer (we'll need it at build time).
Replace the URL with the version matching your container OS and the architecture
it will run on.
```Shell
cd ~
git clone $GITHUB_STABLE_DIFFUSION
cd stable-diffusion/docker-build
chmod +x entrypoint.sh
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh -O anaconda.sh && chmod +x anaconda.sh
```
Build the Docker image. Give it any tag `-t` that you want.
Choose the Linux container's host platform: x86-64/Intel is `amd64`. Apple
silicon is `arm64`. If deploying the container to the cloud to leverage powerful
GPU instances you'll be on amd64 hardware but if you're just trying this out
locally on Apple silicon choose arm64.
The application uses libraries that need to match the host environment so use
the appropriate requirements file.
Tip: Check that your shell session has the env variables set above.
```Shell
docker build -t $TAG_STABLE_DIFFUSION \
--platform $PLATFORM \
--build-arg gsd=$GITHUB_STABLE_DIFFUSION \
--build-arg rsd=$REQS_STABLE_DIFFUSION \
--build-arg cs=$CONDA_SUBDIR \
.
```
Run a container using your built image.
Tip: Make sure you've created and populated the Docker volume (above).
```Shell
docker run -it \
--rm \
--platform $PLATFORM \
--name stable-diffusion \
--hostname stable-diffusion \
--mount source=my-vol,target=/data \
$TAG_STABLE_DIFFUSION
```
From here on it is the rest of the previous Docker-Docs, which will still
provide usefull informations for one or the other.
## Usage (time to have fun)
@ -240,7 +201,8 @@ server with:
python3 scripts/invoke.py --full_precision --web
```
If it's running on your Mac point your Mac web browser to http://127.0.0.1:9090
If it's running on your Mac point your Mac web browser to
<http://127.0.0.1:9090>
Press Control-C at the command line to stop the web server.

View File

@ -1,5 +1,5 @@
---
title: Linux
title: Manual Installation, Linux
---
# :fontawesome-brands-linux: Linux
@ -43,6 +43,7 @@ title: Linux
environment named `invokeai` and activate the environment.
```bash
(base) rm -rf src # (this is a precaution in case there is already a src directory)
(base) ~/InvokeAI$ conda env create
(base) ~/InvokeAI$ conda activate invokeai
(invokeai) ~/InvokeAI$
@ -51,58 +52,54 @@ title: Linux
After these steps, your command prompt will be prefixed by `(invokeai)` as shown
above.
6. Load a couple of small machine-learning models required by stable diffusion:
6. Load the big stable diffusion weights files and a couple of smaller machine-learning models:
```bash
(invokeai) ~/InvokeAI$ python3 scripts/preload_models.py
```
!!! note
This script will lead you through the process of creating an account on Hugging Face,
accepting the terms and conditions of the Stable Diffusion model license, and
obtaining an access token for downloading. It will then download and install the
weights files for you.
This step is necessary because I modified the original just-in-time
model loading scheme to allow the script to work on GPU machines that are not
internet connected. See [Preload Models](../features/OTHER.md#preload-models)
Please see [../features/INSTALLING_MODELS.md] for a manual process for doing the
same thing.
7. Now you need to install the weights for the stable diffusion model.
7. Start generating images!
- For running with the released weights, you will first need to set up an acount
with [Hugging Face](https://huggingface.co).
- Use your credentials to log in, and then point your browser [here](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original).
- You may be asked to sign a license agreement at this point.
- Click on "Files and versions" near the top of the page, and then click on the
file named "sd-v1-4.ckpt". You'll be taken to a page that prompts you to click
the "download" link. Save the file somewhere safe on your local machine.
# Command-line interface
(invokeai) python scripts/invoke.py
Now run the following commands from within the stable-diffusion directory.
This will create a symbolic link from the stable-diffusion model.ckpt file, to
the true location of the `sd-v1-4.ckpt` file.
# or run the web interface on localhost:9090!
(invokeai) python scripts/invoke.py --web
```bash
(invokeai) ~/InvokeAI$ mkdir -p models/ldm/stable-diffusion-v1
(invokeai) ~/InvokeAI$ ln -sf /path/to/sd-v1-4.ckpt models/ldm/stable-diffusion-v1/model.ckpt
```
# or run the web interface on your machine's network interface!
(invokeai) python scripts/invoke.py --web --host 0.0.0.0
8. Start generating images!
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
```bash
# for the pre-release weights use the -l or --liaon400m switch
(invokeai) ~/InvokeAI$ python3 scripts/invoke.py -l
# for the post-release weights do not use the switch
(invokeai) ~/InvokeAI$ python3 scripts/invoke.py
# for additional configuration switches and arguments, use -h or --help
(invokeai) ~/InvokeAI$ python3 scripts/invoke.py -h
```
9. Subsequently, to relaunch the script, be sure to run "conda activate invokeai" (step 5, second command), enter the `InvokeAI` directory, and then launch the invoke script (step 8). If you forget to activate the 'invokeai' environment, the script will fail with multiple `ModuleNotFound` errors.
9. Subsequently, to relaunch the script, be sure to run "conda
activate invokeai" (step 5, second command), enter the `InvokeAI`
directory, and then launch the invoke script (step 8). If you forget
to activate the 'invokeai' environment, the script will fail with
multiple `ModuleNotFound` errors.
## Updating to newer versions of the script
This distribution is changing rapidly. If you used the `git clone` method (step 5) to download the InvokeAI directory, then to update to the latest and greatest version, launch the Anaconda window, enter `InvokeAI` and type:
This distribution is changing rapidly. If you used the `git clone`
method (step 5) to download the InvokeAI directory, then to update to
the latest and greatest version, launch the Anaconda window, enter
`InvokeAI` and type:
```bash
(invokeai) ~/InvokeAI$ git pull
(invokeai) ~/InvokeAI$ rm -rf src # prevents conda freezing errors
(invokeai) ~/InvokeAI$ conda env update -f environment.yml
```

View File

@ -1,5 +1,5 @@
---
title: macOS
title: Manual Installation, macOS
---
# :fontawesome-brands-apple: macOS
@ -19,18 +19,9 @@ an issue on Github and we will do our best to help.
## Installation
First you need to download a large checkpoint file.
1. Sign up at https://huggingface.co
2. Go to the [Stable diffusion diffusion model page](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)
3. Accept the terms and click Access Repository
4. Download [sd-v1-4.ckpt (4.27 GB)](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/blob/main/sd-v1-4.ckpt) and note where you have saved it (probably the Downloads folder). You may want to move it somewhere else for longer term storage - SD needs this file to run.
While that is downloading, open Terminal and run the following commands one at a time, reading the comments and taking care to run the appropriate command for your Mac's architecture (Intel or M1).
!!! todo "Homebrew"
If you have no brew installation yet (otherwise skip):
First you will install the "brew" package manager. Skip this if brew is already installed.
```bash title="install brew (and Xcode command line tools)"
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
@ -94,25 +85,6 @@ While that is downloading, open Terminal and run the following commands one at a
cd InvokeAI
```
!!! todo "Wait until the checkpoint-file download finished, then proceed"
We will leave the big checkpoint wherever you stashed it for long-term storage,
and make a link to it from the repo's folder. This allows you to use it for
other repos, or if you need to delete Invoke AI, you won't have to download it again.
```{.bash .annotate}
# Make the directory in the repo for the symlink
mkdir -p models/ldm/stable-diffusion-v1/
# This is the folder where you put the checkpoint file `sd-v1-4.ckpt`
PATH_TO_CKPT="$HOME/Downloads" # (1)!
# Create a link to the checkpoint
ln -s "$PATH_TO_CKPT/sd-v1-4.ckpt" models/ldm/stable-diffusion-v1/model.ckpt
```
1. replace `$HOME/Downloads` with the Location where you actually stored the Checkppoint (`sd-v1-4.ckpt`)
!!! todo "Create the environment & install packages"
=== "M1 Mac"
@ -131,25 +103,40 @@ While that is downloading, open Terminal and run the following commands one at a
# Activate the environment (you need to do this every time you want to run SD)
conda activate invokeai
# This will download some bits and pieces and make take a while
(invokeai) python scripts/preload_models.py
# Run SD!
(invokeai) python scripts/dream.py
# or run the web interface!
(invokeai) python scripts/invoke.py --web
# The original scripts should work as well.
(invokeai) python scripts/orig_scripts/txt2img.py \
--prompt "a photograph of an astronaut riding a horse" \
--plms
```
!!! info
`export PIP_EXISTS_ACTION=w` is a precaution to fix `conda env
create -f environment-mac.yml` never finishing in some situations. So
it isn't required but wont hurt.
it isn't required but won't hurt.
!!! todo "Download the model weight files"
The `preload_models.py` script downloads and installs the model weight
files for you. It will lead you through the process of getting a Hugging Face
account, accepting the Stable Diffusion model weight license agreement, and
creating a download token:
# This will take some time, depending on the speed of your internet connection
# and will consume about 10GB of space
(invokeai) python scripts/preload_models.py
!! todo "Run InvokeAI!"
# Command-line interface
(invokeai) python scripts/invoke.py
# or run the web interface on localhost:9090!
(invokeai) python scripts/invoke.py --web
# or run the web interface on your machine's network interface!
(invokeai) python scripts/invoke.py --web --host 0.0.0.0
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
---
## Common problems

Some files were not shown because too many files have changed in this diff Show More