mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
For loras/embeddings treat folders the same as single files
This commit is contained in:
parent
bbecb99eb4
commit
18098cc4b9
@ -644,18 +644,15 @@ class VaeFolderProbe(FolderProbeBase):
|
||||
return name
|
||||
|
||||
|
||||
class TextualInversionFolderProbe(FolderProbeBase):
|
||||
def get_format(self) -> ModelFormat:
|
||||
return ModelFormat.EmbeddingFolder
|
||||
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
files = os.scandir(self.model_path)
|
||||
class TextualInversionFolderProbe(TextualInversionCheckpointProbe):
|
||||
def __init__(self, model_path: Path):
|
||||
files = os.scandir(model_path)
|
||||
files = [Path(f.path) for f in files if f.is_file() and f.name.endswith((".ckpt", ".pt", ".pth", ".bin", ".safetensors"))]
|
||||
if len(files) != 1:
|
||||
raise InvalidModelConfigException(
|
||||
f"Unable to determine base type for {self.model_path}: expected exactly one valid model file, found {[f.name for f in files]}."
|
||||
f"Unable to determine base type for {model_path}: expected exactly one valid model file, found {[f.name for f in files]}."
|
||||
)
|
||||
return TextualInversionCheckpointProbe(files.pop()).get_base_type()
|
||||
super().__init__(model_path)
|
||||
|
||||
|
||||
class ONNXFolderProbe(PipelineFolderProbe):
|
||||
@ -701,19 +698,16 @@ class ControlNetFolderProbe(FolderProbeBase):
|
||||
return base_model
|
||||
|
||||
|
||||
class LoRAFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
model_file = None
|
||||
files = os.scandir(self.model_path)
|
||||
class LoRAFolderProbe(LoRACheckpointProbe):
|
||||
def __init__(self, model_path: Path):
|
||||
files = os.scandir(model_path)
|
||||
files = [Path(f.path) for f in files if f.is_file() and f.name.endswith((".bin", ".safetensors"))]
|
||||
if len(files) != 1:
|
||||
raise InvalidModelConfigException(
|
||||
f"Unable to determine base type for {self.model_path}: expected exactly one valid model file, found {[f.name for f in files]}."
|
||||
f"Unable to determine base type for lora {model_path}: expected exactly one valid model file, found {[f.name for f in files]}."
|
||||
)
|
||||
model_file = files.pop()
|
||||
if not model_file:
|
||||
raise InvalidModelConfigException("Unknown LoRA format encountered")
|
||||
return LoRACheckpointProbe(model_file).get_base_type()
|
||||
super().__init__(model_file)
|
||||
|
||||
|
||||
class IPAdapterFolderProbe(FolderProbeBase):
|
||||
|
Loading…
Reference in New Issue
Block a user