fix: Make DepthAnything work with Invoke's Model Management

This commit is contained in:
blessedcoolant 2024-07-31 03:57:54 +05:30
parent f170697ebe
commit 18f89ed5ed
4 changed files with 47 additions and 5 deletions

View File

@ -2,6 +2,7 @@
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float
from pathlib import Path
from typing import Dict, List, Literal, Union
import cv2
@ -21,6 +22,7 @@ from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@ -44,6 +46,7 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
@ -614,9 +617,16 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
depth_anything_pipeline = pipeline(task="depth-estimation", model=DEPTH_ANYTHING_MODELS[self.model_size])
depth_map = depth_anything_pipeline(image)["depth"]
return depth_map
def load_depth_anything(model_path: Path):
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return DepthAnythingPipeline(depth_anything_pipeline)
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
) as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
return depth_anything_detector.generate_depth(image, self.resolution)
@invocation(

View File

@ -0,0 +1,26 @@
from typing import cast
from PIL import Image
from transformers.pipelines import DepthEstimationPipeline
class DepthAnythingPipeline:
"""Custom wrapper for the Depth Estimation pipeline from transformers adding compatibility
for Invoke's Model Management System"""
def __init__(self, pipeline: DepthEstimationPipeline) -> None:
self.pipeline = pipeline
def generate_depth(self, image: Image.Image, resolution: int = 512):
image_width, image_height = image.size
depth_map = self.pipeline(image)["depth"]
depth_map = cast(Image.Image, depth_map)
new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height))
return depth_map
def calc_size(self) -> int:
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self.pipeline.model)

View File

@ -31,13 +31,16 @@ from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapt
from typing_extensions import Annotated, Any, Dict
from invokeai.app.util.misc import uuid_string
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.model_hash.hash_validator import validate_hash
from invokeai.backend.raw_model import RawModel
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
# ModelMixin is the base class for all diffusers and transformers models
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor], diffusers.DiffusionPipeline]
AnyModel = Union[
ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor], diffusers.DiffusionPipeline, DepthAnythingPipeline
]
class InvalidModelConfigException(Exception):

View File

@ -11,6 +11,7 @@ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from transformers import CLIPTokenizer
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager.config import AnyModel
@ -34,7 +35,9 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
elif isinstance(model, CLIPTokenizer):
# TODO(ryand): Accurately calculate the tokenizer's size. It's small enough that it shouldn't matter for now.
return 0
elif isinstance(model, (TextualInversionModelRaw, IPAdapter, LoRAModelRaw, SpandrelImageToImageModel)):
elif isinstance(
model, (TextualInversionModelRaw, IPAdapter, LoRAModelRaw, SpandrelImageToImageModel, DepthAnythingPipeline)
):
return model.calc_size()
else:
# TODO(ryand): Promote this from a log to an exception once we are confident that we are handling all of the