mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Stricter typing for the is_gradient_mask: bool.
This commit is contained in:
parent
244c28859d
commit
196f3b721d
@ -819,7 +819,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
seed=seed,
|
seed=seed,
|
||||||
mask=mask,
|
mask=mask,
|
||||||
masked_latents=masked_latents,
|
masked_latents=masked_latents,
|
||||||
gradient_mask=gradient_mask,
|
is_gradient_mask=gradient_mask,
|
||||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||||
conditioning_data=conditioning_data,
|
conditioning_data=conditioning_data,
|
||||||
control_data=controlnet_data,
|
control_data=controlnet_data,
|
||||||
|
@ -340,7 +340,6 @@ class TiledStableDiffusionRefineInvocation(BaseInvocation):
|
|||||||
seed=seed,
|
seed=seed,
|
||||||
mask=None,
|
mask=None,
|
||||||
masked_latents=None,
|
masked_latents=None,
|
||||||
gradient_mask=None,
|
|
||||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||||
conditioning_data=conditioning_data,
|
conditioning_data=conditioning_data,
|
||||||
control_data=[controlnet_data],
|
control_data=[controlnet_data],
|
||||||
|
@ -82,7 +82,7 @@ class AddsMaskGuidance:
|
|||||||
mask_latents: torch.Tensor
|
mask_latents: torch.Tensor
|
||||||
scheduler: SchedulerMixin
|
scheduler: SchedulerMixin
|
||||||
noise: torch.Tensor
|
noise: torch.Tensor
|
||||||
gradient_mask: bool
|
is_gradient_mask: bool
|
||||||
|
|
||||||
def __call__(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
def __call__(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
||||||
return self.apply_mask(latents, t)
|
return self.apply_mask(latents, t)
|
||||||
@ -100,7 +100,7 @@ class AddsMaskGuidance:
|
|||||||
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
|
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
|
||||||
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
|
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
|
||||||
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
|
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
|
||||||
if self.gradient_mask:
|
if self.is_gradient_mask:
|
||||||
threshhold = (t.item()) / self.scheduler.config.num_train_timesteps
|
threshhold = (t.item()) / self.scheduler.config.num_train_timesteps
|
||||||
mask_bool = mask > threshhold # I don't know when mask got inverted, but it did
|
mask_bool = mask > threshhold # I don't know when mask got inverted, but it did
|
||||||
masked_input = torch.where(mask_bool, latents, mask_latents)
|
masked_input = torch.where(mask_bool, latents, mask_latents)
|
||||||
@ -295,7 +295,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|||||||
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
|
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
|
||||||
mask: Optional[torch.Tensor] = None,
|
mask: Optional[torch.Tensor] = None,
|
||||||
masked_latents: Optional[torch.Tensor] = None,
|
masked_latents: Optional[torch.Tensor] = None,
|
||||||
gradient_mask: Optional[bool] = False,
|
is_gradient_mask: bool = False,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
if init_timestep.shape[0] == 0:
|
if init_timestep.shape[0] == 0:
|
||||||
return latents
|
return latents
|
||||||
@ -328,7 +328,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|||||||
generator=torch.Generator(device="cpu").manual_seed(seed),
|
generator=torch.Generator(device="cpu").manual_seed(seed),
|
||||||
).to(device=orig_latents.device, dtype=orig_latents.dtype)
|
).to(device=orig_latents.device, dtype=orig_latents.dtype)
|
||||||
|
|
||||||
mask_guidance = AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask)
|
mask_guidance = AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, is_gradient_mask)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
latents = self.generate_latents_from_embeddings(
|
latents = self.generate_latents_from_embeddings(
|
||||||
@ -348,7 +348,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|||||||
# restore unmasked part after the last step is completed
|
# restore unmasked part after the last step is completed
|
||||||
# in-process masking happens before each step
|
# in-process masking happens before each step
|
||||||
if mask is not None:
|
if mask is not None:
|
||||||
if gradient_mask:
|
if is_gradient_mask:
|
||||||
latents = torch.where(mask > 0, latents, orig_latents)
|
latents = torch.where(mask > 0, latents, orig_latents)
|
||||||
else:
|
else:
|
||||||
latents = torch.lerp(
|
latents = torch.lerp(
|
||||||
|
Loading…
Reference in New Issue
Block a user