mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'development' of https://github.com/lstein/stable-diffusion into development
This commit is contained in:
commit
1a4bed2e55
@ -23,6 +23,7 @@ text-to-image generator. This fork supports:
|
||||
|
||||
3. A basic Web interface that allows you to run a local web server for
|
||||
generating images in your browser.
|
||||
|
||||
4. A notebook for running the code on Google Colab.
|
||||
|
||||
5. Upscaling and face fixing using the optional ESRGAN and GFPGAN
|
||||
@ -30,7 +31,11 @@ text-to-image generator. This fork supports:
|
||||
|
||||
6. Weighted subprompts for prompt tuning.
|
||||
|
||||
7. Textual inversion for customization of the prompt language and images.
|
||||
7. [Image variations](VARIATIONS.md) which allow you to systematically
|
||||
generate variations of an image you like and combine two or more
|
||||
images together to combine the best features of both.
|
||||
|
||||
8. Textual inversion for customization of the prompt language and images.
|
||||
|
||||
8. ...and more!
|
||||
|
||||
|
113
VARIATIONS.md
Normal file
113
VARIATIONS.md
Normal file
@ -0,0 +1,113 @@
|
||||
# Cheat Sheat for Generating Variations
|
||||
|
||||
Release 1.13 of SD-Dream adds support for image variations. There are two things that you can do:
|
||||
|
||||
1. Generate a series of systematic variations of an image, given a
|
||||
prompt. The amount of variation from one image to the next can be
|
||||
controlled.
|
||||
|
||||
2. Given two or more variations that you like, you can combine them in
|
||||
a weighted fashion
|
||||
|
||||
This cheat sheet provides a quick guide for how this works in
|
||||
practice, using variations to create the desired image of Xena,
|
||||
Warrior Princess.
|
||||
|
||||
## Step 1 -- find a base image that you like
|
||||
|
||||
The prompt we will use throughout is "lucy lawless as xena, warrior
|
||||
princess, character portrait, high resolution." This will be indicated
|
||||
as "prompt" in the examples below.
|
||||
|
||||
First we let SD create a series of images in the usual way, in this case
|
||||
requesting six iterations:
|
||||
|
||||
~~~
|
||||
dream> lucy lawless as xena, warrior princess, character portrait, high resolution -n6
|
||||
...
|
||||
Outputs:
|
||||
./outputs/Xena/000001.1579445059.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S1579445059
|
||||
./outputs/Xena/000001.1880768722.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S1880768722
|
||||
./outputs/Xena/000001.332057179.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S332057179
|
||||
./outputs/Xena/000001.2224800325.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S2224800325
|
||||
./outputs/Xena/000001.465250761.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S465250761
|
||||
./outputs/Xena/000001.3357757885.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S3357757885
|
||||
~~~
|
||||
|
||||
The one with seed 3357757885 looks nice:
|
||||
|
||||
<img src="static/variation_walkthru/000001.3357757885.png"/>
|
||||
|
||||
Let's try to generate some variations. Using the same seed, we pass
|
||||
the argument -v0.1 (or --variant_amount), which generates a series of
|
||||
variations each differing by a variation amount of 0.2. This number
|
||||
ranges from 0 to 1.0, with higher numbers being larger amounts of
|
||||
variation.
|
||||
|
||||
~~~
|
||||
dream> "prompt" -n6 -S3357757885 -v0.2
|
||||
...
|
||||
Outputs:
|
||||
./outputs/Xena/000002.784039624.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 784039624,0.2 -S3357757885
|
||||
./outputs/Xena/000002.3647897225.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225,0.2 -S3357757885
|
||||
./outputs/Xena/000002.917731034.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 917731034,0.2 -S3357757885
|
||||
./outputs/Xena/000002.4116285959.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 4116285959,0.2 -S3357757885
|
||||
./outputs/Xena/000002.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 1614299449,0.2 -S3357757885
|
||||
./outputs/Xena/000002.1335553075.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 1335553075,0.2 -S3357757885
|
||||
~~~
|
||||
|
||||
Note that the output for each image has a -V option giving the
|
||||
"variant subseed" for that image, consisting of a seed followed by the
|
||||
variation amount used to generate it.
|
||||
|
||||
This gives us a series of closely-related variations, including the
|
||||
two shown here.
|
||||
|
||||
<img src="static/variation_walkthru/000002.3647897225.png">
|
||||
<img src="static/variation_walkthru/000002.1614299449.png">
|
||||
|
||||
|
||||
I like the expression on Xena's face in the first one (subseed
|
||||
3647897225), and the armor on her shoulder in the second one (subseed
|
||||
1614299449). Can we combine them to get the best of both worlds?
|
||||
|
||||
We combine the two variations using -V (--with_variations). Again, we
|
||||
must provide the seed for the originally-chosen image in order for
|
||||
this to work.
|
||||
|
||||
~~~
|
||||
dream> "prompt" -S3357757885 -V3647897225,0.1;1614299449,0.1
|
||||
Outputs:
|
||||
./outputs/Xena/000003.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225,0.1;1614299449,0.1 -S3357757885
|
||||
~~~
|
||||
|
||||
Here we are providing equal weights (0.1 and 0.1) for both the
|
||||
subseeds. The resulting image is close, but not exactly what I
|
||||
wanted:
|
||||
|
||||
<img src="static/variation_walkthru/000003.1614299449.png">
|
||||
|
||||
We could either try combining the images with different weights, or we
|
||||
can generate more variations around the almost-but-not-quite image. We
|
||||
do the latter, using both the -V (combining) and -v (variation
|
||||
strength) options. Note that we use -n6 to generate 6 variations:
|
||||
|
||||
~~~~
|
||||
dream> "prompt" -S3357757885 -V3647897225,0.1;1614299449,0.1 -v0.05 -n6
|
||||
Outputs:
|
||||
./outputs/Xena/000004.3279757577.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225,0.1;1614299449,0.1;3279757577,0.05 -S3357757885
|
||||
./outputs/Xena/000004.2853129515.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225,0.1;1614299449,0.1;2853129515,0.05 -S3357757885
|
||||
./outputs/Xena/000004.3747154981.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225,0.1;1614299449,0.1;3747154981,0.05 -S3357757885
|
||||
./outputs/Xena/000004.2664260391.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225,0.1;1614299449,0.1;2664260391,0.05 -S3357757885
|
||||
./outputs/Xena/000004.1642517170.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225,0.1;1614299449,0.1;1642517170,0.05 -S3357757885
|
||||
./outputs/Xena/000004.2183375608.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225,0.1;1614299449,0.1;2183375608,0.05 -S3357757885
|
||||
~~~~
|
||||
|
||||
This produces six images, all slight variations on the combination of
|
||||
the chosen two images. Here's the one I like best:
|
||||
|
||||
<img src="static/variation_walkthru/000004.3747154981.png">
|
||||
|
||||
As you can see, this is a very powerful too, which when combined with
|
||||
subprompt weighting, gives you great control over the content and
|
||||
quality of your generated images.
|
@ -69,6 +69,11 @@ class PromptFormatter:
|
||||
switches.append(f'-G{opt.gfpgan_strength}')
|
||||
if opt.upscale:
|
||||
switches.append(f'-U {" ".join([str(u) for u in opt.upscale])}')
|
||||
if opt.variation_amount > 0:
|
||||
switches.append(f'-v {opt.variation_amount}')
|
||||
if opt.with_variations:
|
||||
formatted_variations = ';'.join(f'{seed},{weight}' for seed, weight in opt.with_variations)
|
||||
switches.append(f'-V {formatted_variations}')
|
||||
if t2i.full_precision:
|
||||
switches.append('-F')
|
||||
return ' '.join(switches)
|
||||
|
@ -88,8 +88,8 @@ class KSampler(object):
|
||||
img_callback(k_callback_values['x'], k_callback_values['i'])
|
||||
|
||||
sigmas = self.model.get_sigmas(S)
|
||||
if x_T:
|
||||
x = x_T
|
||||
if x_T is not None:
|
||||
x = x_T * sigmas[0]
|
||||
else:
|
||||
x = (
|
||||
torch.randn([batch_size, *shape], device=self.device)
|
||||
|
157
ldm/simplet2i.py
157
ldm/simplet2i.py
@ -226,6 +226,8 @@ class T2I:
|
||||
upscale = None,
|
||||
sampler_name = None,
|
||||
log_tokenization= False,
|
||||
with_variations = None,
|
||||
variation_amount = 0.0,
|
||||
threshold = 0,
|
||||
perlin = 0,
|
||||
**args,
|
||||
@ -246,6 +248,8 @@ class T2I:
|
||||
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
|
||||
step_callback // a function or method that will be called each step
|
||||
image_callback // a function or method that will be called each time an image is generated
|
||||
with_variations // a weighted list [(seed_1, weight_1), (seed_2, weight_2), ...] of variations which should be applied before doing any generation
|
||||
variation_amount // optional 0-1 value to slerp from -S noise to random noise (allows variations on an image)
|
||||
|
||||
To use the step callback, define a function that receives two arguments:
|
||||
- Image GPU data
|
||||
@ -264,7 +268,6 @@ class T2I:
|
||||
"""
|
||||
# TODO: convert this into a getattr() loop
|
||||
steps = steps or self.steps
|
||||
seed = seed or self.seed
|
||||
width = width or self.width
|
||||
height = height or self.height
|
||||
cfg_scale = cfg_scale or self.cfg_scale
|
||||
@ -272,6 +275,7 @@ class T2I:
|
||||
iterations = iterations or self.iterations
|
||||
strength = strength or self.strength
|
||||
self.log_tokenization = log_tokenization
|
||||
with_variations = [] if with_variations is None else with_variations
|
||||
|
||||
model = (
|
||||
self.load_model()
|
||||
@ -280,7 +284,20 @@ class T2I:
|
||||
assert (
|
||||
0.0 <= strength <= 1.0
|
||||
), 'can only work with strength in [0.0, 1.0]'
|
||||
assert (
|
||||
0.0 <= variation_amount <= 1.0
|
||||
), '-v --variation_amount must be in [0.0, 1.0]'
|
||||
|
||||
if len(with_variations) > 0:
|
||||
assert seed is not None,\
|
||||
'seed must be specified when using with_variations'
|
||||
if variation_amount == 0.0:
|
||||
assert iterations == 1,\
|
||||
'when using --with_variations, multiple iterations are only possible when using --variation_amount'
|
||||
assert all(0 <= weight <= 1 for _, weight in with_variations),\
|
||||
f'variation weights must be in [0.0, 1.0]: got {[weight for _, weight in with_variations]}'
|
||||
|
||||
seed = seed or self.seed
|
||||
width, height, _ = self._resolution_check(width, height, log=True)
|
||||
|
||||
# TODO: - Check if this is still necessary to run on M1 devices.
|
||||
@ -303,24 +320,25 @@ class T2I:
|
||||
try:
|
||||
if init_img:
|
||||
assert os.path.exists(init_img), f'{init_img}: File not found'
|
||||
images_iterator = self._img2img(
|
||||
init_image = self._load_img(init_img, width, height, fit).to(self.device)
|
||||
with scope(self.device.type):
|
||||
init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
||||
make_image = self._img2img(
|
||||
prompt,
|
||||
precision_scope=scope,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
init_img=init_img,
|
||||
width=width,
|
||||
height=height,
|
||||
fit=fit,
|
||||
init_latent=init_latent,
|
||||
strength=strength,
|
||||
callback=step_callback,
|
||||
)
|
||||
else:
|
||||
images_iterator = self._txt2img(
|
||||
make_image = self._txt2img(
|
||||
prompt,
|
||||
precision_scope=scope,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
ddim_eta=ddim_eta,
|
||||
@ -332,11 +350,45 @@ class T2I:
|
||||
perlin=perlin,
|
||||
)
|
||||
|
||||
def get_noise():
|
||||
if init_img:
|
||||
return torch.randn_like(init_latent, device=self.device)
|
||||
else:
|
||||
return torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
device=self.device)
|
||||
|
||||
initial_noise = None
|
||||
if variation_amount > 0 or len(with_variations) > 0:
|
||||
# use fixed initial noise plus random noise per iteration
|
||||
seed_everything(seed)
|
||||
initial_noise = get_noise()
|
||||
for v_seed, v_weight in with_variations:
|
||||
seed = v_seed
|
||||
seed_everything(seed)
|
||||
next_noise = get_noise()
|
||||
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
|
||||
if variation_amount > 0:
|
||||
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
|
||||
seed = random.randrange(0,np.iinfo(np.uint32).max)
|
||||
|
||||
device_type = choose_autocast_device(self.device)
|
||||
with scope(device_type), self.model.ema_scope():
|
||||
for n in trange(iterations, desc='Generating'):
|
||||
seed_everything(seed)
|
||||
image = next(images_iterator)
|
||||
x_T = None
|
||||
if variation_amount > 0:
|
||||
seed_everything(seed)
|
||||
target_noise = get_noise()
|
||||
x_T = self.slerp(variation_amount, initial_noise, target_noise)
|
||||
elif initial_noise is not None:
|
||||
# i.e. we specified particular variations
|
||||
x_T = initial_noise
|
||||
else:
|
||||
seed_everything(seed)
|
||||
# make_image will do the equivalent of get_noise itself
|
||||
image = make_image(x_T)
|
||||
results.append([image, seed])
|
||||
if image_callback is not None:
|
||||
image_callback(image, seed)
|
||||
@ -410,7 +462,6 @@ class T2I:
|
||||
def _txt2img(
|
||||
self,
|
||||
prompt,
|
||||
precision_scope,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
@ -422,12 +473,13 @@ class T2I:
|
||||
perlin,
|
||||
):
|
||||
"""
|
||||
An infinite iterator of images from the prompt.
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
"""
|
||||
|
||||
sampler = self.sampler
|
||||
|
||||
while True:
|
||||
def make_image(x_T):
|
||||
uc, c = self._get_uc_and_c(prompt, skip_normalize)
|
||||
shape = [
|
||||
self.latent_channels,
|
||||
@ -437,6 +489,7 @@ class T2I:
|
||||
samples, _ = sampler.sample(
|
||||
batch_size=1,
|
||||
S=steps,
|
||||
x_T=x_T,
|
||||
conditioning=c,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
@ -447,26 +500,24 @@ class T2I:
|
||||
threshold=threshold,
|
||||
perlin=perlin,
|
||||
)
|
||||
yield self._sample_to_image(samples)
|
||||
return self._sample_to_image(samples)
|
||||
return make_image
|
||||
|
||||
@torch.no_grad()
|
||||
def _img2img(
|
||||
self,
|
||||
prompt,
|
||||
precision_scope,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
skip_normalize,
|
||||
init_img,
|
||||
width,
|
||||
height,
|
||||
fit,
|
||||
init_latent,
|
||||
strength,
|
||||
callback, # Currently not implemented for img2img
|
||||
):
|
||||
"""
|
||||
An infinite iterator of images from the prompt and the initial image
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
"""
|
||||
|
||||
# PLMS sampler not supported yet, so ignore previous sampler
|
||||
@ -478,24 +529,20 @@ class T2I:
|
||||
else:
|
||||
sampler = self.sampler
|
||||
|
||||
init_image = self._load_img(init_img, width, height,fit).to(self.device)
|
||||
with precision_scope(self.device.type):
|
||||
init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
|
||||
while True:
|
||||
def make_image(x_T):
|
||||
uc, c = self._get_uc_and_c(prompt, skip_normalize)
|
||||
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(
|
||||
init_latent, torch.tensor([t_enc]).to(self.device)
|
||||
init_latent,
|
||||
torch.tensor([t_enc]).to(self.device),
|
||||
noise=x_T
|
||||
)
|
||||
# decode it
|
||||
samples = sampler.decode(
|
||||
@ -506,7 +553,8 @@ class T2I:
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
)
|
||||
yield self._sample_to_image(samples)
|
||||
return self._sample_to_image(samples)
|
||||
return make_image
|
||||
|
||||
# TODO: does this actually need to run every loop? does anything in it vary by random seed?
|
||||
def _get_uc_and_c(self, prompt, skip_normalize):
|
||||
@ -521,8 +569,7 @@ class T2I:
|
||||
# i dont know if this is correct.. but it works
|
||||
c = torch.zeros_like(uc)
|
||||
# normalize each "sub prompt" and add it
|
||||
for i in range(0, len(weighted_subprompts)):
|
||||
subprompt, weight = weighted_subprompts[i]
|
||||
for subprompt, weight in weighted_subprompts:
|
||||
self._log_tokenization(subprompt)
|
||||
c = torch.add(
|
||||
c,
|
||||
@ -627,7 +674,7 @@ class T2I:
|
||||
print(
|
||||
f'>> loaded input image of size {image.width}x{image.height} from {path}'
|
||||
)
|
||||
|
||||
|
||||
# The logic here is:
|
||||
# 1. If "fit" is true, then the image will be fit into the bounding box defined
|
||||
# by width and height. It will do this in a way that preserves the init image's
|
||||
@ -652,7 +699,7 @@ class T2I:
|
||||
if resize_needed:
|
||||
return InitImageResizer(image).resize(x,y)
|
||||
return image
|
||||
|
||||
|
||||
|
||||
def _fit_image(self,image,max_dimensions):
|
||||
w,h = max_dimensions
|
||||
@ -685,10 +732,10 @@ class T2I:
|
||||
(?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:'
|
||||
) # end 'prompt'
|
||||
(?: # non-capture group
|
||||
:+ # match one or more ':' characters
|
||||
:+ # match one or more ':' characters
|
||||
(?P<weight> # capture group for 'weight'
|
||||
-?\d+(?:\.\d+)? # match positive or negative integer or decimal number
|
||||
)? # end weight capture group, make optional
|
||||
)? # end weight capture group, make optional
|
||||
\s* # strip spaces after weight
|
||||
| # OR
|
||||
$ # else, if no ':' then match end of line
|
||||
@ -749,3 +796,41 @@ class T2I:
|
||||
print(">> This input is larger than your defaults. If you run out of memory, please use a smaller image.")
|
||||
|
||||
return width, height, resize_needed
|
||||
|
||||
|
||||
def slerp(self, t, v0, v1, DOT_THRESHOLD=0.9995):
|
||||
'''
|
||||
Spherical linear interpolation
|
||||
Args:
|
||||
t (float/np.ndarray): Float value between 0.0 and 1.0
|
||||
v0 (np.ndarray): Starting vector
|
||||
v1 (np.ndarray): Final vector
|
||||
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
||||
colineal. Not recommended to alter this.
|
||||
Returns:
|
||||
v2 (np.ndarray): Interpolation vector between v0 and v1
|
||||
'''
|
||||
inputs_are_torch = False
|
||||
if not isinstance(v0, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v0 = v0.detach().cpu().numpy()
|
||||
if not isinstance(v1, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v1 = v1.detach().cpu().numpy()
|
||||
|
||||
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||||
if np.abs(dot) > DOT_THRESHOLD:
|
||||
v2 = (1 - t) * v0 + t * v1
|
||||
else:
|
||||
theta_0 = np.arccos(dot)
|
||||
sin_theta_0 = np.sin(theta_0)
|
||||
theta_t = theta_0 * t
|
||||
sin_theta_t = np.sin(theta_t)
|
||||
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||||
s1 = sin_theta_t / sin_theta_0
|
||||
v2 = s0 * v0 + s1 * v1
|
||||
|
||||
if inputs_are_torch:
|
||||
v2 = torch.from_numpy(v2).to(self.device)
|
||||
|
||||
return v2
|
||||
|
@ -182,9 +182,32 @@ def main_loop(t2i, outdir, prompt_as_dir, parser, infile):
|
||||
print(f'No previous seed at position {opt.seed} found')
|
||||
opt.seed = None
|
||||
|
||||
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
|
||||
do_grid = opt.grid or t2i.grid
|
||||
individual_images = not do_grid
|
||||
|
||||
if opt.with_variations is not None:
|
||||
# shotgun parsing, woo
|
||||
parts = []
|
||||
broken = False # python doesn't have labeled loops...
|
||||
for part in opt.with_variations.split(';'):
|
||||
seed_and_weight = part.split(',')
|
||||
if len(seed_and_weight) != 2:
|
||||
print(f'could not parse with_variation part "{part}"')
|
||||
broken = True
|
||||
break
|
||||
try:
|
||||
seed = int(seed_and_weight[0])
|
||||
weight = float(seed_and_weight[1])
|
||||
except ValueError:
|
||||
print(f'could not parse with_variation part "{part}"')
|
||||
broken = True
|
||||
break
|
||||
parts.append([seed, weight])
|
||||
if broken:
|
||||
continue
|
||||
if len(parts) > 0:
|
||||
opt.with_variations = parts
|
||||
else:
|
||||
opt.with_variations = None
|
||||
|
||||
if opt.outdir:
|
||||
if not os.path.exists(opt.outdir):
|
||||
@ -212,7 +235,7 @@ def main_loop(t2i, outdir, prompt_as_dir, parser, infile):
|
||||
file_writer = PngWriter(current_outdir)
|
||||
prefix = file_writer.unique_prefix()
|
||||
seeds = set()
|
||||
results = []
|
||||
results = [] # list of filename, prompt pairs
|
||||
grid_images = dict() # seed -> Image, only used if `do_grid`
|
||||
def image_writer(image, seed, upscaled=False):
|
||||
if do_grid:
|
||||
@ -222,10 +245,26 @@ def main_loop(t2i, outdir, prompt_as_dir, parser, infile):
|
||||
filename = f'{prefix}.{seed}.postprocessed.png'
|
||||
else:
|
||||
filename = f'{prefix}.{seed}.png'
|
||||
path = file_writer.save_image_and_prompt_to_png(image, f'{normalized_prompt} -S{seed}', filename)
|
||||
if opt.variation_amount > 0:
|
||||
iter_opt = argparse.Namespace(**vars(opt)) # copy
|
||||
this_variation = [[seed, opt.variation_amount]]
|
||||
if opt.with_variations is None:
|
||||
iter_opt.with_variations = this_variation
|
||||
else:
|
||||
iter_opt.with_variations = opt.with_variations + this_variation
|
||||
iter_opt.variation_amount = 0
|
||||
normalized_prompt = PromptFormatter(t2i, iter_opt).normalize_prompt()
|
||||
metadata_prompt = f'{normalized_prompt} -S{iter_opt.seed}'
|
||||
elif opt.with_variations is not None:
|
||||
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
|
||||
metadata_prompt = f'{normalized_prompt} -S{opt.seed}' # use the original seed - the per-iteration value is the last variation-seed
|
||||
else:
|
||||
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
|
||||
metadata_prompt = f'{normalized_prompt} -S{seed}'
|
||||
path = file_writer.save_image_and_prompt_to_png(image, metadata_prompt, filename)
|
||||
if (not upscaled) or opt.save_original:
|
||||
# only append to results if we didn't overwrite an earlier output
|
||||
results.append([path, seed])
|
||||
results.append([path, metadata_prompt])
|
||||
|
||||
seeds.add(seed)
|
||||
|
||||
@ -236,11 +275,12 @@ def main_loop(t2i, outdir, prompt_as_dir, parser, infile):
|
||||
first_seed = next(iter(seeds))
|
||||
filename = f'{prefix}.{first_seed}.png'
|
||||
# TODO better metadata for grid images
|
||||
metadata_prompt = f'{normalized_prompt} -S{first_seed}'
|
||||
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
|
||||
metadata_prompt = f'{normalized_prompt} -S{first_seed} --grid -N{len(grid_images)}'
|
||||
path = file_writer.save_image_and_prompt_to_png(
|
||||
grid_img, metadata_prompt, filename
|
||||
)
|
||||
results = [[path, seeds]]
|
||||
results = [[path, metadata_prompt]]
|
||||
|
||||
last_seeds = list(seeds)
|
||||
|
||||
@ -254,7 +294,7 @@ def main_loop(t2i, outdir, prompt_as_dir, parser, infile):
|
||||
|
||||
print('Outputs:')
|
||||
log_path = os.path.join(current_outdir, 'dream_log.txt')
|
||||
write_log_message(normalized_prompt, results, log_path)
|
||||
write_log_message(results, log_path)
|
||||
|
||||
print('goodbye!')
|
||||
|
||||
@ -292,9 +332,9 @@ def dream_server_loop(t2i):
|
||||
dream_server.server_close()
|
||||
|
||||
|
||||
def write_log_message(prompt, results, log_path):
|
||||
def write_log_message(results, log_path):
|
||||
"""logs the name of the output image, prompt, and prompt args to the terminal and log file"""
|
||||
log_lines = [f'{r[0]}: {prompt} -S{r[1]}\n' for r in results]
|
||||
log_lines = [f'{path}: {prompt}\n' for path, prompt in results]
|
||||
print(*log_lines, sep='')
|
||||
|
||||
with open(log_path, 'a', encoding='utf-8') as file:
|
||||
@ -559,6 +599,20 @@ def create_cmd_parser():
|
||||
type=float,
|
||||
help='Add perlin noise.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-v',
|
||||
'--variation_amount',
|
||||
default=0.0,
|
||||
type=float,
|
||||
help='If > 0, generates variations on the initial seed instead of random seeds per iteration. Must be between 0 and 1. Higher values will be more different.'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-V',
|
||||
'--with_variations',
|
||||
default=None,
|
||||
type=str,
|
||||
help='list of variations to apply, in the format `seed,weight;seed,weight;...'
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
|
BIN
static/variation_walkthru/000001.3357757885.png
Normal file
BIN
static/variation_walkthru/000001.3357757885.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 429 KiB |
BIN
static/variation_walkthru/000002.1614299449.png
Normal file
BIN
static/variation_walkthru/000002.1614299449.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 445 KiB |
BIN
static/variation_walkthru/000002.3647897225.png
Normal file
BIN
static/variation_walkthru/000002.3647897225.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 426 KiB |
BIN
static/variation_walkthru/000003.1614299449.png
Normal file
BIN
static/variation_walkthru/000003.1614299449.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 427 KiB |
BIN
static/variation_walkthru/000004.3747154981.png
Normal file
BIN
static/variation_walkthru/000004.3747154981.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 424 KiB |
Loading…
Reference in New Issue
Block a user