mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
add sdxl lora support
This commit is contained in:
committed by
Kent Keirsey
parent
cfc3a20565
commit
1ac14a1e43
@ -1,7 +1,9 @@
|
||||
import os
|
||||
import torch
|
||||
from enum import Enum
|
||||
from typing import Optional, Union, Literal
|
||||
from typing import Optional, Dict, Union, Literal, Any
|
||||
from pathlib import Path
|
||||
from safetensors.torch import load_file
|
||||
from .base import (
|
||||
ModelBase,
|
||||
ModelConfigBase,
|
||||
@ -13,9 +15,6 @@ from .base import (
|
||||
ModelNotFoundException,
|
||||
)
|
||||
|
||||
# TODO: naming
|
||||
from ..lora import LoRAModel as LoRAModelRaw
|
||||
|
||||
|
||||
class LoRAModelFormat(str, Enum):
|
||||
LyCORIS = "lycoris"
|
||||
@ -50,6 +49,7 @@ class LoRAModel(ModelBase):
|
||||
model = LoRAModelRaw.from_checkpoint(
|
||||
file_path=self.model_path,
|
||||
dtype=torch_dtype,
|
||||
base_model=self.base_model,
|
||||
)
|
||||
|
||||
self.model_size = model.calc_size()
|
||||
@ -87,3 +87,532 @@ class LoRAModel(ModelBase):
|
||||
raise NotImplementedError("Diffusers lora not supported")
|
||||
else:
|
||||
return model_path
|
||||
|
||||
class LoRALayerBase:
|
||||
# rank: Optional[int]
|
||||
# alpha: Optional[float]
|
||||
# bias: Optional[torch.Tensor]
|
||||
# layer_key: str
|
||||
|
||||
# @property
|
||||
# def scale(self):
|
||||
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: dict,
|
||||
):
|
||||
if "alpha" in values:
|
||||
self.alpha = values["alpha"].item()
|
||||
else:
|
||||
self.alpha = None
|
||||
|
||||
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
|
||||
self.bias = torch.sparse_coo_tensor(
|
||||
values["bias_indices"],
|
||||
values["bias_values"],
|
||||
tuple(values["bias_size"]),
|
||||
)
|
||||
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
self.rank = None # set in layer implementation
|
||||
self.layer_key = layer_key
|
||||
|
||||
def forward(
|
||||
self,
|
||||
module: torch.nn.Module,
|
||||
input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure
|
||||
multiplier: float,
|
||||
):
|
||||
if type(module) == torch.nn.Conv2d:
|
||||
op = torch.nn.functional.conv2d
|
||||
extra_args = dict(
|
||||
stride=module.stride,
|
||||
padding=module.padding,
|
||||
dilation=module.dilation,
|
||||
groups=module.groups,
|
||||
)
|
||||
|
||||
else:
|
||||
op = torch.nn.functional.linear
|
||||
extra_args = {}
|
||||
|
||||
weight = self.get_weight()
|
||||
|
||||
bias = self.bias if self.bias is not None else 0
|
||||
scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0
|
||||
return (
|
||||
op(
|
||||
*input_h,
|
||||
(weight + bias).view(module.weight.shape),
|
||||
None,
|
||||
**extra_args,
|
||||
)
|
||||
* multiplier
|
||||
* scale
|
||||
)
|
||||
|
||||
def get_weight(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for val in [self.bias]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
if self.bias is not None:
|
||||
self.bias = self.bias.to(device=device, dtype=dtype)
|
||||
|
||||
# TODO: find and debug lora/locon with bias
|
||||
class LoRALayer(LoRALayerBase):
|
||||
# up: torch.Tensor
|
||||
# mid: Optional[torch.Tensor]
|
||||
# down: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: dict,
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.up = values["lora_up.weight"]
|
||||
self.down = values["lora_down.weight"]
|
||||
if "lora_mid.weight" in values:
|
||||
self.mid = values["lora_mid.weight"]
|
||||
else:
|
||||
self.mid = None
|
||||
|
||||
self.rank = self.down.shape[0]
|
||||
|
||||
def get_weight(self):
|
||||
if self.mid is not None:
|
||||
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
||||
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
||||
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
|
||||
else:
|
||||
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.up, self.mid, self.down]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.up = self.up.to(device=device, dtype=dtype)
|
||||
self.down = self.down.to(device=device, dtype=dtype)
|
||||
|
||||
if self.mid is not None:
|
||||
self.mid = self.mid.to(device=device, dtype=dtype)
|
||||
|
||||
class LoHALayer(LoRALayerBase):
|
||||
# w1_a: torch.Tensor
|
||||
# w1_b: torch.Tensor
|
||||
# w2_a: torch.Tensor
|
||||
# w2_b: torch.Tensor
|
||||
# t1: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: dict,
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.w1_a = values["hada_w1_a"]
|
||||
self.w1_b = values["hada_w1_b"]
|
||||
self.w2_a = values["hada_w2_a"]
|
||||
self.w2_b = values["hada_w2_b"]
|
||||
|
||||
if "hada_t1" in values:
|
||||
self.t1 = values["hada_t1"]
|
||||
else:
|
||||
self.t1 = None
|
||||
|
||||
if "hada_t2" in values:
|
||||
self.t2 = values["hada_t2"]
|
||||
else:
|
||||
self.t2 = None
|
||||
|
||||
self.rank = self.w1_b.shape[0]
|
||||
|
||||
def get_weight(self):
|
||||
if self.t1 is None:
|
||||
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
||||
|
||||
else:
|
||||
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
|
||||
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
|
||||
weight = rebuild1 * rebuild2
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
if self.t1 is not None:
|
||||
self.t1 = self.t1.to(device=device, dtype=dtype)
|
||||
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
|
||||
class LoKRLayer(LoRALayerBase):
|
||||
# w1: Optional[torch.Tensor] = None
|
||||
# w1_a: Optional[torch.Tensor] = None
|
||||
# w1_b: Optional[torch.Tensor] = None
|
||||
# w2: Optional[torch.Tensor] = None
|
||||
# w2_a: Optional[torch.Tensor] = None
|
||||
# w2_b: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: dict,
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
if "lokr_w1" in values:
|
||||
self.w1 = values["lokr_w1"]
|
||||
self.w1_a = None
|
||||
self.w1_b = None
|
||||
else:
|
||||
self.w1 = None
|
||||
self.w1_a = values["lokr_w1_a"]
|
||||
self.w1_b = values["lokr_w1_b"]
|
||||
|
||||
if "lokr_w2" in values:
|
||||
self.w2 = values["lokr_w2"]
|
||||
self.w2_a = None
|
||||
self.w2_b = None
|
||||
else:
|
||||
self.w2 = None
|
||||
self.w2_a = values["lokr_w2_a"]
|
||||
self.w2_b = values["lokr_w2_b"]
|
||||
|
||||
if "lokr_t2" in values:
|
||||
self.t2 = values["lokr_t2"]
|
||||
else:
|
||||
self.t2 = None
|
||||
|
||||
if "lokr_w1_b" in values:
|
||||
self.rank = values["lokr_w1_b"].shape[0]
|
||||
elif "lokr_w2_b" in values:
|
||||
self.rank = values["lokr_w2_b"].shape[0]
|
||||
else:
|
||||
self.rank = None # unscaled
|
||||
|
||||
def get_weight(self):
|
||||
w1 = self.w1
|
||||
if w1 is None:
|
||||
w1 = self.w1_a @ self.w1_b
|
||||
|
||||
w2 = self.w2
|
||||
if w2 is None:
|
||||
if self.t2 is None:
|
||||
w2 = self.w2_a @ self.w2_b
|
||||
else:
|
||||
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
w2 = w2.contiguous()
|
||||
weight = torch.kron(w1, w2)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
if self.w1 is not None:
|
||||
self.w1 = self.w1.to(device=device, dtype=dtype)
|
||||
else:
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.w2 is not None:
|
||||
self.w2 = self.w2.to(device=device, dtype=dtype)
|
||||
else:
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
|
||||
# TODO: rename all methods used in model logic with Info postfix and remove here Raw postfix
|
||||
class LoRAModelRaw: # (torch.nn.Module):
|
||||
_name: str
|
||||
layers: Dict[str, LoRALayer]
|
||||
_device: torch.device
|
||||
_dtype: torch.dtype
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
layers: Dict[str, LoRALayer],
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
self._name = name
|
||||
self._device = device or torch.cpu
|
||||
self._dtype = dtype or torch.float32
|
||||
self.layers = layers
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self._name
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self._device
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self._dtype
|
||||
|
||||
def to(
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
# TODO: try revert if exception?
|
||||
for key, layer in self.layers.items():
|
||||
layer.to(device=device, dtype=dtype)
|
||||
self._device = device
|
||||
self._dtype = dtype
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for _, layer in self.layers.items():
|
||||
model_size += layer.calc_size()
|
||||
return model_size
|
||||
|
||||
@classmethod
|
||||
def _convert_sdxl_compvis_keys(cls, state_dict):
|
||||
new_state_dict = dict()
|
||||
for full_key, value in state_dict.items():
|
||||
if full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||
continue # clip same
|
||||
|
||||
if not full_key.startswith("lora_unet_"):
|
||||
raise NotImplementedError(f"Unknown prefix for sdxl lora key - {full_key}")
|
||||
src_key = full_key.replace("lora_unet_", "")
|
||||
try:
|
||||
dst_key = None
|
||||
while "_" in src_key:
|
||||
if src_key in SDXL_UNET_COMPVIS_MAP:
|
||||
dst_key = SDXL_UNET_COMPVIS_MAP[src_key]
|
||||
break
|
||||
src_key = "_".join(src_key.split('_')[:-1])
|
||||
|
||||
if dst_key is None:
|
||||
raise Exception(f"Unknown sdxl lora key - {full_key}")
|
||||
new_key = full_key.replace(src_key, dst_key)
|
||||
except:
|
||||
print(SDXL_UNET_COMPVIS_MAP)
|
||||
raise
|
||||
new_state_dict[new_key] = value
|
||||
return new_state_dict
|
||||
|
||||
@classmethod
|
||||
def from_checkpoint(
|
||||
cls,
|
||||
file_path: Union[str, Path],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
):
|
||||
device = device or torch.device("cpu")
|
||||
dtype = dtype or torch.float32
|
||||
|
||||
if isinstance(file_path, str):
|
||||
file_path = Path(file_path)
|
||||
|
||||
model = cls(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
name=file_path.stem, # TODO:
|
||||
layers=dict(),
|
||||
)
|
||||
|
||||
if file_path.suffix == ".safetensors":
|
||||
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
|
||||
else:
|
||||
state_dict = torch.load(file_path, map_location="cpu")
|
||||
|
||||
state_dict = cls._group_state(state_dict)
|
||||
|
||||
if base_model == BaseModelType.StableDiffusionXL:
|
||||
state_dict = cls._convert_sdxl_compvis_keys(state_dict)
|
||||
|
||||
for layer_key, values in state_dict.items():
|
||||
# lora and locon
|
||||
if "lora_down.weight" in values:
|
||||
layer = LoRALayer(layer_key, values)
|
||||
|
||||
# loha
|
||||
elif "hada_w1_b" in values:
|
||||
layer = LoHALayer(layer_key, values)
|
||||
|
||||
# lokr
|
||||
elif "lokr_w1_b" in values or "lokr_w1" in values:
|
||||
layer = LoKRLayer(layer_key, values)
|
||||
|
||||
else:
|
||||
# TODO: diff/ia3/... format
|
||||
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key}")
|
||||
return
|
||||
|
||||
# lower memory consumption by removing already parsed layer values
|
||||
state_dict[layer_key].clear()
|
||||
|
||||
layer.to(device=device, dtype=dtype)
|
||||
model.layers[layer_key] = layer
|
||||
|
||||
return model
|
||||
|
||||
@staticmethod
|
||||
def _group_state(state_dict: dict):
|
||||
state_dict_groupped = dict()
|
||||
|
||||
for key, value in state_dict.items():
|
||||
stem, leaf = key.split(".", 1)
|
||||
if stem not in state_dict_groupped:
|
||||
state_dict_groupped[stem] = dict()
|
||||
state_dict_groupped[stem][leaf] = value
|
||||
|
||||
return state_dict_groupped
|
||||
|
||||
|
||||
def make_sdxl_unet_conversion_map():
|
||||
unet_conversion_map_layer = []
|
||||
|
||||
for i in range(3): # num_blocks is 3 in sdxl
|
||||
# loop over downblocks/upblocks
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
# if i > 0: commentout for sdxl
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
sd_mid_atn_prefix = "middle_block.1."
|
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("in_layers.0.", "norm1."),
|
||||
("in_layers.2.", "conv1."),
|
||||
("out_layers.0.", "norm2."),
|
||||
("out_layers.3.", "conv2."),
|
||||
("emb_layers.1.", "time_emb_proj."),
|
||||
("skip_connection.", "conv_shortcut."),
|
||||
]
|
||||
|
||||
unet_conversion_map = []
|
||||
for sd, hf in unet_conversion_map_layer:
|
||||
if "resnets" in hf:
|
||||
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||
else:
|
||||
unet_conversion_map.append((sd, hf))
|
||||
|
||||
for j in range(2):
|
||||
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||
|
||||
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||
|
||||
return unet_conversion_map
|
||||
|
||||
#_sdxl_conversion_map = {f"lora_unet_{sd}".rstrip(".").replace(".", "_"): f"lora_unet_{hf}".rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()}
|
||||
SDXL_UNET_COMPVIS_MAP = {f"{sd}".rstrip(".").replace(".", "_"): f"{hf}".rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()}
|
||||
|
Reference in New Issue
Block a user