Merge branch 'development' into inpaint-model

This commit is contained in:
Lincoln Stein
2022-10-25 11:50:08 -04:00
committed by GitHub
24 changed files with 902 additions and 796 deletions

View File

@ -7,25 +7,28 @@ import numpy as np
import random
import os
from tqdm import tqdm, trange
from PIL import Image
from PIL import Image, ImageFilter
from einops import rearrange, repeat
from pytorch_lightning import seed_everything
from ldm.invoke.devices import choose_autocast
from ldm.util import rand_perlin_2d
downsampling = 8
CAUTION_IMG = 'assets/caution.png'
class Generator():
def __init__(self, model, precision):
self.model = model
self.precision = precision
self.seed = None
self.latent_channels = model.channels
self.model = model
self.precision = precision
self.seed = None
self.latent_channels = model.channels
self.downsampling_factor = downsampling # BUG: should come from model or config
self.perlin = 0.0
self.threshold = 0
self.variation_amount = 0
self.with_variations = []
self.safety_checker = None
self.perlin = 0.0
self.threshold = 0
self.variation_amount = 0
self.with_variations = []
self.use_mps_noise = False
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
def get_make_image(self,prompt,**kwargs):
@ -42,9 +45,11 @@ class Generator():
def generate(self,prompt,init_image,width,height,sampler, iterations=1,seed=None,
image_callback=None, step_callback=None, threshold=0.0, perlin=0.0,
safety_checker:dict=None,
**kwargs):
scope = choose_autocast(self.precision)
make_image = self.get_make_image(
self.safety_checker = safety_checker
make_image = self.get_make_image(
prompt,
sampler = sampler,
init_image = init_image,
@ -79,10 +84,17 @@ class Generator():
except:
pass
image = make_image(x_T)
if self.safety_checker is not None:
image = self.safety_check(image)
results.append([image, seed])
if image_callback is not None:
image_callback(image, seed, first_seed=first_seed)
seed = self.new_seed()
return results
def sample_to_image(self,samples)->Image.Image:
@ -171,6 +183,39 @@ class Generator():
return v2
def safety_check(self,image:Image.Image):
'''
If the CompViz safety checker flags an NSFW image, we
blur it out.
'''
import diffusers
checker = self.safety_checker['checker']
extractor = self.safety_checker['extractor']
features = extractor([image], return_tensors="pt")
# unfortunately checker requires the numpy version, so we have to convert back
x_image = np.array(image).astype(np.float32) / 255.0
x_image = x_image[None].transpose(0, 3, 1, 2)
diffusers.logging.set_verbosity_error()
checked_image, has_nsfw_concept = checker(images=x_image, clip_input=features.pixel_values)
if has_nsfw_concept[0]:
print('** An image with potential non-safe content has been detected. A blurred image will be returned. **')
return self.blur(image)
else:
return image
def blur(self,input):
blurry = input.filter(filter=ImageFilter.GaussianBlur(radius=32))
try:
caution = Image.open(CAUTION_IMG)
caution = caution.resize((caution.width // 2, caution.height //2))
blurry.paste(caution,(0,0),caution)
except FileNotFoundError:
pass
return blurry
# this is a handy routine for debugging use. Given a generated sample,
# convert it into a PNG image and store it at the indicated path
def save_sample(self, sample, filepath):

View File

@ -59,7 +59,7 @@ class Txt2Img(Generator):
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height):
device = self.model.device
if device.type == 'mps':
if self.use_mps_noise or device.type == 'mps':
x = torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,

View File

@ -118,7 +118,7 @@ class Txt2Img2Img(Generator):
scaled_height = height
device = self.model.device
if device.type == 'mps':
if self.use_mps_noise or device.type == 'mps':
return torch.randn([1,
self.latent_channels,
scaled_height // self.downsampling_factor,