mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
model installer downloads starter models + user-provided paths and repo_ids
- Ability to scan directory not yet implemented - Can't download from Civitai due to incomplete URL download implementation
This commit is contained in:
parent
e87a2fe14b
commit
1bb07795d8
@ -4,6 +4,14 @@
|
||||
# run this script from one with internet connectivity. The
|
||||
# two machines must share a common .cache directory.
|
||||
|
||||
'''
|
||||
This is the npyscreen frontend to the model installation application.
|
||||
The work is actually done in a backend file named model_install_backend.py,
|
||||
and is kicked off in the beforeEditing() method in a form with
|
||||
the class name "outputForm". This decision allows the output from the
|
||||
installation process to be captured and displayed in an attractive form.
|
||||
'''
|
||||
|
||||
import argparse
|
||||
import curses
|
||||
import os
|
||||
@ -14,22 +22,23 @@ from typing import List
|
||||
|
||||
import npyscreen
|
||||
import torch
|
||||
from pathlib import Path
|
||||
from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from ..devices import choose_precision, choose_torch_device
|
||||
from ..globals import Globals
|
||||
from .widgets import MultiSelectColumns, TextBox
|
||||
from .model_install_util import (Dataset_path, Default_config_file,
|
||||
default_dataset, download_weight_datasets,
|
||||
update_config_file, get_root
|
||||
)
|
||||
from .model_install_backend import (Dataset_path, default_config_file,
|
||||
install_requested_models,
|
||||
default_dataset, get_root
|
||||
)
|
||||
|
||||
class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
def __init__(self, parentApp, name):
|
||||
self.initial_models = OmegaConf.load(Dataset_path)
|
||||
try:
|
||||
self.existing_models = OmegaConf.load(Default_config_file)
|
||||
self.existing_models = OmegaConf.load(default_config_file())
|
||||
except:
|
||||
self.existing_models = dict()
|
||||
self.starter_model_list = [
|
||||
@ -51,7 +60,7 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
x for x in list(self.initial_models.keys()) if x in self.existing_models
|
||||
]
|
||||
)
|
||||
|
||||
self.nextrely -= 1
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value='Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields,',
|
||||
@ -62,7 +71,7 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
value='cursor arrows to make a selection, and space to toggle checkboxes.',
|
||||
editable=False,
|
||||
)
|
||||
|
||||
self.nextrely += 1
|
||||
if len(self.installed_models) > 0:
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.TitleFixedText,
|
||||
@ -83,10 +92,15 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
slow_scroll=True,
|
||||
scroll_exit = True,
|
||||
)
|
||||
|
||||
self.purge_deleted = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name='Purge deleted models from disk',
|
||||
value=False,
|
||||
scroll_exit=True
|
||||
)
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.TitleFixedText,
|
||||
name="== UNINSTALLED STARTER MODELS ==",
|
||||
name="== UNINSTALLED STARTER MODELS (recommended models selected) ==",
|
||||
value="Select from a starter set of Stable Diffusion models from HuggingFace:",
|
||||
begin_entry_at=2,
|
||||
editable=False,
|
||||
@ -99,42 +113,16 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
values=starter_model_labels,
|
||||
value=[
|
||||
self.starter_model_list.index(x)
|
||||
for x in self.initial_models
|
||||
for x in self.starter_model_list
|
||||
if x in recommended_models
|
||||
],
|
||||
max_height=len(starter_model_labels) + 1,
|
||||
relx = 4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.TitleFixedText,
|
||||
name='== MODEL IMPORT DIRECTORY ==',
|
||||
value='Import all models found in this directory (<tab> autocompletes):',
|
||||
begin_entry_at=2,
|
||||
editable=False,
|
||||
color="CONTROL",
|
||||
)
|
||||
self.autoload_directory = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name='Directory:',
|
||||
select_dir=True,
|
||||
must_exist=True,
|
||||
use_two_lines=False,
|
||||
relx = 4,
|
||||
labelColor='DANGER',
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.autoscan_on_startup = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name='Scan this directory each time InvokeAI starts for new models to import.',
|
||||
value=False,
|
||||
relx = 4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.nextrely += 1
|
||||
for line in [
|
||||
'== INDIVIDUAL MODELS TO IMPORT ==',
|
||||
'Enter list of URLs, paths models or HuggingFace diffusers repository IDs.',
|
||||
'== IMPORT LOCAL AND REMOTE MODELS ==',
|
||||
'Enter URLs, file paths, or HuggingFace diffusers repository IDs separated by spaces.',
|
||||
'Use control-V or shift-control-V to paste:'
|
||||
]:
|
||||
self.add_widget_intelligent(
|
||||
@ -151,7 +139,29 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
editable=True,
|
||||
relx=4
|
||||
)
|
||||
self.nextrely += 2
|
||||
self.nextrely += 1
|
||||
self.show_directory_fields= self.add_widget_intelligent(
|
||||
npyscreen.FormControlCheckbox,
|
||||
name='Select a directory for models to import',
|
||||
value=False,
|
||||
)
|
||||
self.autoload_directory = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name='Directory (<tab> autocompletes):',
|
||||
select_dir=True,
|
||||
must_exist=True,
|
||||
use_two_lines=False,
|
||||
labelColor='DANGER',
|
||||
begin_entry_at=34,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.autoscan_on_startup = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name='Scan this directory each time InvokeAI starts for new models to import',
|
||||
value=False,
|
||||
relx = 4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.convert_models = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name='== CONVERT IMPORTED MODELS INTO DIFFUSERS==',
|
||||
@ -160,15 +170,12 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
begin_entry_at=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
for i in [self.autoload_directory,self.autoscan_on_startup]:
|
||||
self.show_directory_fields.addVisibleWhenSelected(i)
|
||||
|
||||
def resize(self):
|
||||
super().resize()
|
||||
self.models_selected.values = self._get_starter_model_labels()
|
||||
# thought this would dynamically resize the widget, but no luck
|
||||
# self.previously_installed_models.columns = self._get_columns()
|
||||
# self.previously_installed_models.max_height = 2+len(self.installed_models) // self._get_columns()
|
||||
# self.previously_installed_models.make_contained_widgets()
|
||||
# self.previously_installed_models.display()
|
||||
|
||||
def _get_starter_model_labels(self)->List[str]:
|
||||
window_height, window_width = curses.initscr().getmaxyx()
|
||||
@ -177,13 +184,13 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
spacing_width = 2
|
||||
description_width = window_width - label_width - checkbox_width - spacing_width
|
||||
im = self.initial_models
|
||||
names = list(im.keys())
|
||||
names = self.starter_model_list
|
||||
descriptions = [im[x].description [0:description_width-3]+'...'
|
||||
if len(im[x].description) > description_width
|
||||
else im[x].description
|
||||
for x in im]
|
||||
for x in names]
|
||||
return [
|
||||
f"%-{label_width}s %s" % (names[x], descriptions[x]) for x in range(0,len(im))
|
||||
f"%-{label_width}s %s" % (names[x], descriptions[x]) for x in range(0,len(names))
|
||||
]
|
||||
|
||||
def _get_columns(self)->int:
|
||||
@ -191,7 +198,7 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
return 4 if window_width > 240 else 3 if window_width>160 else 2 if window_width>80 else 1
|
||||
|
||||
def on_ok(self):
|
||||
self.parentApp.setNextForm('MONITOR_OUTPUT')
|
||||
self.parentApp.setNextForm(None)
|
||||
self.editing = False
|
||||
self.parentApp.user_cancelled = False
|
||||
self.marshall_arguments()
|
||||
@ -213,8 +220,7 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
.convert_to_diffusers: if True, convert legacy checkpoints into diffusers
|
||||
'''
|
||||
# starter models to install/remove
|
||||
model_names = list(self.initial_models.keys())
|
||||
starter_models = dict(map(lambda x: (model_names[x], True), self.models_selected.value))
|
||||
starter_models = dict(map(lambda x: (self.starter_model_list[x], True), self.models_selected.value))
|
||||
if hasattr(self,'previously_installed_models'):
|
||||
unchecked = [
|
||||
self.previously_installed_models.values[x]
|
||||
@ -224,52 +230,100 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
||||
starter_models.update(
|
||||
map(lambda x: (x, False), unchecked)
|
||||
)
|
||||
self.parentApp.purge_deleted_models = self.purge_deleted.value
|
||||
self.parentApp.starter_models=starter_models
|
||||
|
||||
# load directory and whether to scan on startup
|
||||
self.parentApp.scan_directory = self.autoload_directory.value
|
||||
self.parentApp.autoscan_on_startup = self.autoscan_on_startup.value
|
||||
if self.show_directory_fields.value:
|
||||
self.parentApp.scan_directory = self.autoload_directory.value
|
||||
self.parentApp.autoscan_on_startup = self.autoscan_on_startup.value
|
||||
else:
|
||||
self.parentApp.scan_directory = None
|
||||
self.parentApp.autoscan_on_startup = False
|
||||
|
||||
# URLs and the like
|
||||
self.parentApp.import_model_paths = self.import_model_paths.value.split()
|
||||
self.parentApp.convert_to_diffusers = self.convert_models.value != 0
|
||||
|
||||
class Log(object):
|
||||
def __init__(self, writable):
|
||||
self.writable = writable
|
||||
# big chunk of dead code
|
||||
# was intended to be a status area in which output of installation steps (including tqdm) was logged in real time
|
||||
# Problem is that this requires a fork() and pipe, and not sure this will work properly on windows.
|
||||
# So not using, but keep this here in case it is useful later
|
||||
# class Log(object):
|
||||
# def __init__(self, writable):
|
||||
# self.writable = writable
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout = sys.stdout
|
||||
sys.stdout = self.writable
|
||||
return self
|
||||
def __exit__(self, *args):
|
||||
sys.stdout = self._stdout
|
||||
# def __enter__(self):
|
||||
# self._stdout = sys.stdout
|
||||
# sys.stdout = self.writable
|
||||
# return self
|
||||
|
||||
# def __exit__(self, *args):
|
||||
# sys.stdout = self._stdout
|
||||
|
||||
class outputForm(npyscreen.ActionForm):
|
||||
def create(self):
|
||||
self.buffer = self.add_widget(
|
||||
npyscreen.BufferPager,
|
||||
editable=False,
|
||||
)
|
||||
# class outputForm(npyscreen.ActionForm):
|
||||
# def create(self):
|
||||
# self.done = False
|
||||
# self.buffer = self.add_widget(
|
||||
# npyscreen.BufferPager,
|
||||
# editable=False,
|
||||
# )
|
||||
|
||||
def write(self,string):
|
||||
if string != '\n':
|
||||
self.buffer.buffer([string])
|
||||
# def write(self,string):
|
||||
# if string != '\n':
|
||||
# self.buffer.buffer([string])
|
||||
|
||||
def beforeEditing(self):
|
||||
myapplication = self.parentApp
|
||||
with Log(self):
|
||||
print(f'DEBUG: these models will be removed: {[x for x in myapplication.starter_models if not myapplication.starter_models[x]]}')
|
||||
print(f'DEBUG: these models will be installed: {[x for x in myapplication.starter_models if myapplication.starter_models[x]]}')
|
||||
print(f'DEBUG: this directory will be scanned: {myapplication.scan_directory}')
|
||||
print(f'DEBUG: scan at startup time? {myapplication.autoscan_on_startup}')
|
||||
print(f'DEBUG: these things will be downloaded: {myapplication.import_model_paths}')
|
||||
print(f'DEBUG: convert to diffusers? {myapplication.convert_to_diffusers}')
|
||||
# def beforeEditing(self):
|
||||
# if self.done:
|
||||
# return
|
||||
# installApp = self.parentApp
|
||||
# with Log(self):
|
||||
# models_to_remove = [x for x in installApp.starter_models if not installApp.starter_models[x]]
|
||||
# models_to_install = [x for x in installApp.starter_models if installApp.starter_models[x]]
|
||||
# directory_to_scan = installApp.scan_directory
|
||||
# scan_at_startup = installApp.autoscan_on_startup
|
||||
# potential_models_to_install = installApp.import_model_paths
|
||||
# convert_to_diffusers = installApp.convert_to_diffusers
|
||||
|
||||
# print(f'these models will be removed: {models_to_remove}')
|
||||
# print(f'these models will be installed: {models_to_install}')
|
||||
# print(f'this directory will be scanned: {directory_to_scan}')
|
||||
# print(f'these things will be downloaded: {potential_models_to_install}')
|
||||
# print(f'scan at startup time? {scan_at_startup}')
|
||||
# print(f'convert to diffusers? {convert_to_diffusers}')
|
||||
# print(f'\nPress OK to proceed or Cancel.')
|
||||
|
||||
# def on_cancel(self):
|
||||
# self.buffer.buffer(['goodbye!'])
|
||||
# self.parentApp.setNextForm(None)
|
||||
# self.editing = False
|
||||
|
||||
# def on_ok(self):
|
||||
# if self.done:
|
||||
# self.on_cancel()
|
||||
# return
|
||||
|
||||
# installApp = self.parentApp
|
||||
# with Log(self):
|
||||
# models_to_remove = [x for x in installApp.starter_models if not installApp.starter_models[x]]
|
||||
# models_to_install = [x for x in installApp.starter_models if installApp.starter_models[x]]
|
||||
# directory_to_scan = installApp.scan_directory
|
||||
# scan_at_startup = installApp.autoscan_on_startup
|
||||
# potential_models_to_install = installApp.import_model_paths
|
||||
# convert_to_diffusers = installApp.convert_to_diffusers
|
||||
|
||||
# install_requested_models(
|
||||
# install_initial_models = models_to_install,
|
||||
# remove_models = models_to_remove,
|
||||
# scan_directory = Path(directory_to_scan) if directory_to_scan else None,
|
||||
# external_models = potential_models_to_install,
|
||||
# scan_at_startup = scan_at_startup,
|
||||
# convert_to_diffusers = convert_to_diffusers,
|
||||
# precision = 'float32' if installApp.opt.full_precision else choose_precision(torch.device(choose_torch_device())),
|
||||
# config_file_path = Path(installApp.opt.config_file) if installApp.opt.config_file else None,
|
||||
# )
|
||||
# self.done = True
|
||||
|
||||
def on_ok(self):
|
||||
self.buffer.buffer(['goodbye!'])
|
||||
self.parentApp.setNextForm(None)
|
||||
self.editing = False
|
||||
|
||||
class AddModelApplication(npyscreen.NPSAppManaged):
|
||||
def __init__(self, saved_args=None):
|
||||
@ -283,54 +337,43 @@ class AddModelApplication(npyscreen.NPSAppManaged):
|
||||
addModelsForm,
|
||||
name="Add/Remove Models",
|
||||
)
|
||||
self.output = self.addForm(
|
||||
'MONITOR_OUTPUT',
|
||||
outputForm,
|
||||
name='Model Install Output'
|
||||
)
|
||||
# self.output = self.addForm(
|
||||
# 'MONITOR_OUTPUT',
|
||||
# outputForm,
|
||||
# name='Model Install Output'
|
||||
# )
|
||||
|
||||
# --------------------------------------------------------
|
||||
def process_and_execute(app: npyscreen.NPSAppManaged):
|
||||
models_to_remove = [x for x in app.starter_models if not app.starter_models[x]]
|
||||
models_to_install = [x for x in app.starter_models if app.starter_models[x]]
|
||||
directory_to_scan = app.scan_directory
|
||||
scan_at_startup = app.autoscan_on_startup
|
||||
potential_models_to_install = app.import_model_paths
|
||||
convert_to_diffusers = app.convert_to_diffusers
|
||||
|
||||
install_requested_models(
|
||||
install_initial_models = models_to_install,
|
||||
remove_models = models_to_remove,
|
||||
scan_directory = Path(directory_to_scan) if directory_to_scan else None,
|
||||
external_models = potential_models_to_install,
|
||||
scan_at_startup = scan_at_startup,
|
||||
convert_to_diffusers = convert_to_diffusers,
|
||||
precision = 'float32' if app.opt.full_precision else choose_precision(torch.device(choose_torch_device())),
|
||||
purge_deleted = app.purge_deleted_models,
|
||||
config_file_path = Path(app.opt.config_file) if app.opt.config_file else None,
|
||||
)
|
||||
|
||||
# --------------------------------------------------------
|
||||
def select_and_download_models(opt: Namespace):
|
||||
if opt.default_only:
|
||||
models_to_download = default_dataset()
|
||||
install_requested_models(models_to_download)
|
||||
else:
|
||||
myapplication = AddModelApplication()
|
||||
myapplication.run()
|
||||
if not myapplication.user_cancelled:
|
||||
print(f'DEBUG: these models will be removed: {[x for x in myapplication.starter_models if not myapplication.starter_models[x]]}')
|
||||
print(f'DEBUG: these models will be installed: {[x for x in myapplication.starter_models if myapplication.starter_models[x]]}')
|
||||
print(f'DEBUG: this directory will be scanned: {myapplication.scan_directory}')
|
||||
print(f'DEBUG: scan at startup time? {myapplication.autoscan_on_startup}')
|
||||
print(f'DEBUG: these things will be downloaded: {myapplication.import_model_paths}')
|
||||
print(f'DEBUG: convert to diffusers? {myapplication.convert_to_diffusers}')
|
||||
sys.exit(0)
|
||||
|
||||
if not models_to_download:
|
||||
print(
|
||||
'** No models were selected. To run this program again, select "Install initial models" from the invoke script.'
|
||||
)
|
||||
return
|
||||
|
||||
print("** Downloading and installing the selected models.")
|
||||
precision = (
|
||||
"float32"
|
||||
if opt.full_precision
|
||||
else choose_precision(torch.device(choose_torch_device()))
|
||||
)
|
||||
successfully_downloaded = download_weight_datasets(
|
||||
models=models_to_download,
|
||||
access_token=None,
|
||||
precision=precision,
|
||||
)
|
||||
|
||||
update_config_file(successfully_downloaded, opt)
|
||||
if len(successfully_downloaded) < len(models_to_download):
|
||||
print("** Some of the model downloads were not successful")
|
||||
|
||||
print(
|
||||
"\nYour starting models were installed. To find and add more models, see https://invoke-ai.github.io/InvokeAI/installation/050_INSTALLING_MODELS"
|
||||
)
|
||||
|
||||
installApp = AddModelApplication()
|
||||
installApp.opt = opt
|
||||
installApp.run()
|
||||
process_and_execute(installApp)
|
||||
|
||||
# -------------------------------------
|
||||
def main():
|
||||
@ -392,7 +435,7 @@ def main():
|
||||
'** Insufficient horizontal space for the interface. Please make your window wider and try again.'
|
||||
)
|
||||
else:
|
||||
print(f"** A layout error has occurred: {str(e)}")
|
||||
print(f"** An error has occurred: {str(e)}")
|
||||
traceback.print_exc()
|
||||
sys.exit(-1)
|
||||
|
||||
|
@ -1,35 +1,29 @@
|
||||
'''
|
||||
"""
|
||||
Utility (backend) functions used by model_install.py
|
||||
'''
|
||||
import argparse
|
||||
"""
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
import traceback
|
||||
import warnings
|
||||
from argparse import Namespace
|
||||
from math import ceil
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryFile
|
||||
|
||||
import npyscreen
|
||||
import requests
|
||||
from diffusers import AutoencoderKL
|
||||
from huggingface_hub import hf_hub_url
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf.dictconfig import DictConfig
|
||||
from tqdm import tqdm
|
||||
from typing import List
|
||||
|
||||
import invokeai.configs as configs
|
||||
from ldm.invoke.devices import choose_precision, choose_torch_device
|
||||
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||||
from ldm.invoke.globals import Globals, global_cache_dir, global_config_dir
|
||||
from ldm.invoke.config.widgets import MultiSelectColumns
|
||||
from ..generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||||
from ..globals import Globals, global_cache_dir, global_config_dir
|
||||
from ..model_manager import ModelManager
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
import torch
|
||||
|
||||
|
||||
# --------------------------globals-----------------------
|
||||
Model_dir = "models"
|
||||
Weights_dir = "ldm/stable-diffusion-v1/"
|
||||
@ -37,12 +31,11 @@ Weights_dir = "ldm/stable-diffusion-v1/"
|
||||
# the initial "configs" dir is now bundled in the `invokeai.configs` package
|
||||
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
|
||||
|
||||
Default_config_file = Path(global_config_dir()) / "models.yaml"
|
||||
SD_Configs = Path(global_config_dir()) / "stable-diffusion"
|
||||
# initial models omegaconf
|
||||
Datasets = None
|
||||
|
||||
Datasets = OmegaConf.load(Dataset_path)
|
||||
|
||||
Config_preamble = """# This file describes the alternative machine learning models
|
||||
Config_preamble = """
|
||||
# This file describes the alternative machine learning models
|
||||
# available to InvokeAI script.
|
||||
#
|
||||
# To add a new model, follow the examples below. Each
|
||||
@ -51,6 +44,60 @@ Config_preamble = """# This file describes the alternative machine learning mode
|
||||
# was trained on.
|
||||
"""
|
||||
|
||||
def default_config_file():
|
||||
return Path(global_config_dir()) / "models.yaml"
|
||||
|
||||
def sd_configs():
|
||||
return Path(global_config_dir()) / "stable-diffusion"
|
||||
|
||||
def initial_models():
|
||||
global Datasets
|
||||
if Datasets:
|
||||
return Datasets
|
||||
return (Datasets := OmegaConf.load(Dataset_path))
|
||||
|
||||
|
||||
def install_requested_models(
|
||||
install_initial_models: List[str] = None,
|
||||
remove_models: List[str] = None,
|
||||
scan_directory: Path = None,
|
||||
external_models: List[str] = None,
|
||||
scan_at_startup: bool = False,
|
||||
convert_to_diffusers: bool = False,
|
||||
precision: str = "float16",
|
||||
purge_deleted: bool = False,
|
||||
config_file_path: Path = None,
|
||||
):
|
||||
config_file_path =config_file_path or default_config_file()
|
||||
model_manager = ModelManager(OmegaConf.load(config_file_path),precision=precision)
|
||||
|
||||
if remove_models and len(remove_models) > 0:
|
||||
print("== DELETING UNCHECKED STARTER MODELS ==")
|
||||
for model in remove_models:
|
||||
print(f'{model}...')
|
||||
model_manager.del_model(model, delete_files=purge_deleted)
|
||||
model_manager.commit(config_file_path)
|
||||
|
||||
if install_initial_models and len(install_initial_models) > 0:
|
||||
print("== INSTALLING SELECTED STARTER MODELS ==")
|
||||
successfully_downloaded = download_weight_datasets(
|
||||
models=install_initial_models,
|
||||
access_token=None,
|
||||
precision=precision,
|
||||
) # for historical reasons, we don't use model manager here
|
||||
update_config_file(successfully_downloaded, config_file_path)
|
||||
if len(successfully_downloaded) < len(install_initial_models):
|
||||
print("** Some of the model downloads were not successful")
|
||||
|
||||
if external_models and len(external_models)>0:
|
||||
print("== INSTALLING EXTERNAL MODELS ==")
|
||||
for path_url_or_repo in external_models:
|
||||
model_manager.heuristic_import(
|
||||
path_url_or_repo,
|
||||
convert=convert_to_diffusers,
|
||||
commit_to_conf=config_file_path
|
||||
)
|
||||
|
||||
# -------------------------------------
|
||||
def yes_or_no(prompt: str, default_yes=True):
|
||||
default = "y" if default_yes else "n"
|
||||
@ -60,6 +107,7 @@ def yes_or_no(prompt: str, default_yes=True):
|
||||
else:
|
||||
return response[0] in ("y", "Y")
|
||||
|
||||
|
||||
# -------------------------------------
|
||||
def get_root(root: str = None) -> str:
|
||||
if root:
|
||||
@ -69,11 +117,12 @@ def get_root(root: str = None) -> str:
|
||||
else:
|
||||
return Globals.root
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def recommended_datasets() -> dict:
|
||||
datasets = dict()
|
||||
for ds in Datasets.keys():
|
||||
if Datasets[ds].get("recommended", False):
|
||||
for ds in initial_models().keys():
|
||||
if initial_models()[ds].get("recommended", False):
|
||||
datasets[ds] = True
|
||||
return datasets
|
||||
|
||||
@ -81,8 +130,8 @@ def recommended_datasets() -> dict:
|
||||
# ---------------------------------------------
|
||||
def default_dataset() -> dict:
|
||||
datasets = dict()
|
||||
for ds in Datasets.keys():
|
||||
if Datasets[ds].get("default", False):
|
||||
for ds in initial_models().keys():
|
||||
if initial_models()[ds].get("default", False):
|
||||
datasets[ds] = True
|
||||
return datasets
|
||||
|
||||
@ -90,7 +139,7 @@ def default_dataset() -> dict:
|
||||
# ---------------------------------------------
|
||||
def all_datasets() -> dict:
|
||||
datasets = dict()
|
||||
for ds in Datasets.keys():
|
||||
for ds in initial_models().keys():
|
||||
datasets[ds] = True
|
||||
return datasets
|
||||
|
||||
@ -102,26 +151,24 @@ def migrate_models_ckpt():
|
||||
model_path = os.path.join(Globals.root, Model_dir, Weights_dir)
|
||||
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
|
||||
return
|
||||
new_name = Datasets["stable-diffusion-1.4"]["file"]
|
||||
print('You seem to have the Stable Diffusion v4.1 "model.ckpt" already installed.')
|
||||
rename = yes_or_no(f'Ok to rename it to "{new_name}" for future reference?')
|
||||
if rename:
|
||||
print(f"model.ckpt => {new_name}")
|
||||
os.replace(
|
||||
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
|
||||
)
|
||||
new_name = initial_models()["stable-diffusion-1.4"]["file"]
|
||||
print('The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.')
|
||||
print(f"model.ckpt => {new_name}")
|
||||
os.replace(
|
||||
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
|
||||
)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_weight_datasets(
|
||||
models: dict, access_token: str, precision: str = "float32"
|
||||
models: List[str], access_token: str, precision: str = "float32"
|
||||
):
|
||||
migrate_models_ckpt()
|
||||
successful = dict()
|
||||
for mod in models.keys():
|
||||
for mod in models:
|
||||
print(f"Downloading {mod}:")
|
||||
successful[mod] = _download_repo_or_file(
|
||||
Datasets[mod], access_token, precision=precision
|
||||
initial_models()[mod], access_token, precision=precision
|
||||
)
|
||||
return successful
|
||||
|
||||
@ -255,21 +302,21 @@ def hf_download_with_resume(
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def update_config_file(successfully_downloaded: dict, opt: dict):
|
||||
def update_config_file(successfully_downloaded: dict, config_file: Path):
|
||||
config_file = (
|
||||
Path(opt.config_file) if opt.config_file is not None else Default_config_file
|
||||
Path(config_file) if config_file is not None else default_config_file()
|
||||
)
|
||||
|
||||
# In some cases (incomplete setup, etc), the default configs directory might be missing.
|
||||
# Create it if it doesn't exist.
|
||||
# this check is ignored if opt.config_file is specified - user is assumed to know what they
|
||||
# are doing if they are passing a custom config file from elsewhere.
|
||||
if config_file is Default_config_file and not config_file.parent.exists():
|
||||
if config_file is default_config_file() and not config_file.parent.exists():
|
||||
configs_src = Dataset_path.parent
|
||||
configs_dest = Default_config_file.parent
|
||||
configs_dest = default_config_file().parent
|
||||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||||
|
||||
yaml = new_config_file_contents(successfully_downloaded, config_file, opt)
|
||||
yaml = new_config_file_contents(successfully_downloaded, config_file)
|
||||
|
||||
try:
|
||||
backup = None
|
||||
@ -306,7 +353,7 @@ def update_config_file(successfully_downloaded: dict, opt: dict):
|
||||
|
||||
# ---------------------------------------------
|
||||
def new_config_file_contents(
|
||||
successfully_downloaded: dict, config_file: Path, opt: dict
|
||||
successfully_downloaded: dict, config_file: Path,
|
||||
) -> str:
|
||||
if config_file.exists():
|
||||
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
|
||||
@ -319,10 +366,10 @@ def new_config_file_contents(
|
||||
# version of the model was previously defined, and whether the current
|
||||
# model is a diffusers (indicated with a path)
|
||||
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
|
||||
offer_to_delete_weights(model, conf[model], opt.yes_to_all)
|
||||
delete_weights(model, conf[model])
|
||||
|
||||
stanza = {}
|
||||
mod = Datasets[model]
|
||||
mod = initial_models()[model]
|
||||
stanza["description"] = mod["description"]
|
||||
stanza["repo_id"] = mod["repo_id"]
|
||||
stanza["format"] = mod["format"]
|
||||
@ -336,7 +383,7 @@ def new_config_file_contents(
|
||||
stanza["weights"] = os.path.relpath(
|
||||
successfully_downloaded[model], start=Globals.root
|
||||
)
|
||||
stanza["config"] = os.path.normpath(os.path.join(SD_Configs, mod["config"]))
|
||||
stanza["config"] = os.path.normpath(os.path.join(sd_configs(), mod["config"]))
|
||||
if "vae" in mod:
|
||||
if "file" in mod["vae"]:
|
||||
stanza["vae"] = os.path.normpath(
|
||||
@ -359,20 +406,20 @@ def new_config_file_contents(
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def offer_to_delete_weights(model_name: str, conf_stanza: dict, yes_to_all: bool):
|
||||
def delete_weights(model_name: str, conf_stanza: dict):
|
||||
if not (weights := conf_stanza.get("weights")):
|
||||
return
|
||||
if re.match("/VAE/", conf_stanza.get("config")):
|
||||
return
|
||||
if yes_to_all or yes_or_no(
|
||||
f"\n** The checkpoint version of {model_name} is superseded by the diffusers version. Delete the original file {weights}?",
|
||||
default_yes=False,
|
||||
):
|
||||
weights = Path(weights)
|
||||
if not weights.is_absolute():
|
||||
weights = Path(Globals.root) / weights
|
||||
|
||||
print(
|
||||
f"\n** The checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
|
||||
)
|
||||
|
||||
weights = Path(weights)
|
||||
if not weights.is_absolute():
|
||||
weights = Path(Globals.root) / weights
|
||||
try:
|
||||
weights.unlink()
|
||||
except OSError as e:
|
||||
print(str(e))
|
||||
|
@ -11,6 +11,7 @@ import gc
|
||||
import hashlib
|
||||
import io
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import textwrap
|
||||
import time
|
||||
@ -699,7 +700,78 @@ class ModelManager(object):
|
||||
self.commit(commit_to_conf)
|
||||
return True
|
||||
|
||||
def autoconvert_weights(
|
||||
def heuristic_import(
|
||||
self,
|
||||
path_url_or_repo: str,
|
||||
convert: bool= False,
|
||||
commit_to_conf: Path=None,
|
||||
):
|
||||
model_path = None
|
||||
thing = path_url_or_repo # to save typing
|
||||
|
||||
if thing.startswith(('http:','https:','ftp:')):
|
||||
print(f'* {thing} appears to be a URL')
|
||||
model_path = self._resolve_path(thing, 'models/ldm/stable-diffusion-v1') # _resolve_path does a download if needed
|
||||
|
||||
elif Path(thing).is_file() and thing.endswith(('.ckpt','.safetensors')):
|
||||
print(f'* {thing} appears to be a checkpoint file on disk')
|
||||
model_path = self._resolve_path(thing, 'models/ldm/stable-diffusion-v1')
|
||||
|
||||
elif Path(thing).is_dir() and Path(thing, 'model_index.json').exists():
|
||||
print(f'* {thing} appears to be a diffusers file on disk')
|
||||
self.import_diffusers_model(thing, commit_to_conf=commit_to_conf)
|
||||
|
||||
elif Path(thing).is_dir():
|
||||
print(f'* {thing} appears to be a directory. Will scan for models to import')
|
||||
for m in list(Path(thing).rglob('*.ckpt')) + list(Path(thing).rglob('*.safetensors')):
|
||||
self.heuristic_import(m, convert, commit_to_conf=commit_to_conf)
|
||||
return
|
||||
|
||||
elif re.match(r'^[\w.+-]+/[\w.+-]+$', thing):
|
||||
print(f'* {thing} appears to be a HuggingFace diffusers repo_id')
|
||||
self.import_diffuser_model(thing, commit_to_conf=commit_to_conf)
|
||||
|
||||
else:
|
||||
print(f"* {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
|
||||
|
||||
# Model_path is set in the event of a legacy checkpoint file.
|
||||
# If not set, we're all done
|
||||
if not model_path:
|
||||
return
|
||||
|
||||
# another round of heuristics to guess the correct config file.
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v1-inpainting-inference.yaml')
|
||||
|
||||
checkpoint = safetensors.torch.load_file(model_path) if model_path.suffix == '.safetensors' else torch.load(model_path)
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
|
||||
print(f'* {thing} appears to be an SD-v2 model; model will be converted to diffusers format')
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v2-inference-v.yaml')
|
||||
convert = True
|
||||
elif re.search('inpaint', model_path, flags=re.IGNORECASE):
|
||||
print(f'* {thing} appears to be an SD-v1 inpainting model')
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v1-inpainting-inference.yaml')
|
||||
else:
|
||||
print(f'* {thing} appears to be an SD-v1 model')
|
||||
|
||||
if convert:
|
||||
diffuser_path = Path(Globals.root, 'models',Globals.converted_ckpts_dir, model_path.stem)
|
||||
self.convert_and_import(
|
||||
model_path,
|
||||
diffusers_path=diffuser_path,
|
||||
vae=dict(repo_id='stabilityai/sd-vae-ft-mse'),
|
||||
original_config_file=model_config_file,
|
||||
commit_to_conf=commit_to_conf,
|
||||
)
|
||||
else:
|
||||
self.import_ckpt_model(
|
||||
model_path,
|
||||
config=model_config_file,
|
||||
vae=Path(Globals.root,'models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt'),
|
||||
commit_to_conf=commit_to_conf,
|
||||
)
|
||||
|
||||
def autoconvert_weights (
|
||||
self,
|
||||
conf_path: Path,
|
||||
weights_directory: Path = None,
|
||||
@ -750,7 +822,6 @@ class ModelManager(object):
|
||||
into models.yaml.
|
||||
"""
|
||||
new_config = None
|
||||
import transformers
|
||||
|
||||
from ldm.invoke.ckpt_to_diffuser import convert_ckpt_to_diffuser
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user