mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into lstein/feat/multi-gpu
This commit is contained in:
commit
1c0067f931
495
README.md
495
README.md
@ -2,21 +2,102 @@
|
||||
|
||||
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)
|
||||
|
||||
# Invoke - Professional Creative AI Tools for Visual Media
|
||||
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
|
||||
|
||||
# Invoke - Professional Creative AI Tools for Visual Media
|
||||
|
||||
#### To learn more about Invoke, or implement our Business solutions, visit [invoke.com]
|
||||
|
||||
[![discord badge]][discord link]
|
||||
[![discord badge]][discord link] [![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link] [![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link] [![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
|
||||
|
||||
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
|
||||
</div>
|
||||
|
||||
[![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link]
|
||||
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
|
||||
|
||||
[![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
|
||||
[Installation][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs]
|
||||
|
||||
<div align="center">
|
||||
|
||||
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
|
||||
|
||||
</div>
|
||||
|
||||
## Quick Start
|
||||
|
||||
1. Download and unzip the installer from the bottom of the [latest release][latest release link].
|
||||
2. Run the installer script.
|
||||
|
||||
- **Windows**: Double-click on the `install.bat` script.
|
||||
- **macOS**: Open a Terminal window, drag the file `install.sh` from Finder into the Terminal, and press enter.
|
||||
- **Linux**: Run `install.sh`.
|
||||
|
||||
3. When prompted, enter a location for the install and select your GPU type.
|
||||
4. Once the install finishes, find the directory you selected during install. The default location is `C:\Users\Username\invokeai` for Windows or `~/invokeai` for Linux/macOS.
|
||||
5. Run the launcher script (`invoke.bat` for Windows, `invoke.sh` for macOS and Linux) the same way you ran the installer script in step 2.
|
||||
6. Select option 1 to start the application. Once it starts up, open your browser and go to <http://localhost:9090>.
|
||||
7. Open the model manager tab to install a starter model and then you'll be ready to generate.
|
||||
|
||||
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
|
||||
|
||||
## Troubleshooting, FAQ and Support
|
||||
|
||||
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
|
||||
|
||||
For more help, please join our [Discord][discord link].
|
||||
|
||||
## Features
|
||||
|
||||
Full details on features can be found in [our documentation][features docs].
|
||||
|
||||
### Web Server & UI
|
||||
|
||||
Invoke runs a locally hosted web server & React UI with an industry-leading user experience.
|
||||
|
||||
### Unified Canvas
|
||||
|
||||
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/out-painting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
|
||||
|
||||
### Workflows & Nodes
|
||||
|
||||
Invoke offers a fully featured workflow management solution, enabling users to combine the power of node-based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
|
||||
|
||||
### Board & Gallery Management
|
||||
|
||||
Invoke features an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
|
||||
|
||||
### Other features
|
||||
|
||||
- Support for both ckpt and diffusers models
|
||||
- SD1.5, SD2.0, and SDXL support
|
||||
- Upscaling Tools
|
||||
- Embedding Manager & Support
|
||||
- Model Manager & Support
|
||||
- Workflow creation & management
|
||||
- Node-Based Architecture
|
||||
|
||||
## Contributing
|
||||
|
||||
Anyone who wishes to contribute to this project - whether documentation, features, bug fixes, code cleanup, testing, or code reviews - is very much encouraged to do so.
|
||||
|
||||
Get started with contributing by reading our [contribution documentation][contributing docs], joining the [#dev-chat] or the GitHub discussion board.
|
||||
|
||||
We hope you enjoy using Invoke as much as we enjoy creating it, and we hope you will elect to become part of our community.
|
||||
|
||||
## Thanks
|
||||
|
||||
Invoke is a combined effort of [passionate and talented people from across the world][contributors]. We thank them for their time, hard work and effort.
|
||||
|
||||
Original portions of the software are Copyright © 2024 by respective contributors.
|
||||
|
||||
[features docs]: https://invoke-ai.github.io/InvokeAI/features/
|
||||
[faq]: https://invoke-ai.github.io/InvokeAI/help/FAQ/
|
||||
[contributors]: https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/
|
||||
[invoke.com]: https://www.invoke.com/about
|
||||
[github issues]: https://github.com/invoke-ai/InvokeAI/issues
|
||||
[docs home]: https://invoke-ai.github.io/InvokeAI
|
||||
[installation docs]: https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/
|
||||
[#dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
|
||||
[contributing docs]: https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/
|
||||
[CI checks on main badge]: https://flat.badgen.net/github/checks/invoke-ai/InvokeAI/main?label=CI%20status%20on%20main&cache=900&icon=github
|
||||
[CI checks on main link]:https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
|
||||
[CI checks on main link]: https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
|
||||
[discord badge]: https://flat.badgen.net/discord/members/ZmtBAhwWhy?icon=discord
|
||||
[discord link]: https://discord.gg/ZmtBAhwWhy
|
||||
[github forks badge]: https://flat.badgen.net/github/forks/invoke-ai/InvokeAI?icon=github
|
||||
@ -30,402 +111,6 @@
|
||||
[latest commit to main badge]: https://flat.badgen.net/github/last-commit/invoke-ai/InvokeAI/main?icon=github&color=yellow&label=last%20dev%20commit&cache=900
|
||||
[latest commit to main link]: https://github.com/invoke-ai/InvokeAI/commits/main
|
||||
[latest release badge]: https://flat.badgen.net/github/release/invoke-ai/InvokeAI/development?icon=github
|
||||
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases
|
||||
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
|
||||
[translation status link]: https://hosted.weblate.org/engage/invokeai/
|
||||
|
||||
</div>
|
||||
|
||||
InvokeAI is a leading creative engine built to empower professionals
|
||||
and enthusiasts alike. Generate and create stunning visual media using
|
||||
the latest AI-driven technologies. InvokeAI offers an industry leading
|
||||
Web Interface, interactive Command Line Interface, and also serves as
|
||||
the foundation for multiple commercial products.
|
||||
|
||||
**Quick links**: [[How to
|
||||
Install](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)] [<a
|
||||
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
|
||||
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
|
||||
Tutorials</a>]
|
||||
[<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
|
||||
[<a
|
||||
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
|
||||
Ideas & Q&A</a>]
|
||||
[<a
|
||||
href="https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/">Contributing</a>]
|
||||
|
||||
<div align="center">
|
||||
|
||||
|
||||
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
## Table of Contents
|
||||
|
||||
Table of Contents 📝
|
||||
|
||||
**Getting Started**
|
||||
1. 🏁 [Quick Start](#quick-start)
|
||||
3. 🖥️ [Hardware Requirements](#hardware-requirements)
|
||||
|
||||
**More About Invoke**
|
||||
1. 🌟 [Features](#features)
|
||||
2. 📣 [Latest Changes](#latest-changes)
|
||||
3. 🛠️ [Troubleshooting](#troubleshooting)
|
||||
|
||||
**Supporting the Project**
|
||||
1. 🤝 [Contributing](#contributing)
|
||||
2. 👥 [Contributors](#contributors)
|
||||
3. 💕 [Support](#support)
|
||||
|
||||
## Quick Start
|
||||
|
||||
For full installation and upgrade instructions, please see:
|
||||
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)
|
||||
|
||||
If upgrading from version 2.3, please read [Migrating a 2.3 root
|
||||
directory to 3.0](#migrating-to-3) first.
|
||||
|
||||
### Automatic Installer (suggested for 1st time users)
|
||||
|
||||
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/latest)
|
||||
|
||||
2. Download the .zip file for your OS (Windows/macOS/Linux).
|
||||
|
||||
3. Unzip the file.
|
||||
|
||||
4. **Windows:** double-click on the `install.bat` script. **macOS:** Open a Terminal window, drag the file `install.sh` from Finder
|
||||
into the Terminal, and press return. **Linux:** run `install.sh`.
|
||||
|
||||
5. You'll be asked to confirm the location of the folder in which
|
||||
to install InvokeAI and its image generation model files. Pick a
|
||||
location with at least 15 GB of free memory. More if you plan on
|
||||
installing lots of models.
|
||||
|
||||
6. Wait while the installer does its thing. After installing the software,
|
||||
the installer will launch a script that lets you configure InvokeAI and
|
||||
select a set of starting image generation models.
|
||||
|
||||
7. Find the folder that InvokeAI was installed into (it is not the
|
||||
same as the unpacked zip file directory!) The default location of this
|
||||
folder (if you didn't change it in step 5) is `~/invokeai` on
|
||||
Linux/Mac systems, and `C:\Users\YourName\invokeai` on Windows. This directory will contain launcher scripts named `invoke.sh` and `invoke.bat`.
|
||||
|
||||
8. On Windows systems, double-click on the `invoke.bat` file. On
|
||||
macOS, open a Terminal window, drag `invoke.sh` from the folder into
|
||||
the Terminal, and press return. On Linux, run `invoke.sh`
|
||||
|
||||
9. Press 2 to open the "browser-based UI", press enter/return, wait a
|
||||
minute or two for Stable Diffusion to start up, then open your browser
|
||||
and go to http://localhost:9090.
|
||||
|
||||
10. Type `banana sushi` in the box on the top left and click `Invoke`
|
||||
|
||||
### Command-Line Installation (for developers and users familiar with Terminals)
|
||||
|
||||
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
|
||||
later versions are not supported.
|
||||
Node.js also needs to be installed along with `pnpm` (can be installed with
|
||||
the command `npm install -g pnpm` if needed)
|
||||
|
||||
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
|
||||
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
|
||||
|
||||
```terminal
|
||||
mkdir invokeai
|
||||
````
|
||||
|
||||
3. Create a virtual environment named `.venv` inside this directory and activate it:
|
||||
|
||||
```terminal
|
||||
cd invokeai
|
||||
python -m venv .venv --prompt InvokeAI
|
||||
```
|
||||
|
||||
4. Activate the virtual environment (do it every time you run InvokeAI)
|
||||
|
||||
_For Linux/Mac users:_
|
||||
|
||||
```sh
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
_For Windows users:_
|
||||
|
||||
```ps
|
||||
.venv\Scripts\activate
|
||||
```
|
||||
|
||||
5. Install the InvokeAI module and its dependencies. Choose the command suited for your platform & GPU.
|
||||
|
||||
_For Windows/Linux with an NVIDIA GPU:_
|
||||
|
||||
```terminal
|
||||
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
|
||||
```
|
||||
|
||||
_For Linux with an AMD GPU:_
|
||||
|
||||
```sh
|
||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
|
||||
```
|
||||
|
||||
_For non-GPU systems:_
|
||||
```terminal
|
||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
```
|
||||
|
||||
_For Macintoshes, either Intel or M1/M2/M3:_
|
||||
|
||||
```sh
|
||||
pip install InvokeAI --use-pep517
|
||||
```
|
||||
|
||||
6. Configure InvokeAI and install a starting set of image generation models (you only need to do this once):
|
||||
|
||||
```terminal
|
||||
invokeai-configure --root .
|
||||
```
|
||||
Don't miss the dot at the end!
|
||||
|
||||
7. Launch the web server (do it every time you run InvokeAI):
|
||||
|
||||
```terminal
|
||||
invokeai-web
|
||||
```
|
||||
|
||||
8. Point your browser to http://localhost:9090 to bring up the web interface.
|
||||
|
||||
9. Type `banana sushi` in the box on the top left and click `Invoke`.
|
||||
|
||||
Be sure to activate the virtual environment each time before re-launching InvokeAI,
|
||||
using `source .venv/bin/activate` or `.venv\Scripts\activate`.
|
||||
|
||||
## Detailed Installation Instructions
|
||||
|
||||
This fork is supported across Linux, Windows and Macintosh. Linux
|
||||
users can use either an Nvidia-based card (with CUDA support) or an
|
||||
AMD card (using the ROCm driver). For full installation and upgrade
|
||||
instructions, please see:
|
||||
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
|
||||
|
||||
<a name="migrating-to-3"></a>
|
||||
### Migrating a v2.3 InvokeAI root directory
|
||||
|
||||
The InvokeAI root directory is where the InvokeAI startup file,
|
||||
installed models, and generated images are stored. It is ordinarily
|
||||
named `invokeai` and located in your home directory. The contents and
|
||||
layout of this directory has changed between versions 2.3 and 3.0 and
|
||||
cannot be used directly.
|
||||
|
||||
We currently recommend that you use the installer to create a new root
|
||||
directory named differently from the 2.3 one, e.g. `invokeai-3` and
|
||||
then use a migration script to copy your 2.3 models into the new
|
||||
location. However, if you choose, you can upgrade this directory in
|
||||
place. This section gives both recipes.
|
||||
|
||||
#### Creating a new root directory and migrating old models
|
||||
|
||||
This is the safer recipe because it leaves your old root directory in
|
||||
place to fall back on.
|
||||
|
||||
1. Follow the instructions above to create and install InvokeAI in a
|
||||
directory that has a different name from the 2.3 invokeai directory.
|
||||
In this example, we will use "invokeai-3"
|
||||
|
||||
2. When you are prompted to select models to install, select a minimal
|
||||
set of models, such as stable-diffusion-v1.5 only.
|
||||
|
||||
3. After installation is complete launch `invokeai.sh` (Linux/Mac) or
|
||||
`invokeai.bat` and select option 8 "Open the developers console". This
|
||||
will take you to the command line.
|
||||
|
||||
4. Issue the command `invokeai-migrate3 --from /path/to/v2.3-root --to
|
||||
/path/to/invokeai-3-root`. Provide the correct `--from` and `--to`
|
||||
paths for your v2.3 and v3.0 root directories respectively.
|
||||
|
||||
This will copy and convert your old models from 2.3 format to 3.0
|
||||
format and create a new `models` directory in the 3.0 directory. The
|
||||
old models directory (which contains the models selected at install
|
||||
time) will be renamed `models.orig` and can be deleted once you have
|
||||
confirmed that the migration was successful.
|
||||
|
||||
If you wish, you can pass the 2.3 root directory to both `--from` and
|
||||
`--to` in order to update in place. Warning: this directory will no
|
||||
longer be usable with InvokeAI 2.3.
|
||||
|
||||
#### Migrating in place
|
||||
|
||||
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
|
||||
without touching the command line. ***This recipe does not work on
|
||||
Windows platforms due to a bug in the Windows version of the 2.3
|
||||
upgrade script.** See the next section for a Windows recipe.
|
||||
|
||||
##### For Mac and Linux Users:
|
||||
|
||||
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
|
||||
|
||||
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
|
||||
|
||||
3. Select option [1] to upgrade to the latest release.
|
||||
|
||||
4. Once the upgrade is finished you will be returned to the launcher
|
||||
menu. Select option [6] "Re-run the configure script to fix a broken
|
||||
install or to complete a major upgrade".
|
||||
|
||||
This will run the configure script against the v2.3 directory and
|
||||
update it to the 3.0 format. The following files will be replaced:
|
||||
|
||||
- The invokeai.init file, replaced by invokeai.yaml
|
||||
- The models directory
|
||||
- The configs/models.yaml model index
|
||||
|
||||
The original versions of these files will be saved with the suffix
|
||||
".orig" appended to the end. Once you have confirmed that the upgrade
|
||||
worked, you can safely remove these files. Alternatively you can
|
||||
restore a working v2.3 directory by removing the new files and
|
||||
restoring the ".orig" files' original names.
|
||||
|
||||
##### For Windows Users:
|
||||
|
||||
Windows Users can upgrade with the
|
||||
|
||||
1. Enter the 2.3 root directory you wish to upgrade
|
||||
2. Launch `invoke.sh` or `invoke.bat`
|
||||
3. Select the "Developer's console" option [8]
|
||||
4. Type the following commands
|
||||
|
||||
```
|
||||
pip install "invokeai @ https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v3.0.0" --use-pep517 --upgrade
|
||||
invokeai-configure --root .
|
||||
```
|
||||
(Replace `v3.0.0` with the current release number if this document is out of date).
|
||||
|
||||
The first command will install and upgrade new software to run
|
||||
InvokeAI. The second will prepare the 2.3 directory for use with 3.0.
|
||||
You may now launch the WebUI in the usual way, by selecting option [1]
|
||||
from the launcher script
|
||||
|
||||
#### Migrating Images
|
||||
|
||||
The migration script will migrate your invokeai settings and models,
|
||||
including textual inversion models, LoRAs and merges that you may have
|
||||
installed previously. However it does **not** migrate the generated
|
||||
images stored in your 2.3-format outputs directory. To do this, you
|
||||
need to run an additional step:
|
||||
|
||||
1. From a working InvokeAI 3.0 root directory, start the launcher and
|
||||
enter menu option [8] to open the "developer's console".
|
||||
|
||||
2. At the developer's console command line, type the command:
|
||||
|
||||
```bash
|
||||
invokeai-import-images
|
||||
```
|
||||
|
||||
3. This will lead you through the process of confirming the desired
|
||||
source and destination for the imported images. The images will
|
||||
appear in the gallery board of your choice, and contain the
|
||||
original prompt, model name, and other parameters used to generate
|
||||
the image.
|
||||
|
||||
(Many kudos to **techjedi** for contributing this script.)
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
InvokeAI is supported across Linux, Windows and macOS. Linux
|
||||
users can use either an Nvidia-based card (with CUDA support) or an
|
||||
AMD card (using the ROCm driver).
|
||||
|
||||
### System
|
||||
|
||||
You will need one of the following:
|
||||
|
||||
- An NVIDIA-based graphics card with 4 GB or more VRAM memory. 6-8 GB
|
||||
of VRAM is highly recommended for rendering using the Stable
|
||||
Diffusion XL models
|
||||
- An Apple computer with an M1 chip.
|
||||
- An AMD-based graphics card with 4GB or more VRAM memory (Linux
|
||||
only), 6-8 GB for XL rendering.
|
||||
|
||||
We do not recommend the GTX 1650 or 1660 series video cards. They are
|
||||
unable to run in half-precision mode and do not have sufficient VRAM
|
||||
to render 512x512 images.
|
||||
|
||||
**Memory** - At least 12 GB Main Memory RAM.
|
||||
|
||||
**Disk** - At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
|
||||
|
||||
## Features
|
||||
|
||||
Feature documentation can be reviewed by navigating to [the InvokeAI Documentation page](https://invoke-ai.github.io/InvokeAI/features/)
|
||||
|
||||
### *Web Server & UI*
|
||||
|
||||
InvokeAI offers a locally hosted Web Server & React Frontend, with an industry leading user experience. The Web-based UI allows for simple and intuitive workflows, and is responsive for use on mobile devices and tablets accessing the web server.
|
||||
|
||||
### *Unified Canvas*
|
||||
|
||||
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
|
||||
|
||||
### *Workflows & Nodes*
|
||||
|
||||
InvokeAI offers a fully featured workflow management solution, enabling users to combine the power of nodes based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
|
||||
|
||||
### *Board & Gallery Management*
|
||||
|
||||
Invoke AI provides an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
|
||||
|
||||
### Other features
|
||||
|
||||
- *Support for both ckpt and diffusers models*
|
||||
- *SD 2.0, 2.1, XL support*
|
||||
- *Upscaling Tools*
|
||||
- *Embedding Manager & Support*
|
||||
- *Model Manager & Support*
|
||||
- *Workflow creation & management*
|
||||
- *Node-Based Architecture*
|
||||
|
||||
|
||||
### Latest Changes
|
||||
|
||||
For our latest changes, view our [Release
|
||||
Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
|
||||
[CHANGELOG](docs/CHANGELOG.md).
|
||||
|
||||
### Troubleshooting / FAQ
|
||||
|
||||
Please check out our **[FAQ](https://invoke-ai.github.io/InvokeAI/help/FAQ/)** to get solutions for common installation
|
||||
problems and other issues. For more help, please join our [Discord][discord link]
|
||||
|
||||
## Contributing
|
||||
|
||||
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
|
||||
cleanup, testing, or code reviews, is very much encouraged to do so.
|
||||
|
||||
Get started with contributing by reading our [Contribution documentation](https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/), joining the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) or the GitHub discussion board.
|
||||
|
||||
If you are unfamiliar with how
|
||||
to contribute to GitHub projects, we have a new contributor checklist you can follow to get started contributing:
|
||||
[New Contributor Checklist](https://invoke-ai.github.io/InvokeAI/contributing/contribution_guides/newContributorChecklist/).
|
||||
|
||||
We hope you enjoy using our software as much as we enjoy creating it,
|
||||
and we hope that some of those of you who are reading this will elect
|
||||
to become part of our community.
|
||||
|
||||
Welcome to InvokeAI!
|
||||
|
||||
### Contributors
|
||||
|
||||
This fork is a combined effort of various people from across the world.
|
||||
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
|
||||
their time, hard work and effort.
|
||||
|
||||
### Support
|
||||
|
||||
For support, please use this repository's GitHub Issues tracking service, or join the [Discord][discord link].
|
||||
|
||||
Original portions of the software are Copyright (c) 2023 by respective contributors.
|
||||
|
||||
|
@ -51,13 +51,11 @@ The settings in this file will override the defaults. You only need
|
||||
to change this file if the default for a particular setting doesn't
|
||||
work for you.
|
||||
|
||||
You'll find an example file next to `invokeai.yaml` that shows the default values.
|
||||
|
||||
Some settings, like [Model Marketplace API Keys], require the YAML
|
||||
to be formatted correctly. Here is a [basic guide to YAML files].
|
||||
|
||||
You can fix a broken `invokeai.yaml` by deleting it and running the
|
||||
configuration script again -- option [6] in the launcher, "Re-run the
|
||||
configure script".
|
||||
|
||||
#### Custom Config File Location
|
||||
|
||||
You can use any config file with the `--config` CLI arg. Pass in the path to the `invokeai.yaml` file you want to use.
|
||||
|
@ -35,22 +35,16 @@ from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
|
||||
from invokeai.backend.image_util.canny import get_canny_edges
|
||||
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
|
||||
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
|
||||
from invokeai.backend.image_util.hed import HEDProcessor
|
||||
from invokeai.backend.image_util.lineart import LineartProcessor
|
||||
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
||||
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
|
||||
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
|
||||
CONTROLNET_RESIZE_VALUES = Literal[
|
||||
"just_resize",
|
||||
"crop_resize",
|
||||
"fill_resize",
|
||||
"just_resize_simple",
|
||||
]
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
|
||||
|
||||
|
||||
class ControlField(BaseModel):
|
||||
@ -641,3 +635,27 @@ class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
resolution=self.image_resolution,
|
||||
)
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
"heuristic_resize",
|
||||
title="Heuristic Resize",
|
||||
tags=["image, controlnet"],
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class HeuristicResizeInvocation(BaseInvocation):
|
||||
"""Resize an image using a heuristic method. Preserves edge maps."""
|
||||
|
||||
image: ImageField = InputField(description="The image to resize")
|
||||
width: int = InputField(default=512, gt=0, description="The width to resize to (px)")
|
||||
height: int = InputField(default=512, gt=0, description="The height to resize to (px)")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.images.get_pil(self.image.image_name, "RGB")
|
||||
np_img = pil_to_np(image)
|
||||
np_resized = heuristic_resize(np_img, (self.width, self.height))
|
||||
resized = np_to_pil(np_resized)
|
||||
image_dto = context.images.save(image=resized)
|
||||
return ImageOutput.build(image_dto)
|
||||
|
@ -51,6 +51,7 @@ from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import BaseModelType, LoadedModel
|
||||
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
@ -185,7 +186,7 @@ class GradientMaskOutput(BaseInvocationOutput):
|
||||
title="Create Gradient Mask",
|
||||
tags=["mask", "denoise"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
version="1.1.0",
|
||||
)
|
||||
class CreateGradientMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
@ -198,6 +199,32 @@ class CreateGradientMaskInvocation(BaseInvocation):
|
||||
minimum_denoise: float = InputField(
|
||||
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
|
||||
)
|
||||
image: Optional[ImageField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] Image",
|
||||
ui_order=6,
|
||||
)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
title="[OPTIONAL] UNet",
|
||||
ui_order=5,
|
||||
)
|
||||
vae: Optional[VAEField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] VAE",
|
||||
input=Input.Connection,
|
||||
ui_order=7,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
|
||||
fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == "float32",
|
||||
description=FieldDescriptions.fp32,
|
||||
ui_order=9,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
|
||||
@ -233,8 +260,27 @@ class CreateGradientMaskInvocation(BaseInvocation):
|
||||
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
|
||||
expanded_image_dto = context.images.save(expanded_mask_image)
|
||||
|
||||
masked_latents_name = None
|
||||
if self.unet is not None and self.vae is not None and self.image is not None:
|
||||
# all three fields must be present at the same time
|
||||
main_model_config = context.models.get_config(self.unet.unet.key)
|
||||
assert isinstance(main_model_config, MainConfigBase)
|
||||
if main_model_config.variant is ModelVariantType.Inpaint:
|
||||
mask = blur_tensor
|
||||
vae_info: LoadedModel = context.models.load(self.vae.vae)
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||||
masked_latents = ImageToLatentsInvocation.vae_encode(
|
||||
vae_info, self.fp32, self.tiled, masked_image.clone()
|
||||
)
|
||||
masked_latents_name = context.tensors.save(tensor=masked_latents)
|
||||
|
||||
return GradientMaskOutput(
|
||||
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=None, gradient=True),
|
||||
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
|
||||
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
|
||||
)
|
||||
|
||||
@ -295,7 +341,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
|
||||
cfg_scale: Union[float, List[float]] = InputField(
|
||||
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale"
|
||||
default=7.5, description=FieldDescriptions.cfg_scale, title="CFG Scale"
|
||||
)
|
||||
denoising_start: float = InputField(
|
||||
default=0.0,
|
||||
@ -517,6 +563,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
|
||||
if isinstance(self.cfg_scale, list):
|
||||
assert (
|
||||
len(self.cfg_scale) == self.steps
|
||||
), "cfg_scale (list) must have the same length as the number of steps"
|
||||
|
||||
conditioning_data = TextConditioningData(
|
||||
uncond_text=uncond_text_embedding,
|
||||
cond_text=cond_text_embedding,
|
||||
|
@ -1,7 +1,8 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InvocationContext, invocation
|
||||
from invokeai.app.invocations.fields import InputField, TensorField, WithMetadata
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata
|
||||
from invokeai.app.invocations.primitives import MaskOutput
|
||||
|
||||
|
||||
@ -34,3 +35,86 @@ class RectangleMaskInvocation(BaseInvocation, WithMetadata):
|
||||
width=self.width,
|
||||
height=self.height,
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"alpha_mask_to_tensor",
|
||||
title="Alpha Mask to Tensor",
|
||||
tags=["conditioning"],
|
||||
category="conditioning",
|
||||
version="1.0.0",
|
||||
classification=Classification.Beta,
|
||||
)
|
||||
class AlphaMaskToTensorInvocation(BaseInvocation):
|
||||
"""Convert a mask image to a tensor. Opaque regions are 1 and transparent regions are 0."""
|
||||
|
||||
image: ImageField = InputField(description="The mask image to convert.")
|
||||
invert: bool = InputField(default=False, description="Whether to invert the mask.")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> MaskOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
|
||||
if self.invert:
|
||||
mask[0] = torch.tensor(np.array(image)[:, :, 3] == 0, dtype=torch.bool)
|
||||
else:
|
||||
mask[0] = torch.tensor(np.array(image)[:, :, 3] > 0, dtype=torch.bool)
|
||||
|
||||
return MaskOutput(
|
||||
mask=TensorField(tensor_name=context.tensors.save(mask)),
|
||||
height=mask.shape[1],
|
||||
width=mask.shape[2],
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"invert_tensor_mask",
|
||||
title="Invert Tensor Mask",
|
||||
tags=["conditioning"],
|
||||
category="conditioning",
|
||||
version="1.0.0",
|
||||
classification=Classification.Beta,
|
||||
)
|
||||
class InvertTensorMaskInvocation(BaseInvocation):
|
||||
"""Inverts a tensor mask."""
|
||||
|
||||
mask: TensorField = InputField(description="The tensor mask to convert.")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> MaskOutput:
|
||||
mask = context.tensors.load(self.mask.tensor_name)
|
||||
inverted = ~mask
|
||||
|
||||
return MaskOutput(
|
||||
mask=TensorField(tensor_name=context.tensors.save(inverted)),
|
||||
height=inverted.shape[1],
|
||||
width=inverted.shape[2],
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"image_mask_to_tensor",
|
||||
title="Image Mask to Tensor",
|
||||
tags=["conditioning"],
|
||||
category="conditioning",
|
||||
version="1.0.0",
|
||||
)
|
||||
class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
|
||||
"""Convert a mask image to a tensor. Converts the image to grayscale and uses thresholding at the specified value."""
|
||||
|
||||
image: ImageField = InputField(description="The mask image to convert.")
|
||||
cutoff: int = InputField(ge=0, le=255, description="Cutoff (<)", default=128)
|
||||
invert: bool = InputField(default=False, description="Whether to invert the mask.")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> MaskOutput:
|
||||
image = context.images.get_pil(self.image.image_name, mode="L")
|
||||
|
||||
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
|
||||
if self.invert:
|
||||
mask[0] = torch.tensor(np.array(image)[:, :] >= self.cutoff, dtype=torch.bool)
|
||||
else:
|
||||
mask[0] = torch.tensor(np.array(image)[:, :] < self.cutoff, dtype=torch.bool)
|
||||
|
||||
return MaskOutput(
|
||||
mask=TensorField(tensor_name=context.tensors.save(mask)),
|
||||
height=mask.shape[1],
|
||||
width=mask.shape[2],
|
||||
)
|
||||
|
@ -3,7 +3,6 @@ from typing import Any, Literal, Optional, Union
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
@ -14,6 +13,7 @@ from invokeai.app.invocations.fields import (
|
||||
)
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
|
||||
|
||||
from ...version import __version__
|
||||
|
||||
|
@ -8,11 +8,11 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
|
||||
|
||||
|
||||
class T2IAdapterField(BaseModel):
|
||||
|
@ -318,10 +318,8 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
in_progress_path.rename(job.download_path)
|
||||
|
||||
def _validate_filename(self, directory: str, filename: str) -> bool:
|
||||
pc_name_max = os.pathconf(directory, "PC_NAME_MAX") if hasattr(os, "pathconf") else 260 # hardcoded for windows
|
||||
pc_path_max = (
|
||||
os.pathconf(directory, "PC_PATH_MAX") if hasattr(os, "pathconf") else 32767
|
||||
) # hardcoded for windows with long names enabled
|
||||
pc_name_max = get_pc_name_max(directory)
|
||||
pc_path_max = get_pc_path_max(directory)
|
||||
if "/" in filename:
|
||||
return False
|
||||
if filename.startswith(".."):
|
||||
@ -419,6 +417,26 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
self._logger.warning(excp)
|
||||
|
||||
|
||||
def get_pc_name_max(directory: str) -> int:
|
||||
if hasattr(os, "pathconf"):
|
||||
try:
|
||||
return os.pathconf(directory, "PC_NAME_MAX")
|
||||
except OSError:
|
||||
# macOS w/ external drives raise OSError
|
||||
pass
|
||||
return 260 # hardcoded for windows
|
||||
|
||||
|
||||
def get_pc_path_max(directory: str) -> int:
|
||||
if hasattr(os, "pathconf"):
|
||||
try:
|
||||
return os.pathconf(directory, "PC_PATH_MAX")
|
||||
except OSError:
|
||||
# some platforms may not have this value
|
||||
pass
|
||||
return 32767 # hardcoded for windows with long names enabled
|
||||
|
||||
|
||||
# Example on_progress event handler to display a TQDM status bar
|
||||
# Activate with:
|
||||
# download_service.download(DownloadJob('http://foo.bar/baz', '/tmp', on_progress=TqdmProgress().update))
|
||||
|
@ -3,7 +3,6 @@
|
||||
import locale
|
||||
import os
|
||||
import re
|
||||
import signal
|
||||
import threading
|
||||
import time
|
||||
from hashlib import sha256
|
||||
@ -43,6 +42,7 @@ from invokeai.backend.model_manager.metadata.metadata_base import HuggingFaceMet
|
||||
from invokeai.backend.model_manager.probe import ModelProbe
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
from invokeai.backend.util import InvokeAILogger
|
||||
from invokeai.backend.util.catch_sigint import catch_sigint
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .model_install_base import (
|
||||
@ -112,17 +112,6 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
def start(self, invoker: Optional[Invoker] = None) -> None:
|
||||
"""Start the installer thread."""
|
||||
|
||||
# Yes, this is weird. When the installer thread is running, the
|
||||
# thread masks the ^C signal. When we receive a
|
||||
# sigINT, we stop the thread, reset sigINT, and send a new
|
||||
# sigINT to the parent process.
|
||||
def sigint_handler(signum, frame):
|
||||
self.stop()
|
||||
signal.signal(signal.SIGINT, signal.SIG_DFL)
|
||||
signal.raise_signal(signal.SIGINT)
|
||||
|
||||
signal.signal(signal.SIGINT, sigint_handler)
|
||||
|
||||
with self._lock:
|
||||
if self._running:
|
||||
raise Exception("Attempt to start the installer service twice")
|
||||
@ -132,7 +121,8 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
# In normal use, we do not want to scan the models directory - it should never have orphaned models.
|
||||
# We should only do the scan when the flag is set (which should only be set when testing).
|
||||
if self.app_config.scan_models_on_startup:
|
||||
self._register_orphaned_models()
|
||||
with catch_sigint():
|
||||
self._register_orphaned_models()
|
||||
|
||||
# Check all models' paths and confirm they exist. A model could be missing if it was installed on a volume
|
||||
# that isn't currently mounted. In this case, we don't want to delete the model from the database, but we do
|
||||
|
@ -1,7 +1,7 @@
|
||||
import shutil
|
||||
import tempfile
|
||||
import threading
|
||||
import typing
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Optional, TypeVar
|
||||
|
||||
@ -18,12 +18,6 @@ if TYPE_CHECKING:
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
@dataclass
|
||||
class DeleteAllResult:
|
||||
deleted_count: int
|
||||
freed_space_bytes: float
|
||||
|
||||
|
||||
class ObjectSerializerDisk(ObjectSerializerBase[T]):
|
||||
"""Disk-backed storage for arbitrary python objects. Serialization is handled by `torch.save` and `torch.load`.
|
||||
|
||||
@ -36,6 +30,12 @@ class ObjectSerializerDisk(ObjectSerializerBase[T]):
|
||||
self._ephemeral = ephemeral
|
||||
self._base_output_dir = output_dir
|
||||
self._base_output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if self._ephemeral:
|
||||
# Remove dangling tempdirs that might have been left over from an earlier unplanned shutdown.
|
||||
for temp_dir in filter(Path.is_dir, self._base_output_dir.glob("tmp*")):
|
||||
shutil.rmtree(temp_dir)
|
||||
|
||||
# Must specify `ignore_cleanup_errors` to avoid fatal errors during cleanup on Windows
|
||||
self._tempdir = (
|
||||
tempfile.TemporaryDirectory(dir=self._base_output_dir, ignore_cleanup_errors=True) if ephemeral else None
|
||||
|
@ -1,13 +1,21 @@
|
||||
from typing import Union
|
||||
from typing import Any, Literal, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from controlnet_aux.util import HWC3
|
||||
from diffusers.utils import PIL_INTERPOLATION
|
||||
from einops import rearrange
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.util import nms, normalize_image_channel_count
|
||||
|
||||
CONTROLNET_RESIZE_VALUES = Literal[
|
||||
"just_resize",
|
||||
"crop_resize",
|
||||
"fill_resize",
|
||||
"just_resize_simple",
|
||||
]
|
||||
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
|
||||
|
||||
###################################################################
|
||||
# Copy of scripts/lvminthin.py from Mikubill/sd-webui-controlnet
|
||||
###################################################################
|
||||
@ -68,17 +76,6 @@ def lvmin_thin(x, prunings=True):
|
||||
return y
|
||||
|
||||
|
||||
def nake_nms(x):
|
||||
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
||||
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
||||
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
||||
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
||||
y = np.zeros_like(x)
|
||||
for f in [f1, f2, f3, f4]:
|
||||
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
||||
return y
|
||||
|
||||
|
||||
################################################################################
|
||||
# copied from Mikubill/sd-webui-controlnet external_code.py and modified for InvokeAI
|
||||
################################################################################
|
||||
@ -134,98 +131,122 @@ def pixel_perfect_resolution(
|
||||
return int(np.round(estimation))
|
||||
|
||||
|
||||
def clone_contiguous(x: np.ndarray[Any, Any]) -> np.ndarray[Any, Any]:
|
||||
"""Get a memory-contiguous clone of the given numpy array, as a safety measure and to improve computation efficiency."""
|
||||
return np.ascontiguousarray(x).copy()
|
||||
|
||||
|
||||
def np_img_to_torch(np_img: np.ndarray[Any, Any], device: torch.device) -> torch.Tensor:
|
||||
"""Convert a numpy image to a PyTorch tensor. The image is normalized to 0-1, rearranged to BCHW format and sent to
|
||||
the specified device."""
|
||||
|
||||
torch_img = torch.from_numpy(np_img)
|
||||
normalized = torch_img.float() / 255.0
|
||||
bchw = rearrange(normalized, "h w c -> 1 c h w")
|
||||
on_device = bchw.to(device)
|
||||
return on_device.clone()
|
||||
|
||||
|
||||
def heuristic_resize(np_img: np.ndarray[Any, Any], size: tuple[int, int]) -> np.ndarray[Any, Any]:
|
||||
"""Resizes an image using a heuristic to choose the best resizing strategy.
|
||||
|
||||
- If the image appears to be an edge map, special handling will be applied to ensure the edges are not distorted.
|
||||
- Single-pixel edge maps use NMS and thinning to keep the edges as single-pixel lines.
|
||||
- Low-color-count images are resized with nearest-neighbor to preserve color information (for e.g. segmentation maps).
|
||||
- The alpha channel is handled separately to ensure it is resized correctly.
|
||||
|
||||
Args:
|
||||
np_img (np.ndarray): The input image.
|
||||
size (tuple[int, int]): The target size for the image.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The resized image.
|
||||
|
||||
Adapted from https://github.com/Mikubill/sd-webui-controlnet.
|
||||
"""
|
||||
|
||||
# Return early if the image is already at the requested size
|
||||
if np_img.shape[0] == size[1] and np_img.shape[1] == size[0]:
|
||||
return np_img
|
||||
|
||||
# If the image has an alpha channel, separate it for special handling later.
|
||||
inpaint_mask = None
|
||||
if np_img.ndim == 3 and np_img.shape[2] == 4:
|
||||
inpaint_mask = np_img[:, :, 3]
|
||||
np_img = np_img[:, :, 0:3]
|
||||
|
||||
new_size_is_smaller = (size[0] * size[1]) < (np_img.shape[0] * np_img.shape[1])
|
||||
new_size_is_bigger = (size[0] * size[1]) > (np_img.shape[0] * np_img.shape[1])
|
||||
unique_color_count = np.unique(np_img.reshape(-1, np_img.shape[2]), axis=0).shape[0]
|
||||
is_one_pixel_edge = False
|
||||
is_binary = False
|
||||
|
||||
if unique_color_count == 2:
|
||||
# If the image has only two colors, it is likely binary. Check if the image has one-pixel edges.
|
||||
is_binary = np.min(np_img) < 16 and np.max(np_img) > 240
|
||||
if is_binary:
|
||||
eroded = cv2.erode(np_img, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
||||
dilated = cv2.dilate(eroded, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
||||
one_pixel_edge_count = np.where(dilated < np_img)[0].shape[0]
|
||||
all_edge_count = np.where(np_img > 127)[0].shape[0]
|
||||
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
|
||||
|
||||
if 2 < unique_color_count < 200:
|
||||
# With a low color count, we assume this is a map where exact colors are important. Near-neighbor preserves
|
||||
# the colors as needed.
|
||||
interpolation = cv2.INTER_NEAREST
|
||||
elif new_size_is_smaller:
|
||||
# This works best for downscaling
|
||||
interpolation = cv2.INTER_AREA
|
||||
else:
|
||||
# Fall back for other cases
|
||||
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
|
||||
|
||||
# This may be further transformed depending on the binary nature of the image.
|
||||
resized = cv2.resize(np_img, size, interpolation=interpolation)
|
||||
|
||||
if inpaint_mask is not None:
|
||||
# Resize the inpaint mask to match the resized image using the same interpolation method.
|
||||
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
|
||||
|
||||
# If the image is binary, we will perform some additional processing to ensure the edges are preserved.
|
||||
if is_binary:
|
||||
resized = np.mean(resized.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
|
||||
if is_one_pixel_edge:
|
||||
# Use NMS and thinning to keep the edges as single-pixel lines.
|
||||
resized = nms(resized)
|
||||
_, resized = cv2.threshold(resized, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||
resized = lvmin_thin(resized, prunings=new_size_is_bigger)
|
||||
else:
|
||||
_, resized = cv2.threshold(resized, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||
resized = np.stack([resized] * 3, axis=2)
|
||||
|
||||
# Restore the alpha channel if it was present.
|
||||
if inpaint_mask is not None:
|
||||
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
|
||||
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
|
||||
resized = np.concatenate([resized, inpaint_mask], axis=2)
|
||||
|
||||
return resized
|
||||
|
||||
|
||||
###########################################################################
|
||||
# Copied from detectmap_proc method in scripts/detectmap_proc.py in Mikubill/sd-webui-controlnet
|
||||
# modified for InvokeAI
|
||||
###########################################################################
|
||||
# def detectmap_proc(detected_map, module, resize_mode, h, w):
|
||||
def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device: torch.device = torch.device("cpu")):
|
||||
# if 'inpaint' in module:
|
||||
# np_img = np_img.astype(np.float32)
|
||||
# else:
|
||||
# np_img = HWC3(np_img)
|
||||
np_img = HWC3(np_img)
|
||||
def np_img_resize(
|
||||
np_img: np.ndarray,
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES,
|
||||
h: int,
|
||||
w: int,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> tuple[torch.Tensor, np.ndarray[Any, Any]]:
|
||||
np_img = normalize_image_channel_count(np_img)
|
||||
|
||||
def safe_numpy(x):
|
||||
# A very safe method to make sure that Apple/Mac works
|
||||
y = x
|
||||
|
||||
# below is very boring but do not change these. If you change these Apple or Mac may fail.
|
||||
y = y.copy()
|
||||
y = np.ascontiguousarray(y)
|
||||
y = y.copy()
|
||||
return y
|
||||
|
||||
def get_pytorch_control(x):
|
||||
# A very safe method to make sure that Apple/Mac works
|
||||
y = x
|
||||
|
||||
# below is very boring but do not change these. If you change these Apple or Mac may fail.
|
||||
y = torch.from_numpy(y)
|
||||
y = y.float() / 255.0
|
||||
y = rearrange(y, "h w c -> 1 c h w")
|
||||
y = y.clone()
|
||||
# y = y.to(devices.get_device_for("controlnet"))
|
||||
y = y.to(device)
|
||||
y = y.clone()
|
||||
return y
|
||||
|
||||
def high_quality_resize(x: np.ndarray, size):
|
||||
# Written by lvmin
|
||||
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
|
||||
inpaint_mask = None
|
||||
if x.ndim == 3 and x.shape[2] == 4:
|
||||
inpaint_mask = x[:, :, 3]
|
||||
x = x[:, :, 0:3]
|
||||
|
||||
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
|
||||
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
|
||||
unique_color_count = np.unique(x.reshape(-1, x.shape[2]), axis=0).shape[0]
|
||||
is_one_pixel_edge = False
|
||||
is_binary = False
|
||||
if unique_color_count == 2:
|
||||
is_binary = np.min(x) < 16 and np.max(x) > 240
|
||||
if is_binary:
|
||||
xc = x
|
||||
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
||||
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
||||
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
|
||||
all_edge_count = np.where(x > 127)[0].shape[0]
|
||||
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
|
||||
|
||||
if 2 < unique_color_count < 200:
|
||||
interpolation = cv2.INTER_NEAREST
|
||||
elif new_size_is_smaller:
|
||||
interpolation = cv2.INTER_AREA
|
||||
else:
|
||||
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
|
||||
|
||||
y = cv2.resize(x, size, interpolation=interpolation)
|
||||
if inpaint_mask is not None:
|
||||
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
|
||||
|
||||
if is_binary:
|
||||
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
|
||||
if is_one_pixel_edge:
|
||||
y = nake_nms(y)
|
||||
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||
y = lvmin_thin(y, prunings=new_size_is_bigger)
|
||||
else:
|
||||
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||
y = np.stack([y] * 3, axis=2)
|
||||
|
||||
if inpaint_mask is not None:
|
||||
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
|
||||
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
|
||||
y = np.concatenate([y, inpaint_mask], axis=2)
|
||||
|
||||
return y
|
||||
|
||||
# if resize_mode == external_code.ResizeMode.RESIZE:
|
||||
if resize_mode == "just_resize": # RESIZE
|
||||
np_img = high_quality_resize(np_img, (w, h))
|
||||
np_img = safe_numpy(np_img)
|
||||
return get_pytorch_control(np_img), np_img
|
||||
np_img = heuristic_resize(np_img, (w, h))
|
||||
np_img = clone_contiguous(np_img)
|
||||
return np_img_to_torch(np_img, device), np_img
|
||||
|
||||
old_h, old_w, _ = np_img.shape
|
||||
old_w = float(old_w)
|
||||
@ -236,7 +257,6 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
|
||||
def safeint(x: Union[int, float]) -> int:
|
||||
return int(np.round(x))
|
||||
|
||||
# if resize_mode == external_code.ResizeMode.OUTER_FIT:
|
||||
if resize_mode == "fill_resize": # OUTER_FIT
|
||||
k = min(k0, k1)
|
||||
borders = np.concatenate([np_img[0, :, :], np_img[-1, :, :], np_img[:, 0, :], np_img[:, -1, :]], axis=0)
|
||||
@ -245,23 +265,23 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
|
||||
# Inpaint hijack
|
||||
high_quality_border_color[3] = 255
|
||||
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
|
||||
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
|
||||
np_img = heuristic_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
|
||||
new_h, new_w, _ = np_img.shape
|
||||
pad_h = max(0, (h - new_h) // 2)
|
||||
pad_w = max(0, (w - new_w) // 2)
|
||||
high_quality_background[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = np_img
|
||||
np_img = high_quality_background
|
||||
np_img = safe_numpy(np_img)
|
||||
return get_pytorch_control(np_img), np_img
|
||||
np_img = clone_contiguous(np_img)
|
||||
return np_img_to_torch(np_img, device), np_img
|
||||
else: # resize_mode == "crop_resize" (INNER_FIT)
|
||||
k = max(k0, k1)
|
||||
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
|
||||
np_img = heuristic_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
|
||||
new_h, new_w, _ = np_img.shape
|
||||
pad_h = max(0, (new_h - h) // 2)
|
||||
pad_w = max(0, (new_w - w) // 2)
|
||||
np_img = np_img[pad_h : pad_h + h, pad_w : pad_w + w]
|
||||
np_img = safe_numpy(np_img)
|
||||
return get_pytorch_control(np_img), np_img
|
||||
np_img = clone_contiguous(np_img)
|
||||
return np_img_to_torch(np_img, device), np_img
|
||||
|
||||
|
||||
def prepare_control_image(
|
||||
@ -269,12 +289,12 @@ def prepare_control_image(
|
||||
width: int,
|
||||
height: int,
|
||||
num_channels: int = 3,
|
||||
device="cuda",
|
||||
dtype=torch.float16,
|
||||
do_classifier_free_guidance=True,
|
||||
control_mode="balanced",
|
||||
resize_mode="just_resize_simple",
|
||||
):
|
||||
device: str = "cuda",
|
||||
dtype: torch.dtype = torch.float16,
|
||||
control_mode: CONTROLNET_MODE_VALUES = "balanced",
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
|
||||
do_classifier_free_guidance: bool = True,
|
||||
) -> torch.Tensor:
|
||||
"""Pre-process images for ControlNets or T2I-Adapters.
|
||||
|
||||
Args:
|
||||
@ -292,26 +312,15 @@ def prepare_control_image(
|
||||
resize_mode (str, optional): Defaults to "just_resize_simple".
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If resize_mode == "crop_resize_simple".
|
||||
NotImplementedError: If resize_mode == "fill_resize_simple".
|
||||
ValueError: If `resize_mode` is not recognized.
|
||||
ValueError: If `num_channels` is out of range.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The pre-processed input tensor.
|
||||
"""
|
||||
if (
|
||||
resize_mode == "just_resize_simple"
|
||||
or resize_mode == "crop_resize_simple"
|
||||
or resize_mode == "fill_resize_simple"
|
||||
):
|
||||
if resize_mode == "just_resize_simple":
|
||||
image = image.convert("RGB")
|
||||
if resize_mode == "just_resize_simple":
|
||||
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
||||
elif resize_mode == "crop_resize_simple":
|
||||
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
|
||||
elif resize_mode == "fill_resize_simple":
|
||||
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
|
||||
image = image.resize((width, height), resample=Image.LANCZOS)
|
||||
nimage = np.array(image)
|
||||
nimage = nimage[None, :]
|
||||
nimage = np.concatenate([nimage], axis=0)
|
||||
@ -328,8 +337,7 @@ def prepare_control_image(
|
||||
resize_mode=resize_mode,
|
||||
h=height,
|
||||
w=width,
|
||||
# device=torch.device('cpu')
|
||||
device=device,
|
||||
device=torch.device(device),
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported resize_mode: '{resize_mode}'.")
|
||||
|
@ -8,7 +8,7 @@ from huggingface_hub import hf_hub_download
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.util import (
|
||||
non_maximum_suppression,
|
||||
nms,
|
||||
normalize_image_channel_count,
|
||||
np_to_pil,
|
||||
pil_to_np,
|
||||
@ -134,7 +134,7 @@ class HEDProcessor:
|
||||
detected_map = cv2.resize(detected_map, (width, height), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
if scribble:
|
||||
detected_map = non_maximum_suppression(detected_map, 127, 3.0)
|
||||
detected_map = nms(detected_map, 127, 3.0)
|
||||
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
||||
detected_map[detected_map > 4] = 255
|
||||
detected_map[detected_map < 255] = 0
|
||||
|
@ -1,4 +1,5 @@
|
||||
from math import ceil, floor, sqrt
|
||||
from typing import Optional
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -143,20 +144,21 @@ def resize_image_to_resolution(input_image: np.ndarray, resolution: int) -> np.n
|
||||
h = float(input_image.shape[0])
|
||||
w = float(input_image.shape[1])
|
||||
scaling_factor = float(resolution) / min(h, w)
|
||||
h *= scaling_factor
|
||||
w *= scaling_factor
|
||||
h = int(np.round(h / 64.0)) * 64
|
||||
w = int(np.round(w / 64.0)) * 64
|
||||
h = int(h * scaling_factor)
|
||||
w = int(w * scaling_factor)
|
||||
if scaling_factor > 1:
|
||||
return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_LANCZOS4)
|
||||
else:
|
||||
return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_AREA)
|
||||
|
||||
|
||||
def non_maximum_suppression(image: np.ndarray, threshold: int, sigma: float):
|
||||
def nms(np_img: np.ndarray, threshold: Optional[int] = None, sigma: Optional[float] = None) -> np.ndarray:
|
||||
"""
|
||||
Apply non-maximum suppression to an image.
|
||||
|
||||
If both threshold and sigma are provided, the image will blurred before the suppression and thresholded afterwards,
|
||||
resulting in a binary output image.
|
||||
|
||||
This function is adapted from https://github.com/lllyasviel/ControlNet.
|
||||
|
||||
Args:
|
||||
@ -166,23 +168,36 @@ def non_maximum_suppression(image: np.ndarray, threshold: int, sigma: float):
|
||||
|
||||
Returns:
|
||||
The image after non-maximum suppression.
|
||||
|
||||
Raises:
|
||||
ValueError: If only one of threshold and sigma provided.
|
||||
"""
|
||||
|
||||
image = cv2.GaussianBlur(image.astype(np.float32), (0, 0), sigma)
|
||||
# Raise a value error if only one of threshold and sigma is provided
|
||||
if (threshold is None) != (sigma is None):
|
||||
raise ValueError("Both threshold and sigma must be provided if one is provided.")
|
||||
|
||||
if sigma is not None and threshold is not None:
|
||||
# Blurring the image can help to thin out features
|
||||
np_img = cv2.GaussianBlur(np_img.astype(np.float32), (0, 0), sigma)
|
||||
|
||||
filter_1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
||||
filter_2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
||||
filter_3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
||||
filter_4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
||||
|
||||
y = np.zeros_like(image)
|
||||
nms_img = np.zeros_like(np_img)
|
||||
|
||||
for f in [filter_1, filter_2, filter_3, filter_4]:
|
||||
np.putmask(y, cv2.dilate(image, kernel=f) == image, image)
|
||||
np.putmask(nms_img, cv2.dilate(np_img, kernel=f) == np_img, np_img)
|
||||
|
||||
z = np.zeros_like(y, dtype=np.uint8)
|
||||
z[y > threshold] = 255
|
||||
return z
|
||||
if sigma is not None and threshold is not None:
|
||||
# We blurred - now threshold to get a binary image
|
||||
thresholded = np.zeros_like(nms_img, dtype=np.uint8)
|
||||
thresholded[nms_img > threshold] = 255
|
||||
return thresholded
|
||||
|
||||
return nms_img
|
||||
|
||||
|
||||
def safe_step(x: np.ndarray, step: int = 2) -> np.ndarray:
|
||||
|
@ -301,12 +301,12 @@ class MainConfigBase(ModelConfigBase):
|
||||
default_settings: Optional[MainModelDefaultSettings] = Field(
|
||||
description="Default settings for this model", default=None
|
||||
)
|
||||
variant: ModelVariantType = ModelVariantType.Normal
|
||||
|
||||
|
||||
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
|
||||
"""Model config for main checkpoint models."""
|
||||
|
||||
variant: ModelVariantType = ModelVariantType.Normal
|
||||
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
|
||||
upcast_attention: bool = False
|
||||
|
||||
|
@ -51,6 +51,7 @@ LEGACY_CONFIGS: Dict[BaseModelType, Dict[ModelVariantType, Union[str, Dict[Sched
|
||||
},
|
||||
BaseModelType.StableDiffusionXL: {
|
||||
ModelVariantType.Normal: "sd_xl_base.yaml",
|
||||
ModelVariantType.Inpaint: "sd_xl_inpaint.yaml",
|
||||
},
|
||||
BaseModelType.StableDiffusionXLRefiner: {
|
||||
ModelVariantType.Normal: "sd_xl_refiner.yaml",
|
||||
|
@ -155,7 +155,7 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
StarterModel(
|
||||
name="IP Adapter",
|
||||
base=BaseModelType.StableDiffusion1,
|
||||
source="InvokeAI/ip_adapter_sd15",
|
||||
source="https://huggingface.co/InvokeAI/ip_adapter_sd15/resolve/main/ip-adapter_sd15.safetensors",
|
||||
description="IP-Adapter for SD 1.5 models",
|
||||
type=ModelType.IPAdapter,
|
||||
dependencies=[ip_adapter_sd_image_encoder],
|
||||
@ -163,7 +163,7 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
StarterModel(
|
||||
name="IP Adapter Plus",
|
||||
base=BaseModelType.StableDiffusion1,
|
||||
source="InvokeAI/ip_adapter_plus_sd15",
|
||||
source="https://huggingface.co/InvokeAI/ip_adapter_plus_sd15/resolve/main/ip-adapter-plus_sd15.safetensors",
|
||||
description="Refined IP-Adapter for SD 1.5 models",
|
||||
type=ModelType.IPAdapter,
|
||||
dependencies=[ip_adapter_sd_image_encoder],
|
||||
@ -171,7 +171,7 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
StarterModel(
|
||||
name="IP Adapter Plus Face",
|
||||
base=BaseModelType.StableDiffusion1,
|
||||
source="InvokeAI/ip_adapter_plus_face_sd15",
|
||||
source="https://huggingface.co/InvokeAI/ip_adapter_plus_face_sd15/resolve/main/ip-adapter-plus-face_sd15.safetensors",
|
||||
description="Refined IP-Adapter for SD 1.5 models, adapted for faces",
|
||||
type=ModelType.IPAdapter,
|
||||
dependencies=[ip_adapter_sd_image_encoder],
|
||||
@ -179,7 +179,7 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
StarterModel(
|
||||
name="IP Adapter SDXL",
|
||||
base=BaseModelType.StableDiffusionXL,
|
||||
source="InvokeAI/ip_adapter_sdxl",
|
||||
source="https://huggingface.co/InvokeAI/ip_adapter_sdxl_vit_h/resolve/main/ip-adapter_sdxl_vit-h.safetensors",
|
||||
description="IP-Adapter for SDXL models",
|
||||
type=ModelType.IPAdapter,
|
||||
dependencies=[ip_adapter_sdxl_image_encoder],
|
||||
|
29
invokeai/backend/util/catch_sigint.py
Normal file
29
invokeai/backend/util/catch_sigint.py
Normal file
@ -0,0 +1,29 @@
|
||||
"""
|
||||
This module defines a context manager `catch_sigint()` which temporarily replaces
|
||||
the sigINT handler defined by the ASGI in order to allow the user to ^C the application
|
||||
and shut it down immediately. This was implemented in order to allow the user to interrupt
|
||||
slow model hashing during startup.
|
||||
|
||||
Use like this:
|
||||
|
||||
from invokeai.backend.util.catch_sigint import catch_sigint
|
||||
with catch_sigint():
|
||||
run_some_hard_to_interrupt_process()
|
||||
"""
|
||||
|
||||
import signal
|
||||
from contextlib import contextmanager
|
||||
from typing import Generator
|
||||
|
||||
|
||||
def sigint_handler(signum, frame): # type: ignore
|
||||
signal.signal(signal.SIGINT, signal.SIG_DFL)
|
||||
signal.raise_signal(signal.SIGINT)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def catch_sigint() -> Generator[None, None, None]:
|
||||
original_handler = signal.getsignal(signal.SIGINT)
|
||||
signal.signal(signal.SIGINT, sigint_handler)
|
||||
yield
|
||||
signal.signal(signal.SIGINT, original_handler)
|
98
invokeai/configs/stable-diffusion/sd_xl_inpaint.yaml
Normal file
98
invokeai/configs/stable-diffusion/sd_xl_inpaint.yaml
Normal file
@ -0,0 +1,98 @@
|
||||
model:
|
||||
target: sgm.models.diffusion.DiffusionEngine
|
||||
params:
|
||||
scale_factor: 0.13025
|
||||
disable_first_stage_autocast: True
|
||||
|
||||
denoiser_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
||||
params:
|
||||
num_idx: 1000
|
||||
|
||||
weighting_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
|
||||
scaling_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
||||
|
||||
network_config:
|
||||
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
adm_in_channels: 2816
|
||||
num_classes: sequential
|
||||
use_checkpoint: True
|
||||
in_channels: 9
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [4, 2]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [1, 2, 4]
|
||||
num_head_channels: 64
|
||||
use_spatial_transformer: True
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
|
||||
context_dim: 2048
|
||||
spatial_transformer_attn_type: softmax-xformers
|
||||
legacy: False
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
# crossattn cond
|
||||
- is_trainable: False
|
||||
input_key: txt
|
||||
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
params:
|
||||
layer: hidden
|
||||
layer_idx: 11
|
||||
# crossattn and vector cond
|
||||
- is_trainable: False
|
||||
input_key: txt
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
|
||||
params:
|
||||
arch: ViT-bigG-14
|
||||
version: laion2b_s39b_b160k
|
||||
freeze: True
|
||||
layer: penultimate
|
||||
always_return_pooled: True
|
||||
legacy: False
|
||||
# vector cond
|
||||
- is_trainable: False
|
||||
input_key: original_size_as_tuple
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 256 # multiplied by two
|
||||
# vector cond
|
||||
- is_trainable: False
|
||||
input_key: crop_coords_top_left
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 256 # multiplied by two
|
||||
# vector cond
|
||||
- is_trainable: False
|
||||
input_key: target_size_as_tuple
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 256 # multiplied by two
|
||||
|
||||
first_stage_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
attn_type: vanilla-xformers
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
@ -11,6 +11,7 @@ import { createStore } from '../src/app/store/store';
|
||||
// @ts-ignore
|
||||
import translationEN from '../public/locales/en.json';
|
||||
import { ReduxInit } from './ReduxInit';
|
||||
import { $store } from 'app/store/nanostores/store';
|
||||
|
||||
i18n.use(initReactI18next).init({
|
||||
lng: 'en',
|
||||
@ -25,6 +26,7 @@ i18n.use(initReactI18next).init({
|
||||
});
|
||||
|
||||
const store = createStore(undefined, false);
|
||||
$store.set(store);
|
||||
$baseUrl.set('http://localhost:9090');
|
||||
|
||||
const preview: Preview = {
|
||||
|
@ -25,7 +25,7 @@
|
||||
"typegen": "node scripts/typegen.js",
|
||||
"preview": "vite preview",
|
||||
"lint:knip": "knip",
|
||||
"lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:1 src/main.tsx",
|
||||
"lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:0 src/main.tsx",
|
||||
"lint:eslint": "eslint --max-warnings=0 .",
|
||||
"lint:prettier": "prettier --check .",
|
||||
"lint:tsc": "tsc --noEmit",
|
||||
@ -95,11 +95,13 @@
|
||||
"reactflow": "^11.10.4",
|
||||
"redux-dynamic-middlewares": "^2.2.0",
|
||||
"redux-remember": "^5.1.0",
|
||||
"redux-undo": "^1.1.0",
|
||||
"rfdc": "^1.3.1",
|
||||
"roarr": "^7.21.1",
|
||||
"serialize-error": "^11.0.3",
|
||||
"socket.io-client": "^4.7.5",
|
||||
"use-debounce": "^10.0.0",
|
||||
"use-device-pixel-ratio": "^1.1.2",
|
||||
"use-image": "^1.1.1",
|
||||
"uuid": "^9.0.1",
|
||||
"zod": "^3.22.4",
|
||||
|
@ -140,6 +140,9 @@ dependencies:
|
||||
redux-remember:
|
||||
specifier: ^5.1.0
|
||||
version: 5.1.0(redux@5.0.1)
|
||||
redux-undo:
|
||||
specifier: ^1.1.0
|
||||
version: 1.1.0
|
||||
rfdc:
|
||||
specifier: ^1.3.1
|
||||
version: 1.3.1
|
||||
@ -155,6 +158,9 @@ dependencies:
|
||||
use-debounce:
|
||||
specifier: ^10.0.0
|
||||
version: 10.0.0(react@18.2.0)
|
||||
use-device-pixel-ratio:
|
||||
specifier: ^1.1.2
|
||||
version: 1.1.2(react@18.2.0)
|
||||
use-image:
|
||||
specifier: ^1.1.1
|
||||
version: 1.1.1(react-dom@18.2.0)(react@18.2.0)
|
||||
@ -11962,6 +11968,10 @@ packages:
|
||||
redux: 5.0.1
|
||||
dev: false
|
||||
|
||||
/redux-undo@1.1.0:
|
||||
resolution: {integrity: sha512-zzLFh2qeF0MTIlzDhDLm9NtkfBqCllQJ3OCuIl5RKlG/ayHw6GUdIFdMhzMS9NnrnWdBX5u//ExMOHpfudGGOg==}
|
||||
dev: false
|
||||
|
||||
/redux@5.0.1:
|
||||
resolution: {integrity: sha512-M9/ELqF6fy8FwmkpnF0S3YKOqMyoWJ4+CS5Efg2ct3oY9daQvd/Pc71FpGZsVsbl3Cpb+IIcjBDUnnyBdQbq4w==}
|
||||
dev: false
|
||||
@ -13317,6 +13327,14 @@ packages:
|
||||
react: 18.2.0
|
||||
dev: false
|
||||
|
||||
/use-device-pixel-ratio@1.1.2(react@18.2.0):
|
||||
resolution: {integrity: sha512-nFxV0HwLdRUt20kvIgqHYZe6PK/v4mU1X8/eLsT1ti5ck0l2ob0HDRziaJPx+YWzBo6dMm4cTac3mcyk68Gh+A==}
|
||||
peerDependencies:
|
||||
react: '>=16.8.0'
|
||||
dependencies:
|
||||
react: 18.2.0
|
||||
dev: false
|
||||
|
||||
/use-image@1.1.1(react-dom@18.2.0)(react@18.2.0):
|
||||
resolution: {integrity: sha512-n4YO2k8AJG/BcDtxmBx8Aa+47kxY5m335dJiCQA5tTeVU4XdhrhqR6wT0WISRXwdMEOv5CSjqekDZkEMiiWaYQ==}
|
||||
peerDependencies:
|
||||
|
BIN
invokeai/frontend/web/public/assets/images/transparent_bg.png
Normal file
BIN
invokeai/frontend/web/public/assets/images/transparent_bg.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.7 KiB |
@ -85,7 +85,8 @@
|
||||
"loadMore": "Mehr laden",
|
||||
"noImagesInGallery": "Keine Bilder in der Galerie",
|
||||
"loading": "Lade",
|
||||
"deleteImage": "Lösche Bild",
|
||||
"deleteImage_one": "Lösche Bild",
|
||||
"deleteImage_other": "",
|
||||
"copy": "Kopieren",
|
||||
"download": "Runterladen",
|
||||
"setCurrentImage": "Setze aktuelle Bild",
|
||||
|
@ -69,6 +69,7 @@
|
||||
"auto": "Auto",
|
||||
"back": "Back",
|
||||
"batch": "Batch Manager",
|
||||
"beta": "Beta",
|
||||
"cancel": "Cancel",
|
||||
"copy": "Copy",
|
||||
"copyError": "$t(gallery.copy) Error",
|
||||
@ -83,6 +84,8 @@
|
||||
"direction": "Direction",
|
||||
"ipAdapter": "IP Adapter",
|
||||
"t2iAdapter": "T2I Adapter",
|
||||
"positivePrompt": "Positive Prompt",
|
||||
"negativePrompt": "Negative Prompt",
|
||||
"discordLabel": "Discord",
|
||||
"dontAskMeAgain": "Don't ask me again",
|
||||
"error": "Error",
|
||||
@ -135,7 +138,9 @@
|
||||
"red": "Red",
|
||||
"green": "Green",
|
||||
"blue": "Blue",
|
||||
"alpha": "Alpha"
|
||||
"alpha": "Alpha",
|
||||
"selected": "Selected",
|
||||
"viewer": "Viewer"
|
||||
},
|
||||
"controlnet": {
|
||||
"controlAdapter_one": "Control Adapter",
|
||||
@ -151,6 +156,7 @@
|
||||
"balanced": "Balanced",
|
||||
"base": "Base",
|
||||
"beginEndStepPercent": "Begin / End Step Percentage",
|
||||
"beginEndStepPercentShort": "Begin/End %",
|
||||
"bgth": "bg_th",
|
||||
"canny": "Canny",
|
||||
"cannyDescription": "Canny edge detection",
|
||||
@ -222,7 +228,8 @@
|
||||
"scribble": "scribble",
|
||||
"selectModel": "Select a model",
|
||||
"selectCLIPVisionModel": "Select a CLIP Vision model",
|
||||
"setControlImageDimensions": "Set Control Image Dimensions To W/H",
|
||||
"setControlImageDimensions": "Copy size to W/H (optimize for model)",
|
||||
"setControlImageDimensionsForce": "Copy size to W/H (ignore model)",
|
||||
"showAdvanced": "Show Advanced",
|
||||
"small": "Small",
|
||||
"toggleControlNet": "Toggle this ControlNet",
|
||||
@ -892,6 +899,7 @@
|
||||
"denoisingStrength": "Denoising Strength",
|
||||
"downloadImage": "Download Image",
|
||||
"general": "General",
|
||||
"globalSettings": "Global Settings",
|
||||
"height": "Height",
|
||||
"imageFit": "Fit Initial Image To Output Size",
|
||||
"images": "Images",
|
||||
@ -1182,6 +1190,10 @@
|
||||
"heading": "Resize Mode",
|
||||
"paragraphs": ["Method to fit Control Adapter's input image size to the output generation size."]
|
||||
},
|
||||
"ipAdapterMethod": {
|
||||
"heading": "Method",
|
||||
"paragraphs": ["Method by which to apply the current IP Adapter."]
|
||||
},
|
||||
"controlNetWeight": {
|
||||
"heading": "Weight",
|
||||
"paragraphs": [
|
||||
@ -1500,5 +1512,36 @@
|
||||
},
|
||||
"app": {
|
||||
"storeNotInitialized": "Store is not initialized"
|
||||
},
|
||||
"controlLayers": {
|
||||
"deleteAll": "Delete All",
|
||||
"addLayer": "Add Layer",
|
||||
"moveToFront": "Move to Front",
|
||||
"moveToBack": "Move to Back",
|
||||
"moveForward": "Move Forward",
|
||||
"moveBackward": "Move Backward",
|
||||
"brushSize": "Brush Size",
|
||||
"controlLayers": "Control Layers (BETA)",
|
||||
"globalMaskOpacity": "Global Mask Opacity",
|
||||
"autoNegative": "Auto Negative",
|
||||
"toggleVisibility": "Toggle Layer Visibility",
|
||||
"deletePrompt": "Delete Prompt",
|
||||
"resetRegion": "Reset Region",
|
||||
"debugLayers": "Debug Layers",
|
||||
"rectangle": "Rectangle",
|
||||
"maskPreviewColor": "Mask Preview Color",
|
||||
"addPositivePrompt": "Add $t(common.positivePrompt)",
|
||||
"addNegativePrompt": "Add $t(common.negativePrompt)",
|
||||
"addIPAdapter": "Add $t(common.ipAdapter)",
|
||||
"regionalGuidance": "Regional Guidance",
|
||||
"regionalGuidanceLayer": "$t(controlLayers.regionalGuidance) $t(unifiedCanvas.layer)",
|
||||
"controlNetLayer": "$t(common.controlNet) $t(unifiedCanvas.layer)",
|
||||
"ipAdapterLayer": "$t(common.ipAdapter) $t(unifiedCanvas.layer)",
|
||||
"opacity": "Opacity",
|
||||
"globalControlAdapter": "Global $t(controlnet.controlAdapter_one)",
|
||||
"globalControlAdapterLayer": "Global $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
|
||||
"globalIPAdapter": "Global $t(common.ipAdapter)",
|
||||
"globalIPAdapterLayer": "Global $t(common.ipAdapter) $t(unifiedCanvas.layer)",
|
||||
"opacityFilter": "Opacity Filter"
|
||||
}
|
||||
}
|
||||
|
@ -33,7 +33,9 @@
|
||||
"autoSwitchNewImages": "Auto seleccionar Imágenes nuevas",
|
||||
"loadMore": "Cargar más",
|
||||
"noImagesInGallery": "No hay imágenes para mostrar",
|
||||
"deleteImage": "Eliminar Imagen",
|
||||
"deleteImage_one": "Eliminar Imagen",
|
||||
"deleteImage_many": "",
|
||||
"deleteImage_other": "",
|
||||
"deleteImageBin": "Las imágenes eliminadas se enviarán a la papelera de tu sistema operativo.",
|
||||
"deleteImagePermanent": "Las imágenes eliminadas no se pueden restaurar.",
|
||||
"assets": "Activos",
|
||||
|
@ -82,7 +82,9 @@
|
||||
"autoSwitchNewImages": "Passaggio automatico a nuove immagini",
|
||||
"loadMore": "Carica altro",
|
||||
"noImagesInGallery": "Nessuna immagine da visualizzare",
|
||||
"deleteImage": "Elimina l'immagine",
|
||||
"deleteImage_one": "Elimina l'immagine",
|
||||
"deleteImage_many": "Elimina {{count}} immagini",
|
||||
"deleteImage_other": "Elimina {{count}} immagini",
|
||||
"deleteImagePermanent": "Le immagini eliminate non possono essere ripristinate.",
|
||||
"deleteImageBin": "Le immagini eliminate verranno spostate nel cestino del tuo sistema operativo.",
|
||||
"assets": "Risorse",
|
||||
|
@ -90,7 +90,7 @@
|
||||
"problemDeletingImages": "画像の削除中に問題が発生",
|
||||
"drop": "ドロップ",
|
||||
"dropOrUpload": "$t(gallery.drop) またはアップロード",
|
||||
"deleteImage": "画像を削除",
|
||||
"deleteImage_other": "画像を削除",
|
||||
"deleteImageBin": "削除された画像はOSのゴミ箱に送られます。",
|
||||
"deleteImagePermanent": "削除された画像は復元できません。",
|
||||
"download": "ダウンロード",
|
||||
|
@ -82,7 +82,7 @@
|
||||
"drop": "드랍",
|
||||
"problemDeletingImages": "이미지 삭제 중 발생한 문제",
|
||||
"downloadSelection": "선택 항목 다운로드",
|
||||
"deleteImage": "이미지 삭제",
|
||||
"deleteImage_other": "이미지 삭제",
|
||||
"currentlyInUse": "이 이미지는 현재 다음 기능에서 사용되고 있습니다:",
|
||||
"dropOrUpload": "$t(gallery.drop) 또는 업로드",
|
||||
"copy": "복사",
|
||||
|
@ -42,7 +42,8 @@
|
||||
"autoSwitchNewImages": "Wissel autom. naar nieuwe afbeeldingen",
|
||||
"loadMore": "Laad meer",
|
||||
"noImagesInGallery": "Geen afbeeldingen om te tonen",
|
||||
"deleteImage": "Verwijder afbeelding",
|
||||
"deleteImage_one": "Verwijder afbeelding",
|
||||
"deleteImage_other": "",
|
||||
"deleteImageBin": "Verwijderde afbeeldingen worden naar de prullenbak van je besturingssysteem gestuurd.",
|
||||
"deleteImagePermanent": "Verwijderde afbeeldingen kunnen niet worden hersteld.",
|
||||
"assets": "Eigen onderdelen",
|
||||
|
@ -86,7 +86,9 @@
|
||||
"noImagesInGallery": "Изображений нет",
|
||||
"deleteImagePermanent": "Удаленные изображения невозможно восстановить.",
|
||||
"deleteImageBin": "Удаленные изображения будут отправлены в корзину вашей операционной системы.",
|
||||
"deleteImage": "Удалить изображение",
|
||||
"deleteImage_one": "Удалить изображение",
|
||||
"deleteImage_few": "",
|
||||
"deleteImage_many": "",
|
||||
"assets": "Ресурсы",
|
||||
"autoAssignBoardOnClick": "Авто-назначение доски по клику",
|
||||
"deleteSelection": "Удалить выделенное",
|
||||
|
@ -298,7 +298,8 @@
|
||||
"noImagesInGallery": "Gösterilecek Görsel Yok",
|
||||
"autoSwitchNewImages": "Yeni Görseli Biter Bitmez Gör",
|
||||
"currentlyInUse": "Bu görsel şurada kullanımda:",
|
||||
"deleteImage": "Görseli Sil",
|
||||
"deleteImage_one": "Görseli Sil",
|
||||
"deleteImage_other": "",
|
||||
"loadMore": "Daha Getir",
|
||||
"setCurrentImage": "Çalışma Görseli Yap",
|
||||
"unableToLoad": "Galeri Yüklenemedi",
|
||||
|
@ -78,7 +78,7 @@
|
||||
"autoSwitchNewImages": "自动切换到新图像",
|
||||
"loadMore": "加载更多",
|
||||
"noImagesInGallery": "无图像可用于显示",
|
||||
"deleteImage": "删除图片",
|
||||
"deleteImage_other": "删除图片",
|
||||
"deleteImageBin": "被删除的图片会发送到你操作系统的回收站。",
|
||||
"deleteImagePermanent": "删除的图片无法被恢复。",
|
||||
"assets": "素材",
|
||||
|
@ -27,7 +27,8 @@ export type LoggerNamespace =
|
||||
| 'socketio'
|
||||
| 'session'
|
||||
| 'queue'
|
||||
| 'dnd';
|
||||
| 'dnd'
|
||||
| 'controlLayers';
|
||||
|
||||
export const logger = (namespace: LoggerNamespace) => $logger.get().child({ namespace });
|
||||
|
||||
|
@ -16,6 +16,7 @@ import { addCanvasMaskSavedToGalleryListener } from 'app/store/middleware/listen
|
||||
import { addCanvasMaskToControlNetListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMaskToControlNet';
|
||||
import { addCanvasMergedListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMerged';
|
||||
import { addCanvasSavedToGalleryListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasSavedToGallery';
|
||||
import { addControlLayersToControlAdapterBridge } from 'app/store/middleware/listenerMiddleware/listeners/controlLayersToControlAdapterBridge';
|
||||
import { addControlNetAutoProcessListener } from 'app/store/middleware/listenerMiddleware/listeners/controlNetAutoProcess';
|
||||
import { addControlNetImageProcessedListener } from 'app/store/middleware/listenerMiddleware/listeners/controlNetImageProcessed';
|
||||
import { addEnqueueRequestedCanvasListener } from 'app/store/middleware/listenerMiddleware/listeners/enqueueRequestedCanvas';
|
||||
@ -157,3 +158,5 @@ addUpscaleRequestedListener(startAppListening);
|
||||
addDynamicPromptsListener(startAppListening);
|
||||
|
||||
addSetDefaultSettingsListener(startAppListening);
|
||||
|
||||
addControlLayersToControlAdapterBridge(startAppListening);
|
||||
|
@ -48,12 +48,10 @@ export const addCanvasImageToControlNetListener = (startAppListening: AppStartLi
|
||||
})
|
||||
).unwrap();
|
||||
|
||||
const { image_name } = imageDTO;
|
||||
|
||||
dispatch(
|
||||
controlAdapterImageChanged({
|
||||
id,
|
||||
controlImage: image_name,
|
||||
controlImage: imageDTO,
|
||||
})
|
||||
);
|
||||
},
|
||||
|
@ -58,12 +58,10 @@ export const addCanvasMaskToControlNetListener = (startAppListening: AppStartLis
|
||||
})
|
||||
).unwrap();
|
||||
|
||||
const { image_name } = imageDTO;
|
||||
|
||||
dispatch(
|
||||
controlAdapterImageChanged({
|
||||
id,
|
||||
controlImage: image_name,
|
||||
controlImage: imageDTO,
|
||||
})
|
||||
);
|
||||
},
|
||||
|
@ -0,0 +1,144 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
|
||||
import { controlAdapterAdded, controlAdapterRemoved } from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import type { ControlNetConfig, IPAdapterConfig } from 'features/controlAdapters/store/types';
|
||||
import { isControlAdapterProcessorType } from 'features/controlAdapters/store/types';
|
||||
import {
|
||||
controlAdapterLayerAdded,
|
||||
ipAdapterLayerAdded,
|
||||
layerDeleted,
|
||||
maskLayerIPAdapterAdded,
|
||||
maskLayerIPAdapterDeleted,
|
||||
regionalGuidanceLayerAdded,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { Layer } from 'features/controlLayers/store/types';
|
||||
import { modelConfigsAdapterSelectors, modelsApi } from 'services/api/endpoints/models';
|
||||
import { isControlNetModelConfig, isIPAdapterModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
|
||||
export const guidanceLayerAdded = createAction<Layer['type']>('controlLayers/guidanceLayerAdded');
|
||||
export const guidanceLayerDeleted = createAction<string>('controlLayers/guidanceLayerDeleted');
|
||||
export const allLayersDeleted = createAction('controlLayers/allLayersDeleted');
|
||||
export const guidanceLayerIPAdapterAdded = createAction<string>('controlLayers/guidanceLayerIPAdapterAdded');
|
||||
export const guidanceLayerIPAdapterDeleted = createAction<{ layerId: string; ipAdapterId: string }>(
|
||||
'controlLayers/guidanceLayerIPAdapterDeleted'
|
||||
);
|
||||
|
||||
export const addControlLayersToControlAdapterBridge = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: guidanceLayerAdded,
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const type = action.payload;
|
||||
const layerId = uuidv4();
|
||||
if (type === 'regional_guidance_layer') {
|
||||
dispatch(regionalGuidanceLayerAdded({ layerId }));
|
||||
return;
|
||||
}
|
||||
|
||||
const state = getState();
|
||||
const baseModel = state.generation.model?.base;
|
||||
const modelConfigs = modelsApi.endpoints.getModelConfigs.select(undefined)(state).data;
|
||||
|
||||
if (type === 'ip_adapter_layer') {
|
||||
const ipAdapterId = uuidv4();
|
||||
const overrides: Partial<IPAdapterConfig> = {
|
||||
id: ipAdapterId,
|
||||
};
|
||||
|
||||
// Find and select the first matching model
|
||||
if (modelConfigs) {
|
||||
const models = modelConfigsAdapterSelectors.selectAll(modelConfigs).filter(isIPAdapterModelConfig);
|
||||
overrides.model = models.find((m) => m.base === baseModel) ?? null;
|
||||
}
|
||||
dispatch(controlAdapterAdded({ type: 'ip_adapter', overrides }));
|
||||
dispatch(ipAdapterLayerAdded({ layerId, ipAdapterId }));
|
||||
return;
|
||||
}
|
||||
|
||||
if (type === 'control_adapter_layer') {
|
||||
const controlNetId = uuidv4();
|
||||
const overrides: Partial<ControlNetConfig> = {
|
||||
id: controlNetId,
|
||||
};
|
||||
|
||||
// Find and select the first matching model
|
||||
if (modelConfigs) {
|
||||
const models = modelConfigsAdapterSelectors.selectAll(modelConfigs).filter(isControlNetModelConfig);
|
||||
const model = models.find((m) => m.base === baseModel) ?? null;
|
||||
overrides.model = model;
|
||||
const defaultPreprocessor = model?.default_settings?.preprocessor;
|
||||
overrides.processorType = isControlAdapterProcessorType(defaultPreprocessor) ? defaultPreprocessor : 'none';
|
||||
overrides.processorNode = CONTROLNET_PROCESSORS[overrides.processorType].buildDefaults(baseModel);
|
||||
}
|
||||
dispatch(controlAdapterAdded({ type: 'controlnet', overrides }));
|
||||
dispatch(controlAdapterLayerAdded({ layerId, controlNetId }));
|
||||
return;
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: guidanceLayerDeleted,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const layerId = action.payload;
|
||||
const state = getState();
|
||||
const layer = state.controlLayers.present.layers.find((l) => l.id === layerId);
|
||||
assert(layer, `Layer ${layerId} not found`);
|
||||
|
||||
if (layer.type === 'ip_adapter_layer') {
|
||||
dispatch(controlAdapterRemoved({ id: layer.ipAdapterId }));
|
||||
} else if (layer.type === 'control_adapter_layer') {
|
||||
dispatch(controlAdapterRemoved({ id: layer.controlNetId }));
|
||||
} else if (layer.type === 'regional_guidance_layer') {
|
||||
for (const ipAdapterId of layer.ipAdapterIds) {
|
||||
dispatch(controlAdapterRemoved({ id: ipAdapterId }));
|
||||
}
|
||||
}
|
||||
dispatch(layerDeleted(layerId));
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: allLayersDeleted,
|
||||
effect: (action, { dispatch, getOriginalState }) => {
|
||||
const state = getOriginalState();
|
||||
for (const layer of state.controlLayers.present.layers) {
|
||||
dispatch(guidanceLayerDeleted(layer.id));
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: guidanceLayerIPAdapterAdded,
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const layerId = action.payload;
|
||||
const ipAdapterId = uuidv4();
|
||||
const overrides: Partial<IPAdapterConfig> = {
|
||||
id: ipAdapterId,
|
||||
};
|
||||
|
||||
// Find and select the first matching model
|
||||
const state = getState();
|
||||
const baseModel = state.generation.model?.base;
|
||||
const modelConfigs = modelsApi.endpoints.getModelConfigs.select(undefined)(state).data;
|
||||
if (modelConfigs) {
|
||||
const models = modelConfigsAdapterSelectors.selectAll(modelConfigs).filter(isIPAdapterModelConfig);
|
||||
overrides.model = models.find((m) => m.base === baseModel) ?? null;
|
||||
}
|
||||
|
||||
dispatch(controlAdapterAdded({ type: 'ip_adapter', overrides }));
|
||||
dispatch(maskLayerIPAdapterAdded({ layerId, ipAdapterId }));
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: guidanceLayerIPAdapterDeleted,
|
||||
effect: (action, { dispatch }) => {
|
||||
const { layerId, ipAdapterId } = action.payload;
|
||||
dispatch(controlAdapterRemoved({ id: ipAdapterId }));
|
||||
dispatch(maskLayerIPAdapterDeleted({ layerId, ipAdapterId }));
|
||||
},
|
||||
});
|
||||
};
|
@ -12,6 +12,7 @@ import {
|
||||
selectControlAdapterById,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
type AnyControlAdapterParamChangeAction =
|
||||
| ReturnType<typeof controlAdapterProcessorParamsChanged>
|
||||
@ -52,6 +53,11 @@ const predicate: AnyListenerPredicate<RootState> = (action, state, prevState) =>
|
||||
return false;
|
||||
}
|
||||
|
||||
if (prevCA.controlImage === ca.controlImage && isEqual(prevCA.processorNode, ca.processorNode)) {
|
||||
// Don't re-process if the processor hasn't changed
|
||||
return false;
|
||||
}
|
||||
|
||||
const isProcessorSelected = processorType !== 'none';
|
||||
|
||||
const hasControlImage = Boolean(controlImage);
|
||||
|
@ -91,7 +91,7 @@ export const addControlNetImageProcessedListener = (startAppListening: AppStartL
|
||||
dispatch(
|
||||
controlAdapterProcessedImageChanged({
|
||||
id,
|
||||
processedControlImage: processedControlImage.image_name,
|
||||
processedControlImage,
|
||||
})
|
||||
);
|
||||
}
|
||||
|
@ -71,7 +71,7 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
dispatch(
|
||||
controlAdapterImageChanged({
|
||||
id,
|
||||
controlImage: activeData.payload.imageDTO.image_name,
|
||||
controlImage: activeData.payload.imageDTO,
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
|
@ -96,7 +96,7 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
|
||||
dispatch(
|
||||
controlAdapterImageChanged({
|
||||
id,
|
||||
controlImage: imageDTO.image_name,
|
||||
controlImage: imageDTO,
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
|
@ -1,7 +1,7 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import {
|
||||
controlAdapterIsEnabledChanged,
|
||||
controlAdapterModelChanged,
|
||||
selectControlAdapterAll,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { loraRemoved } from 'features/lora/store/loraSlice';
|
||||
@ -54,7 +54,7 @@ export const addModelSelectedListener = (startAppListening: AppStartListening) =
|
||||
// handle incompatible controlnets
|
||||
selectControlAdapterAll(state.controlAdapters).forEach((ca) => {
|
||||
if (ca.model?.base !== newBaseModel) {
|
||||
dispatch(controlAdapterIsEnabledChanged({ id: ca.id, isEnabled: false }));
|
||||
dispatch(controlAdapterModelChanged({ id: ca.id, modelConfig: null }));
|
||||
modelsCleared += 1;
|
||||
}
|
||||
});
|
||||
|
@ -6,9 +6,10 @@ import {
|
||||
controlAdapterModelCleared,
|
||||
selectControlAdapterAll,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { loraRemoved } from 'features/lora/store/loraSlice';
|
||||
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
|
||||
import { heightChanged, modelChanged, vaeSelected, widthChanged } from 'features/parameters/store/generationSlice';
|
||||
import { modelChanged, vaeSelected } from 'features/parameters/store/generationSlice';
|
||||
import { zParameterModel, zParameterVAEModel } from 'features/parameters/types/parameterSchemas';
|
||||
import { getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
|
||||
import { refinerModelChanged } from 'features/sdxl/store/sdxlSlice';
|
||||
@ -69,16 +70,22 @@ const handleMainModels: ModelHandler = (models, state, dispatch, log) => {
|
||||
dispatch(modelChanged(defaultModelInList, currentModel));
|
||||
|
||||
const optimalDimension = getOptimalDimension(defaultModelInList);
|
||||
if (getIsSizeOptimal(state.generation.width, state.generation.height, optimalDimension)) {
|
||||
if (
|
||||
getIsSizeOptimal(
|
||||
state.controlLayers.present.size.width,
|
||||
state.controlLayers.present.size.height,
|
||||
optimalDimension
|
||||
)
|
||||
) {
|
||||
return;
|
||||
}
|
||||
const { width, height } = calculateNewSize(
|
||||
state.generation.aspectRatio.value,
|
||||
state.controlLayers.present.size.aspectRatio.value,
|
||||
optimalDimension * optimalDimension
|
||||
);
|
||||
|
||||
dispatch(widthChanged(width));
|
||||
dispatch(heightChanged(height));
|
||||
dispatch(widthChanged({ width }));
|
||||
dispatch(heightChanged({ height }));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
import { isAnyOf } from '@reduxjs/toolkit';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { positivePromptChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import {
|
||||
combinatorialToggled,
|
||||
isErrorChanged,
|
||||
@ -10,11 +11,16 @@ import {
|
||||
promptsChanged,
|
||||
} from 'features/dynamicPrompts/store/dynamicPromptsSlice';
|
||||
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
|
||||
import { setPositivePrompt } from 'features/parameters/store/generationSlice';
|
||||
import { utilitiesApi } from 'services/api/endpoints/utilities';
|
||||
import { socketConnected } from 'services/events/actions';
|
||||
|
||||
const matcher = isAnyOf(setPositivePrompt, combinatorialToggled, maxPromptsChanged, maxPromptsReset, socketConnected);
|
||||
const matcher = isAnyOf(
|
||||
positivePromptChanged,
|
||||
combinatorialToggled,
|
||||
maxPromptsChanged,
|
||||
maxPromptsReset,
|
||||
socketConnected
|
||||
);
|
||||
|
||||
export const addDynamicPromptsListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
@ -22,7 +28,7 @@ export const addDynamicPromptsListener = (startAppListening: AppStartListening)
|
||||
effect: async (action, { dispatch, getState, cancelActiveListeners, delay }) => {
|
||||
cancelActiveListeners();
|
||||
const state = getState();
|
||||
const { positivePrompt } = state.generation;
|
||||
const { positivePrompt } = state.controlLayers.present;
|
||||
const { maxPrompts } = state.dynamicPrompts;
|
||||
|
||||
if (state.config.disabledFeatures.includes('dynamicPrompting')) {
|
||||
@ -32,7 +38,7 @@ export const addDynamicPromptsListener = (startAppListening: AppStartListening)
|
||||
const cachedPrompts = utilitiesApi.endpoints.dynamicPrompts.select({
|
||||
prompt: positivePrompt,
|
||||
max_prompts: maxPrompts,
|
||||
})(getState()).data;
|
||||
})(state).data;
|
||||
|
||||
if (cachedPrompts) {
|
||||
dispatch(promptsChanged(cachedPrompts.prompts));
|
||||
@ -40,8 +46,8 @@ export const addDynamicPromptsListener = (startAppListening: AppStartListening)
|
||||
return;
|
||||
}
|
||||
|
||||
if (!getShouldProcessPrompt(state.generation.positivePrompt)) {
|
||||
dispatch(promptsChanged([state.generation.positivePrompt]));
|
||||
if (!getShouldProcessPrompt(positivePrompt)) {
|
||||
dispatch(promptsChanged([positivePrompt]));
|
||||
dispatch(parsingErrorChanged(undefined));
|
||||
dispatch(isErrorChanged(false));
|
||||
return;
|
||||
|
@ -1,14 +1,13 @@
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { setDefaultSettings } from 'features/parameters/store/actions';
|
||||
import {
|
||||
heightRecalled,
|
||||
setCfgRescaleMultiplier,
|
||||
setCfgScale,
|
||||
setScheduler,
|
||||
setSteps,
|
||||
vaePrecisionChanged,
|
||||
vaeSelected,
|
||||
widthRecalled,
|
||||
} from 'features/parameters/store/generationSlice';
|
||||
import {
|
||||
isParameterCFGRescaleMultiplier,
|
||||
@ -100,13 +99,13 @@ export const addSetDefaultSettingsListener = (startAppListening: AppStartListeni
|
||||
|
||||
if (width) {
|
||||
if (isParameterWidth(width)) {
|
||||
dispatch(widthRecalled(width));
|
||||
dispatch(widthChanged({ width, updateAspectRatio: true }));
|
||||
}
|
||||
}
|
||||
|
||||
if (height) {
|
||||
if (isParameterHeight(height)) {
|
||||
dispatch(heightRecalled(height));
|
||||
dispatch(heightChanged({ height, updateAspectRatio: true }));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -10,6 +10,11 @@ import {
|
||||
controlAdaptersPersistConfig,
|
||||
controlAdaptersSlice,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import {
|
||||
controlLayersPersistConfig,
|
||||
controlLayersSlice,
|
||||
controlLayersUndoableConfig,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { deleteImageModalSlice } from 'features/deleteImageModal/store/slice';
|
||||
import { dynamicPromptsPersistConfig, dynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
|
||||
import { galleryPersistConfig, gallerySlice } from 'features/gallery/store/gallerySlice';
|
||||
@ -30,6 +35,7 @@ import { defaultsDeep, keys, omit, pick } from 'lodash-es';
|
||||
import dynamicMiddlewares from 'redux-dynamic-middlewares';
|
||||
import type { SerializeFunction, UnserializeFunction } from 'redux-remember';
|
||||
import { rememberEnhancer, rememberReducer } from 'redux-remember';
|
||||
import undoable from 'redux-undo';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { api } from 'services/api';
|
||||
import { authToastMiddleware } from 'services/api/authToastMiddleware';
|
||||
@ -59,6 +65,7 @@ const allReducers = {
|
||||
[queueSlice.name]: queueSlice.reducer,
|
||||
[workflowSlice.name]: workflowSlice.reducer,
|
||||
[hrfSlice.name]: hrfSlice.reducer,
|
||||
[controlLayersSlice.name]: undoable(controlLayersSlice.reducer, controlLayersUndoableConfig),
|
||||
[api.reducerPath]: api.reducer,
|
||||
};
|
||||
|
||||
@ -103,6 +110,7 @@ const persistConfigs: { [key in keyof typeof allReducers]?: PersistConfig } = {
|
||||
[loraPersistConfig.name]: loraPersistConfig,
|
||||
[modelManagerV2PersistConfig.name]: modelManagerV2PersistConfig,
|
||||
[hrfPersistConfig.name]: hrfPersistConfig,
|
||||
[controlLayersPersistConfig.name]: controlLayersPersistConfig,
|
||||
};
|
||||
|
||||
const unserialize: UnserializeFunction = (data, key) => {
|
||||
@ -114,6 +122,7 @@ const unserialize: UnserializeFunction = (data, key) => {
|
||||
try {
|
||||
const { initialState, migrate } = persistConfig;
|
||||
const parsed = JSON.parse(data);
|
||||
|
||||
// strip out old keys
|
||||
const stripped = pick(parsed, keys(initialState));
|
||||
// run (additive) migrations
|
||||
@ -141,7 +150,9 @@ const serialize: SerializeFunction = (data, key) => {
|
||||
if (!persistConfig) {
|
||||
throw new Error(`No persist config for slice "${key}"`);
|
||||
}
|
||||
const result = omit(data, persistConfig.persistDenylist);
|
||||
// Heuristic to determine if the slice is undoable - could just hardcode it in the persistConfig
|
||||
const isUndoable = 'present' in data && 'past' in data && 'future' in data && '_latestUnfiltered' in data;
|
||||
const result = omit(isUndoable ? data.present : data, persistConfig.persistDenylist);
|
||||
return JSON.stringify(result);
|
||||
};
|
||||
|
||||
|
@ -26,7 +26,7 @@ const sx: ChakraProps['sx'] = {
|
||||
|
||||
const colorPickerStyles: CSSProperties = { width: '100%' };
|
||||
|
||||
const numberInputWidth: ChakraProps['w'] = '4.2rem';
|
||||
const numberInputWidth: ChakraProps['w'] = '3.5rem';
|
||||
|
||||
const IAIColorPicker = (props: IAIColorPickerProps) => {
|
||||
const { color, onChange, withNumberInput, ...rest } = props;
|
||||
@ -41,7 +41,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
|
||||
{withNumberInput && (
|
||||
<Flex gap={5}>
|
||||
<FormControl gap={0}>
|
||||
<FormLabel>{t('common.red')}</FormLabel>
|
||||
<FormLabel>{t('common.red')[0]}</FormLabel>
|
||||
<CompositeNumberInput
|
||||
value={color.r}
|
||||
onChange={handleChangeR}
|
||||
@ -53,7 +53,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl gap={0}>
|
||||
<FormLabel>{t('common.green')}</FormLabel>
|
||||
<FormLabel>{t('common.green')[0]}</FormLabel>
|
||||
<CompositeNumberInput
|
||||
value={color.g}
|
||||
onChange={handleChangeG}
|
||||
@ -65,7 +65,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl gap={0}>
|
||||
<FormLabel>{t('common.blue')}</FormLabel>
|
||||
<FormLabel>{t('common.blue')[0]}</FormLabel>
|
||||
<CompositeNumberInput
|
||||
value={color.b}
|
||||
onChange={handleChangeB}
|
||||
@ -77,7 +77,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl gap={0}>
|
||||
<FormLabel>{t('common.alpha')}</FormLabel>
|
||||
<FormLabel>{t('common.alpha')[0]}</FormLabel>
|
||||
<CompositeNumberInput
|
||||
value={color.a}
|
||||
onChange={handleChangeA}
|
||||
|
@ -24,6 +24,7 @@ export type Feature =
|
||||
| 'dynamicPromptsSeedBehaviour'
|
||||
| 'imageFit'
|
||||
| 'infillMethod'
|
||||
| 'ipAdapterMethod'
|
||||
| 'lora'
|
||||
| 'loraWeight'
|
||||
| 'noiseUseCPU'
|
||||
|
@ -0,0 +1,84 @@
|
||||
import type { ChakraProps } from '@invoke-ai/ui-library';
|
||||
import { CompositeNumberInput, Flex, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import type { CSSProperties } from 'react';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { RgbColorPicker as ColorfulRgbColorPicker } from 'react-colorful';
|
||||
import type { ColorPickerBaseProps, RgbColor } from 'react-colorful/dist/types';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
type RgbColorPickerProps = ColorPickerBaseProps<RgbColor> & {
|
||||
withNumberInput?: boolean;
|
||||
};
|
||||
|
||||
const colorPickerPointerStyles: NonNullable<ChakraProps['sx']> = {
|
||||
width: 6,
|
||||
height: 6,
|
||||
borderColor: 'base.100',
|
||||
};
|
||||
|
||||
const sx: ChakraProps['sx'] = {
|
||||
'.react-colorful__hue-pointer': colorPickerPointerStyles,
|
||||
'.react-colorful__saturation-pointer': colorPickerPointerStyles,
|
||||
'.react-colorful__alpha-pointer': colorPickerPointerStyles,
|
||||
gap: 5,
|
||||
flexDir: 'column',
|
||||
};
|
||||
|
||||
const colorPickerStyles: CSSProperties = { width: '100%' };
|
||||
|
||||
const numberInputWidth: ChakraProps['w'] = '3.5rem';
|
||||
|
||||
const RgbColorPicker = (props: RgbColorPickerProps) => {
|
||||
const { color, onChange, withNumberInput, ...rest } = props;
|
||||
const { t } = useTranslation();
|
||||
const handleChangeR = useCallback((r: number) => onChange({ ...color, r }), [color, onChange]);
|
||||
const handleChangeG = useCallback((g: number) => onChange({ ...color, g }), [color, onChange]);
|
||||
const handleChangeB = useCallback((b: number) => onChange({ ...color, b }), [color, onChange]);
|
||||
return (
|
||||
<Flex sx={sx}>
|
||||
<ColorfulRgbColorPicker color={color} onChange={onChange} style={colorPickerStyles} {...rest} />
|
||||
{withNumberInput && (
|
||||
<Flex gap={5}>
|
||||
<FormControl gap={0}>
|
||||
<FormLabel>{t('common.red')[0]}</FormLabel>
|
||||
<CompositeNumberInput
|
||||
value={color.r}
|
||||
onChange={handleChangeR}
|
||||
min={0}
|
||||
max={255}
|
||||
step={1}
|
||||
w={numberInputWidth}
|
||||
defaultValue={90}
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl gap={0}>
|
||||
<FormLabel>{t('common.green')[0]}</FormLabel>
|
||||
<CompositeNumberInput
|
||||
value={color.g}
|
||||
onChange={handleChangeG}
|
||||
min={0}
|
||||
max={255}
|
||||
step={1}
|
||||
w={numberInputWidth}
|
||||
defaultValue={90}
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl gap={0}>
|
||||
<FormLabel>{t('common.blue')[0]}</FormLabel>
|
||||
<CompositeNumberInput
|
||||
value={color.b}
|
||||
onChange={handleChangeB}
|
||||
min={0}
|
||||
max={255}
|
||||
step={1}
|
||||
w={numberInputWidth}
|
||||
defaultValue={255}
|
||||
/>
|
||||
</FormControl>
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(RgbColorPicker);
|
@ -5,6 +5,7 @@ import {
|
||||
selectControlAdaptersSlice,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
|
||||
import { selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { selectDynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
|
||||
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
|
||||
import { selectNodesSlice } from 'features/nodes/store/nodesSlice';
|
||||
@ -23,10 +24,12 @@ const selector = createMemoizedSelector(
|
||||
selectSystemSlice,
|
||||
selectNodesSlice,
|
||||
selectDynamicPromptsSlice,
|
||||
selectControlLayersSlice,
|
||||
activeTabNameSelector,
|
||||
],
|
||||
(controlAdapters, generation, system, nodes, dynamicPrompts, activeTabName) => {
|
||||
const { initialImage, model, positivePrompt } = generation;
|
||||
(controlAdapters, generation, system, nodes, dynamicPrompts, controlLayers, activeTabName) => {
|
||||
const { initialImage, model } = generation;
|
||||
const { positivePrompt } = controlLayers.present;
|
||||
|
||||
const { isConnected } = system;
|
||||
|
||||
@ -94,7 +97,41 @@ const selector = createMemoizedSelector(
|
||||
reasons.push(i18n.t('parameters.invoke.noModelSelected'));
|
||||
}
|
||||
|
||||
selectControlAdapterAll(controlAdapters).forEach((ca, i) => {
|
||||
let enabledControlAdapters = selectControlAdapterAll(controlAdapters).filter((ca) => ca.isEnabled);
|
||||
|
||||
if (activeTabName === 'txt2img') {
|
||||
// Special handling for control layers on txt2img
|
||||
const enabledControlLayersAdapterIds = controlLayers.present.layers
|
||||
.filter((l) => l.isEnabled)
|
||||
.flatMap((layer) => {
|
||||
if (layer.type === 'regional_guidance_layer') {
|
||||
return layer.ipAdapterIds;
|
||||
}
|
||||
if (layer.type === 'control_adapter_layer') {
|
||||
return [layer.controlNetId];
|
||||
}
|
||||
if (layer.type === 'ip_adapter_layer') {
|
||||
return [layer.ipAdapterId];
|
||||
}
|
||||
});
|
||||
|
||||
enabledControlAdapters = enabledControlAdapters.filter((ca) => enabledControlLayersAdapterIds.includes(ca.id));
|
||||
} else {
|
||||
const allControlLayerAdapterIds = controlLayers.present.layers.flatMap((layer) => {
|
||||
if (layer.type === 'regional_guidance_layer') {
|
||||
return layer.ipAdapterIds;
|
||||
}
|
||||
if (layer.type === 'control_adapter_layer') {
|
||||
return [layer.controlNetId];
|
||||
}
|
||||
if (layer.type === 'ip_adapter_layer') {
|
||||
return [layer.ipAdapterId];
|
||||
}
|
||||
});
|
||||
enabledControlAdapters = enabledControlAdapters.filter((ca) => !allControlLayerAdapterIds.includes(ca.id));
|
||||
}
|
||||
|
||||
enabledControlAdapters.forEach((ca, i) => {
|
||||
if (!ca.isEnabled) {
|
||||
return;
|
||||
}
|
||||
|
85
invokeai/frontend/web/src/common/util/arrayUtils.test.ts
Normal file
85
invokeai/frontend/web/src/common/util/arrayUtils.test.ts
Normal file
@ -0,0 +1,85 @@
|
||||
import { moveBackward, moveForward, moveToBack, moveToFront } from 'common/util/arrayUtils';
|
||||
import { describe, expect, it } from 'vitest';
|
||||
|
||||
describe('Array Manipulation Functions', () => {
|
||||
const originalArray = ['a', 'b', 'c', 'd'];
|
||||
describe('moveForwardOne', () => {
|
||||
it('should move an item forward by one position', () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveForward(array, (item) => item === 'b');
|
||||
expect(result).toEqual(['a', 'c', 'b', 'd']);
|
||||
});
|
||||
|
||||
it('should do nothing if the item is at the end', () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveForward(array, (item) => item === 'd');
|
||||
expect(result).toEqual(['a', 'b', 'c', 'd']);
|
||||
});
|
||||
|
||||
it("should leave the array unchanged if the item isn't in the array", () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveForward(array, (item) => item === 'z');
|
||||
expect(result).toEqual(originalArray);
|
||||
});
|
||||
});
|
||||
|
||||
describe('moveToFront', () => {
|
||||
it('should move an item to the front', () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveToFront(array, (item) => item === 'c');
|
||||
expect(result).toEqual(['c', 'a', 'b', 'd']);
|
||||
});
|
||||
|
||||
it('should do nothing if the item is already at the front', () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveToFront(array, (item) => item === 'a');
|
||||
expect(result).toEqual(['a', 'b', 'c', 'd']);
|
||||
});
|
||||
|
||||
it("should leave the array unchanged if the item isn't in the array", () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveToFront(array, (item) => item === 'z');
|
||||
expect(result).toEqual(originalArray);
|
||||
});
|
||||
});
|
||||
|
||||
describe('moveBackwardsOne', () => {
|
||||
it('should move an item backward by one position', () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveBackward(array, (item) => item === 'c');
|
||||
expect(result).toEqual(['a', 'c', 'b', 'd']);
|
||||
});
|
||||
|
||||
it('should do nothing if the item is at the beginning', () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveBackward(array, (item) => item === 'a');
|
||||
expect(result).toEqual(['a', 'b', 'c', 'd']);
|
||||
});
|
||||
|
||||
it("should leave the array unchanged if the item isn't in the array", () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveBackward(array, (item) => item === 'z');
|
||||
expect(result).toEqual(originalArray);
|
||||
});
|
||||
});
|
||||
|
||||
describe('moveToBack', () => {
|
||||
it('should move an item to the back', () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveToBack(array, (item) => item === 'b');
|
||||
expect(result).toEqual(['a', 'c', 'd', 'b']);
|
||||
});
|
||||
|
||||
it('should do nothing if the item is already at the back', () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveToBack(array, (item) => item === 'd');
|
||||
expect(result).toEqual(['a', 'b', 'c', 'd']);
|
||||
});
|
||||
|
||||
it("should leave the array unchanged if the item isn't in the array", () => {
|
||||
const array = [...originalArray];
|
||||
const result = moveToBack(array, (item) => item === 'z');
|
||||
expect(result).toEqual(originalArray);
|
||||
});
|
||||
});
|
||||
});
|
37
invokeai/frontend/web/src/common/util/arrayUtils.ts
Normal file
37
invokeai/frontend/web/src/common/util/arrayUtils.ts
Normal file
@ -0,0 +1,37 @@
|
||||
export const moveForward = <T>(array: T[], callback: (item: T) => boolean): T[] => {
|
||||
const index = array.findIndex(callback);
|
||||
if (index >= 0 && index < array.length - 1) {
|
||||
//@ts-expect-error - These indicies are safe per the previous check
|
||||
[array[index], array[index + 1]] = [array[index + 1], array[index]];
|
||||
}
|
||||
return array;
|
||||
};
|
||||
|
||||
export const moveToFront = <T>(array: T[], callback: (item: T) => boolean): T[] => {
|
||||
const index = array.findIndex(callback);
|
||||
if (index > 0) {
|
||||
const [item] = array.splice(index, 1);
|
||||
//@ts-expect-error - These indicies are safe per the previous check
|
||||
array.unshift(item);
|
||||
}
|
||||
return array;
|
||||
};
|
||||
|
||||
export const moveBackward = <T>(array: T[], callback: (item: T) => boolean): T[] => {
|
||||
const index = array.findIndex(callback);
|
||||
if (index > 0) {
|
||||
//@ts-expect-error - These indicies are safe per the previous check
|
||||
[array[index], array[index - 1]] = [array[index - 1], array[index]];
|
||||
}
|
||||
return array;
|
||||
};
|
||||
|
||||
export const moveToBack = <T>(array: T[], callback: (item: T) => boolean): T[] => {
|
||||
const index = array.findIndex(callback);
|
||||
if (index >= 0 && index < array.length - 1) {
|
||||
const [item] = array.splice(index, 1);
|
||||
//@ts-expect-error - These indicies are safe per the previous check
|
||||
array.push(item);
|
||||
}
|
||||
return array;
|
||||
};
|
3
invokeai/frontend/web/src/common/util/stopPropagation.ts
Normal file
3
invokeai/frontend/web/src/common/util/stopPropagation.ts
Normal file
@ -0,0 +1,3 @@
|
||||
export const stopPropagation = (e: React.MouseEvent) => {
|
||||
e.stopPropagation();
|
||||
};
|
@ -10,6 +10,18 @@ import { clamp } from 'lodash-es';
|
||||
import type { MutableRefObject } from 'react';
|
||||
import { useCallback } from 'react';
|
||||
|
||||
export const calculateNewBrushSize = (brushSize: number, delta: number) => {
|
||||
// This equation was derived by fitting a curve to the desired brush sizes and deltas
|
||||
// see https://github.com/invoke-ai/InvokeAI/pull/5542#issuecomment-1915847565
|
||||
const targetDelta = Math.sign(delta) * 0.7363 * Math.pow(1.0394, brushSize);
|
||||
// This needs to be clamped to prevent the delta from getting too large
|
||||
const finalDelta = clamp(targetDelta, -20, 20);
|
||||
// The new brush size is also clamped to prevent it from getting too large or small
|
||||
const newBrushSize = clamp(brushSize + finalDelta, 1, 500);
|
||||
|
||||
return newBrushSize;
|
||||
};
|
||||
|
||||
const useCanvasWheel = (stageRef: MutableRefObject<Konva.Stage | null>) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const stageScale = useAppSelector((s) => s.canvas.stageScale);
|
||||
@ -36,15 +48,7 @@ const useCanvasWheel = (stageRef: MutableRefObject<Konva.Stage | null>) => {
|
||||
}
|
||||
|
||||
if ($ctrl.get() || $meta.get()) {
|
||||
// This equation was derived by fitting a curve to the desired brush sizes and deltas
|
||||
// see https://github.com/invoke-ai/InvokeAI/pull/5542#issuecomment-1915847565
|
||||
const targetDelta = Math.sign(delta) * 0.7363 * Math.pow(1.0394, brushSize);
|
||||
// This needs to be clamped to prevent the delta from getting too large
|
||||
const finalDelta = clamp(targetDelta, -20, 20);
|
||||
// The new brush size is also clamped to prevent it from getting too large or small
|
||||
const newBrushSize = clamp(brushSize + finalDelta, 1, 500);
|
||||
|
||||
dispatch(setBrushSize(newBrushSize));
|
||||
dispatch(setBrushSize(calculateNewBrushSize(brushSize, delta)));
|
||||
} else {
|
||||
const cursorPos = stageRef.current.getPointerPosition();
|
||||
let delta = e.evt.deltaY;
|
||||
|
@ -7,3 +7,22 @@ export const blobToDataURL = (blob: Blob): Promise<string> => {
|
||||
reader.readAsDataURL(blob);
|
||||
});
|
||||
};
|
||||
|
||||
export function imageDataToDataURL(imageData: ImageData): string {
|
||||
const { width, height } = imageData;
|
||||
|
||||
// Create a canvas to transfer the ImageData to
|
||||
const canvas = document.createElement('canvas');
|
||||
canvas.width = width;
|
||||
canvas.height = height;
|
||||
|
||||
// Draw the ImageData onto the canvas
|
||||
const ctx = canvas.getContext('2d');
|
||||
if (!ctx) {
|
||||
throw new Error('Unable to get canvas context');
|
||||
}
|
||||
ctx.putImageData(imageData, 0, 0);
|
||||
|
||||
// Convert the canvas to a data URL (base64)
|
||||
return canvas.toDataURL();
|
||||
}
|
||||
|
@ -1,6 +1,11 @@
|
||||
import type { RgbaColor } from 'react-colorful';
|
||||
import type { RgbaColor, RgbColor } from 'react-colorful';
|
||||
|
||||
export const rgbaColorToString = (color: RgbaColor): string => {
|
||||
const { r, g, b, a } = color;
|
||||
return `rgba(${r}, ${g}, ${b}, ${a})`;
|
||||
};
|
||||
|
||||
export const rgbColorToString = (color: RgbColor): string => {
|
||||
const { r, g, b } = color;
|
||||
return `rgba(${r}, ${g}, ${b})`;
|
||||
};
|
||||
|
@ -113,7 +113,7 @@ const ControlAdapterConfig = (props: { id: string; number: number }) => {
|
||||
<Flex w="full" flexDir="column" gap={4}>
|
||||
<Flex gap={8} w="full" alignItems="center">
|
||||
<Flex flexDir="column" gap={4} h={controlAdapterType === 'ip_adapter' ? 40 : 32} w="full">
|
||||
<ParamControlAdapterIPMethod id={id} />
|
||||
{controlAdapterType === 'ip_adapter' && <ParamControlAdapterIPMethod id={id} />}
|
||||
<ParamControlAdapterWeight id={id} />
|
||||
<ParamControlAdapterBeginEnd id={id} />
|
||||
</Flex>
|
||||
|
@ -13,9 +13,10 @@ import {
|
||||
controlAdapterImageChanged,
|
||||
selectControlAdaptersSlice,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
|
||||
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
|
||||
import { heightChanged, selectOptimalDimension, widthChanged } from 'features/parameters/store/generationSlice';
|
||||
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { memo, useCallback, useEffect, useMemo, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
@ -99,8 +100,8 @@ const ControlAdapterImagePreview = ({ isSmall, id }: Props) => {
|
||||
controlImage.width / controlImage.height,
|
||||
optimalDimension * optimalDimension
|
||||
);
|
||||
dispatch(widthChanged(width));
|
||||
dispatch(heightChanged(height));
|
||||
dispatch(widthChanged({ width, updateAspectRatio: true }));
|
||||
dispatch(heightChanged({ height, updateAspectRatio: true }));
|
||||
}
|
||||
}, [controlImage, activeTabName, dispatch, optimalDimension]);
|
||||
|
||||
|
@ -23,8 +23,8 @@ const ParamControlAdapterIPMethod = ({ id }: Props) => {
|
||||
const options: { label: string; value: IPMethod }[] = useMemo(
|
||||
() => [
|
||||
{ label: t('controlnet.full'), value: 'full' },
|
||||
{ label: t('controlnet.style'), value: 'style' },
|
||||
{ label: t('controlnet.composition'), value: 'composition' },
|
||||
{ label: `${t('controlnet.style')} (${t('common.beta')})`, value: 'style' },
|
||||
{ label: `${t('controlnet.composition')} (${t('common.beta')})`, value: 'composition' },
|
||||
],
|
||||
[t]
|
||||
);
|
||||
@ -46,13 +46,9 @@ const ParamControlAdapterIPMethod = ({ id }: Props) => {
|
||||
|
||||
const value = useMemo(() => options.find((o) => o.value === method), [options, method]);
|
||||
|
||||
if (!method) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<FormControl>
|
||||
<InformationalPopover feature="controlNetResizeMode">
|
||||
<InformationalPopover feature="ipAdapterMethod">
|
||||
<FormLabel>{t('controlnet.ipAdapterMethod')}</FormLabel>
|
||||
</InformationalPopover>
|
||||
<Combobox value={value} options={options} isDisabled={!isEnabled} onChange={handleIPMethodChanged} />
|
||||
|
@ -102,13 +102,9 @@ const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
|
||||
);
|
||||
|
||||
return (
|
||||
<Flex sx={{ gap: 2 }}>
|
||||
<Flex gap={4}>
|
||||
<Tooltip label={selectedModel?.description}>
|
||||
<FormControl
|
||||
isDisabled={!isEnabled}
|
||||
isInvalid={!value || mainModel?.base !== modelConfig?.base}
|
||||
sx={{ width: '100%' }}
|
||||
>
|
||||
<FormControl isDisabled={!isEnabled} isInvalid={!value || mainModel?.base !== modelConfig?.base} w="full">
|
||||
<Combobox
|
||||
options={options}
|
||||
placeholder={t('controlnet.selectModel')}
|
||||
@ -122,7 +118,8 @@ const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
|
||||
<FormControl
|
||||
isDisabled={!isEnabled}
|
||||
isInvalid={!value || mainModel?.base !== modelConfig?.base}
|
||||
sx={{ width: 'max-content', minWidth: 28 }}
|
||||
width="max-content"
|
||||
minWidth={28}
|
||||
>
|
||||
<Combobox
|
||||
options={clipVisionOptions}
|
||||
|
@ -5,15 +5,15 @@ import {
|
||||
selectControlAdaptersSlice,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { useMemo } from 'react';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
export const useControlAdapterIPMethod = (id: string) => {
|
||||
const selector = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectControlAdaptersSlice, (controlAdapters) => {
|
||||
const cn = selectControlAdapterById(controlAdapters, id);
|
||||
if (cn && cn?.type === 'ip_adapter') {
|
||||
return cn.method;
|
||||
}
|
||||
const ca = selectControlAdapterById(controlAdapters, id);
|
||||
assert(ca?.type === 'ip_adapter');
|
||||
return ca.method;
|
||||
}),
|
||||
[id]
|
||||
);
|
||||
|
@ -7,7 +7,7 @@ import { buildControlAdapter } from 'features/controlAdapters/util/buildControlA
|
||||
import { buildControlAdapterProcessor } from 'features/controlAdapters/util/buildControlAdapterProcessor';
|
||||
import { zModelIdentifierField } from 'features/nodes/types/common';
|
||||
import { merge, uniq } from 'lodash-es';
|
||||
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
|
||||
import type { ControlNetModelConfig, ImageDTO, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
|
||||
import { socketInvocationError } from 'services/events/actions';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
|
||||
@ -134,23 +134,46 @@ export const controlAdaptersSlice = createSlice({
|
||||
const { id, isEnabled } = action.payload;
|
||||
caAdapter.updateOne(state, { id, changes: { isEnabled } });
|
||||
},
|
||||
controlAdapterImageChanged: (
|
||||
state,
|
||||
action: PayloadAction<{
|
||||
id: string;
|
||||
controlImage: string | null;
|
||||
}>
|
||||
) => {
|
||||
controlAdapterImageChanged: (state, action: PayloadAction<{ id: string; controlImage: ImageDTO | null }>) => {
|
||||
const { id, controlImage } = action.payload;
|
||||
const ca = selectControlAdapterById(state, id);
|
||||
if (!ca) {
|
||||
return;
|
||||
}
|
||||
|
||||
caAdapter.updateOne(state, {
|
||||
id,
|
||||
changes: { controlImage, processedControlImage: null },
|
||||
});
|
||||
if (isControlNetOrT2IAdapter(ca)) {
|
||||
if (controlImage) {
|
||||
const { image_name, width, height } = controlImage;
|
||||
const processorNode = deepClone(ca.processorNode);
|
||||
const minDim = Math.min(controlImage.width, controlImage.height);
|
||||
if ('detect_resolution' in processorNode) {
|
||||
processorNode.detect_resolution = minDim;
|
||||
}
|
||||
if ('image_resolution' in processorNode) {
|
||||
processorNode.image_resolution = minDim;
|
||||
}
|
||||
if ('resolution' in processorNode) {
|
||||
processorNode.resolution = minDim;
|
||||
}
|
||||
caAdapter.updateOne(state, {
|
||||
id,
|
||||
changes: {
|
||||
processorNode,
|
||||
controlImage: image_name,
|
||||
controlImageDimensions: { width, height },
|
||||
processedControlImage: null,
|
||||
},
|
||||
});
|
||||
} else {
|
||||
caAdapter.updateOne(state, {
|
||||
id,
|
||||
changes: { controlImage: null, controlImageDimensions: null, processedControlImage: null },
|
||||
});
|
||||
}
|
||||
} else {
|
||||
// ip adapter
|
||||
caAdapter.updateOne(state, { id, changes: { controlImage: controlImage?.image_name ?? null } });
|
||||
}
|
||||
|
||||
if (controlImage !== null && isControlNetOrT2IAdapter(ca) && ca.processorType !== 'none') {
|
||||
state.pendingControlImages.push(id);
|
||||
@ -160,7 +183,7 @@ export const controlAdaptersSlice = createSlice({
|
||||
state,
|
||||
action: PayloadAction<{
|
||||
id: string;
|
||||
processedControlImage: string | null;
|
||||
processedControlImage: ImageDTO | null;
|
||||
}>
|
||||
) => {
|
||||
const { id, processedControlImage } = action.payload;
|
||||
@ -173,12 +196,24 @@ export const controlAdaptersSlice = createSlice({
|
||||
return;
|
||||
}
|
||||
|
||||
caAdapter.updateOne(state, {
|
||||
id,
|
||||
changes: {
|
||||
processedControlImage,
|
||||
},
|
||||
});
|
||||
if (processedControlImage) {
|
||||
const { image_name, width, height } = processedControlImage;
|
||||
caAdapter.updateOne(state, {
|
||||
id,
|
||||
changes: {
|
||||
processedControlImage: image_name,
|
||||
processedControlImageDimensions: { width, height },
|
||||
},
|
||||
});
|
||||
} else {
|
||||
caAdapter.updateOne(state, {
|
||||
id,
|
||||
changes: {
|
||||
processedControlImage: null,
|
||||
processedControlImageDimensions: null,
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
state.pendingControlImages = state.pendingControlImages.filter((pendingId) => pendingId !== id);
|
||||
},
|
||||
@ -192,7 +227,7 @@ export const controlAdaptersSlice = createSlice({
|
||||
state,
|
||||
action: PayloadAction<{
|
||||
id: string;
|
||||
modelConfig: ControlNetModelConfig | T2IAdapterModelConfig | IPAdapterModelConfig;
|
||||
modelConfig: ControlNetModelConfig | T2IAdapterModelConfig | IPAdapterModelConfig | null;
|
||||
}>
|
||||
) => {
|
||||
const { id, modelConfig } = action.payload;
|
||||
@ -201,6 +236,11 @@ export const controlAdaptersSlice = createSlice({
|
||||
return;
|
||||
}
|
||||
|
||||
if (modelConfig === null) {
|
||||
caAdapter.updateOne(state, { id, changes: { model: null } });
|
||||
return;
|
||||
}
|
||||
|
||||
const model = zModelIdentifierField.parse(modelConfig);
|
||||
|
||||
if (!isControlNetOrT2IAdapter(cn)) {
|
||||
@ -208,22 +248,36 @@ export const controlAdaptersSlice = createSlice({
|
||||
return;
|
||||
}
|
||||
|
||||
const update: Update<ControlNetConfig | T2IAdapterConfig, string> = {
|
||||
id,
|
||||
changes: { model, shouldAutoConfig: true },
|
||||
};
|
||||
|
||||
update.changes.processedControlImage = null;
|
||||
|
||||
if (modelConfig.type === 'ip_adapter') {
|
||||
// should never happen...
|
||||
return;
|
||||
}
|
||||
|
||||
const processor = buildControlAdapterProcessor(modelConfig);
|
||||
update.changes.processorType = processor.processorType;
|
||||
update.changes.processorNode = processor.processorNode;
|
||||
// We always update the model
|
||||
const update: Update<ControlNetConfig | T2IAdapterConfig, string> = { id, changes: { model } };
|
||||
|
||||
// Build the default processor for this model
|
||||
const processor = buildControlAdapterProcessor(modelConfig);
|
||||
if (processor.processorType !== cn.processorNode.type) {
|
||||
// If the processor type has changed, update the processor node
|
||||
update.changes.shouldAutoConfig = true;
|
||||
update.changes.processedControlImage = null;
|
||||
update.changes.processorType = processor.processorType;
|
||||
update.changes.processorNode = processor.processorNode;
|
||||
|
||||
if (cn.controlImageDimensions) {
|
||||
const minDim = Math.min(cn.controlImageDimensions.width, cn.controlImageDimensions.height);
|
||||
if ('detect_resolution' in update.changes.processorNode) {
|
||||
update.changes.processorNode.detect_resolution = minDim;
|
||||
}
|
||||
if ('image_resolution' in update.changes.processorNode) {
|
||||
update.changes.processorNode.image_resolution = minDim;
|
||||
}
|
||||
if ('resolution' in update.changes.processorNode) {
|
||||
update.changes.processorNode.resolution = minDim;
|
||||
}
|
||||
}
|
||||
}
|
||||
caAdapter.updateOne(state, update);
|
||||
},
|
||||
controlAdapterWeightChanged: (state, action: PayloadAction<{ id: string; weight: number }>) => {
|
||||
@ -340,8 +394,23 @@ export const controlAdaptersSlice = createSlice({
|
||||
|
||||
if (update.changes.shouldAutoConfig && modelConfig) {
|
||||
const processor = buildControlAdapterProcessor(modelConfig);
|
||||
update.changes.processorType = processor.processorType;
|
||||
update.changes.processorNode = processor.processorNode;
|
||||
if (processor.processorType !== cn.processorNode.type) {
|
||||
update.changes.processorType = processor.processorType;
|
||||
update.changes.processorNode = processor.processorNode;
|
||||
// Copy image resolution settings, urgh
|
||||
if (cn.controlImageDimensions) {
|
||||
const minDim = Math.min(cn.controlImageDimensions.width, cn.controlImageDimensions.height);
|
||||
if ('detect_resolution' in update.changes.processorNode) {
|
||||
update.changes.processorNode.detect_resolution = minDim;
|
||||
}
|
||||
if ('image_resolution' in update.changes.processorNode) {
|
||||
update.changes.processorNode.image_resolution = minDim;
|
||||
}
|
||||
if ('resolution' in update.changes.processorNode) {
|
||||
update.changes.processorNode.resolution = minDim;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
caAdapter.updateOne(state, update);
|
||||
|
@ -225,7 +225,9 @@ export type ControlNetConfig = {
|
||||
controlMode: ControlMode;
|
||||
resizeMode: ResizeMode;
|
||||
controlImage: string | null;
|
||||
controlImageDimensions: { width: number; height: number } | null;
|
||||
processedControlImage: string | null;
|
||||
processedControlImageDimensions: { width: number; height: number } | null;
|
||||
processorType: ControlAdapterProcessorType;
|
||||
processorNode: RequiredControlAdapterProcessorNode;
|
||||
shouldAutoConfig: boolean;
|
||||
@ -241,7 +243,9 @@ export type T2IAdapterConfig = {
|
||||
endStepPct: number;
|
||||
resizeMode: ResizeMode;
|
||||
controlImage: string | null;
|
||||
controlImageDimensions: { width: number; height: number } | null;
|
||||
processedControlImage: string | null;
|
||||
processedControlImageDimensions: { width: number; height: number } | null;
|
||||
processorType: ControlAdapterProcessorType;
|
||||
processorNode: RequiredControlAdapterProcessorNode;
|
||||
shouldAutoConfig: boolean;
|
||||
|
@ -20,7 +20,9 @@ export const initialControlNet: Omit<ControlNetConfig, 'id'> = {
|
||||
controlMode: 'balanced',
|
||||
resizeMode: 'just_resize',
|
||||
controlImage: null,
|
||||
controlImageDimensions: null,
|
||||
processedControlImage: null,
|
||||
processedControlImageDimensions: null,
|
||||
processorType: 'canny_image_processor',
|
||||
processorNode: CONTROLNET_PROCESSORS.canny_image_processor.buildDefaults() as RequiredCannyImageProcessorInvocation,
|
||||
shouldAutoConfig: true,
|
||||
@ -35,7 +37,9 @@ export const initialT2IAdapter: Omit<T2IAdapterConfig, 'id'> = {
|
||||
endStepPct: 1,
|
||||
resizeMode: 'just_resize',
|
||||
controlImage: null,
|
||||
controlImageDimensions: null,
|
||||
processedControlImage: null,
|
||||
processedControlImageDimensions: null,
|
||||
processorType: 'canny_image_processor',
|
||||
processorNode: CONTROLNET_PROCESSORS.canny_image_processor.buildDefaults() as RequiredCannyImageProcessorInvocation,
|
||||
shouldAutoConfig: true,
|
||||
|
@ -0,0 +1,41 @@
|
||||
import { Button, Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
|
||||
import { guidanceLayerAdded } from 'app/store/middleware/listenerMiddleware/listeners/controlLayersToControlAdapterBridge';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiPlusBold } from 'react-icons/pi';
|
||||
|
||||
export const AddLayerButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const addRegionalGuidanceLayer = useCallback(() => {
|
||||
dispatch(guidanceLayerAdded('regional_guidance_layer'));
|
||||
}, [dispatch]);
|
||||
const addControlAdapterLayer = useCallback(() => {
|
||||
dispatch(guidanceLayerAdded('control_adapter_layer'));
|
||||
}, [dispatch]);
|
||||
const addIPAdapterLayer = useCallback(() => {
|
||||
dispatch(guidanceLayerAdded('ip_adapter_layer'));
|
||||
}, [dispatch]);
|
||||
|
||||
return (
|
||||
<Menu>
|
||||
<MenuButton as={Button} leftIcon={<PiPlusBold />} variant="ghost">
|
||||
{t('controlLayers.addLayer')}
|
||||
</MenuButton>
|
||||
<MenuList>
|
||||
<MenuItem icon={<PiPlusBold />} onClick={addRegionalGuidanceLayer}>
|
||||
{t('controlLayers.regionalGuidanceLayer')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiPlusBold />} onClick={addControlAdapterLayer}>
|
||||
{t('controlLayers.globalControlAdapterLayer')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiPlusBold />} onClick={addIPAdapterLayer}>
|
||||
{t('controlLayers.globalIPAdapterLayer')}
|
||||
</MenuItem>
|
||||
</MenuList>
|
||||
</Menu>
|
||||
);
|
||||
});
|
||||
|
||||
AddLayerButton.displayName = 'AddLayerButton';
|
@ -0,0 +1,70 @@
|
||||
import { Button, Flex } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { guidanceLayerIPAdapterAdded } from 'app/store/middleware/listenerMiddleware/listeners/controlLayersToControlAdapterBridge';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
isRegionalGuidanceLayer,
|
||||
maskLayerNegativePromptChanged,
|
||||
maskLayerPositivePromptChanged,
|
||||
selectControlLayersSlice,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiPlusBold } from 'react-icons/pi';
|
||||
import { assert } from 'tsafe';
|
||||
type AddPromptButtonProps = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
export const AddPromptButtons = ({ layerId }: AddPromptButtonProps) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const selectValidActions = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers.find((l) => l.id === layerId);
|
||||
assert(isRegionalGuidanceLayer(layer), `Layer ${layerId} not found or not an RP layer`);
|
||||
return {
|
||||
canAddPositivePrompt: layer.positivePrompt === null,
|
||||
canAddNegativePrompt: layer.negativePrompt === null,
|
||||
};
|
||||
}),
|
||||
[layerId]
|
||||
);
|
||||
const validActions = useAppSelector(selectValidActions);
|
||||
const addPositivePrompt = useCallback(() => {
|
||||
dispatch(maskLayerPositivePromptChanged({ layerId, prompt: '' }));
|
||||
}, [dispatch, layerId]);
|
||||
const addNegativePrompt = useCallback(() => {
|
||||
dispatch(maskLayerNegativePromptChanged({ layerId, prompt: '' }));
|
||||
}, [dispatch, layerId]);
|
||||
const addIPAdapter = useCallback(() => {
|
||||
dispatch(guidanceLayerIPAdapterAdded(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
|
||||
return (
|
||||
<Flex w="full" p={2} justifyContent="space-between">
|
||||
<Button
|
||||
size="sm"
|
||||
variant="ghost"
|
||||
leftIcon={<PiPlusBold />}
|
||||
onClick={addPositivePrompt}
|
||||
isDisabled={!validActions.canAddPositivePrompt}
|
||||
>
|
||||
{t('common.positivePrompt')}
|
||||
</Button>
|
||||
<Button
|
||||
size="sm"
|
||||
variant="ghost"
|
||||
leftIcon={<PiPlusBold />}
|
||||
onClick={addNegativePrompt}
|
||||
isDisabled={!validActions.canAddNegativePrompt}
|
||||
>
|
||||
{t('common.negativePrompt')}
|
||||
</Button>
|
||||
<Button size="sm" variant="ghost" leftIcon={<PiPlusBold />} onClick={addIPAdapter}>
|
||||
{t('common.ipAdapter')}
|
||||
</Button>
|
||||
</Flex>
|
||||
);
|
||||
};
|
@ -0,0 +1,63 @@
|
||||
import {
|
||||
CompositeNumberInput,
|
||||
CompositeSlider,
|
||||
FormControl,
|
||||
FormLabel,
|
||||
Popover,
|
||||
PopoverArrow,
|
||||
PopoverBody,
|
||||
PopoverContent,
|
||||
PopoverTrigger,
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { brushSizeChanged, initialControlLayersState } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const marks = [0, 100, 200, 300];
|
||||
const formatPx = (v: number | string) => `${v} px`;
|
||||
|
||||
export const BrushSize = memo(() => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const brushSize = useAppSelector((s) => s.controlLayers.present.brushSize);
|
||||
const onChange = useCallback(
|
||||
(v: number) => {
|
||||
dispatch(brushSizeChanged(Math.round(v)));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
return (
|
||||
<FormControl w="min-content">
|
||||
<FormLabel m={0}>{t('controlLayers.brushSize')}</FormLabel>
|
||||
<Popover isLazy>
|
||||
<PopoverTrigger>
|
||||
<CompositeNumberInput
|
||||
min={1}
|
||||
max={600}
|
||||
defaultValue={initialControlLayersState.brushSize}
|
||||
value={brushSize}
|
||||
onChange={onChange}
|
||||
w={24}
|
||||
format={formatPx}
|
||||
/>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent w={200} py={2} px={4}>
|
||||
<PopoverArrow />
|
||||
<PopoverBody>
|
||||
<CompositeSlider
|
||||
min={1}
|
||||
max={300}
|
||||
defaultValue={initialControlLayersState.brushSize}
|
||||
value={brushSize}
|
||||
onChange={onChange}
|
||||
marks={marks}
|
||||
/>
|
||||
</PopoverBody>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
BrushSize.displayName = 'BrushSize';
|
@ -0,0 +1,71 @@
|
||||
import { Flex, Spacer, useDisclosure } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import CALayerOpacity from 'features/controlLayers/components/CALayerOpacity';
|
||||
import ControlAdapterLayerConfig from 'features/controlLayers/components/controlAdapterOverrides/ControlAdapterLayerConfig';
|
||||
import { LayerDeleteButton } from 'features/controlLayers/components/LayerDeleteButton';
|
||||
import { LayerMenu } from 'features/controlLayers/components/LayerMenu';
|
||||
import { LayerTitle } from 'features/controlLayers/components/LayerTitle';
|
||||
import { LayerVisibilityToggle } from 'features/controlLayers/components/LayerVisibilityToggle';
|
||||
import {
|
||||
isControlAdapterLayer,
|
||||
layerSelected,
|
||||
selectControlLayersSlice,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
export const CALayerListItem = memo(({ layerId }: Props) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const selector = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers.find((l) => l.id === layerId);
|
||||
assert(isControlAdapterLayer(layer), `Layer ${layerId} not found or not a ControlNet layer`);
|
||||
return {
|
||||
controlNetId: layer.controlNetId,
|
||||
isSelected: layerId === controlLayers.present.selectedLayerId,
|
||||
};
|
||||
}),
|
||||
[layerId]
|
||||
);
|
||||
const { controlNetId, isSelected } = useAppSelector(selector);
|
||||
const onClickCapture = useCallback(() => {
|
||||
// Must be capture so that the layer is selected before deleting/resetting/etc
|
||||
dispatch(layerSelected(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen: true });
|
||||
|
||||
return (
|
||||
<Flex
|
||||
gap={2}
|
||||
onClickCapture={onClickCapture}
|
||||
bg={isSelected ? 'base.400' : 'base.800'}
|
||||
px={2}
|
||||
borderRadius="base"
|
||||
py="1px"
|
||||
>
|
||||
<Flex flexDir="column" w="full" bg="base.850" borderRadius="base">
|
||||
<Flex gap={3} alignItems="center" p={3} cursor="pointer" onDoubleClick={onToggle}>
|
||||
<LayerVisibilityToggle layerId={layerId} />
|
||||
<LayerTitle type="control_adapter_layer" />
|
||||
<Spacer />
|
||||
<CALayerOpacity layerId={layerId} />
|
||||
<LayerMenu layerId={layerId} />
|
||||
<LayerDeleteButton layerId={layerId} />
|
||||
</Flex>
|
||||
{isOpen && (
|
||||
<Flex flexDir="column" gap={3} px={3} pb={3}>
|
||||
<ControlAdapterLayerConfig id={controlNetId} />
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
CALayerListItem.displayName = 'CALayerListItem';
|
@ -0,0 +1,98 @@
|
||||
import {
|
||||
CompositeNumberInput,
|
||||
CompositeSlider,
|
||||
Flex,
|
||||
FormControl,
|
||||
FormLabel,
|
||||
IconButton,
|
||||
Popover,
|
||||
PopoverArrow,
|
||||
PopoverBody,
|
||||
PopoverContent,
|
||||
PopoverTrigger,
|
||||
Switch,
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { stopPropagation } from 'common/util/stopPropagation';
|
||||
import { useLayerOpacity } from 'features/controlLayers/hooks/layerStateHooks';
|
||||
import { isFilterEnabledChanged, layerOpacityChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiDropHalfFill } from 'react-icons/pi';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
const marks = [0, 25, 50, 75, 100];
|
||||
const formatPct = (v: number | string) => `${v} %`;
|
||||
|
||||
const CALayerOpacity = ({ layerId }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const { opacity, isFilterEnabled } = useLayerOpacity(layerId);
|
||||
const onChangeOpacity = useCallback(
|
||||
(v: number) => {
|
||||
dispatch(layerOpacityChanged({ layerId, opacity: v / 100 }));
|
||||
},
|
||||
[dispatch, layerId]
|
||||
);
|
||||
const onChangeFilter = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
dispatch(isFilterEnabledChanged({ layerId, isFilterEnabled: e.target.checked }));
|
||||
},
|
||||
[dispatch, layerId]
|
||||
);
|
||||
return (
|
||||
<Popover isLazy>
|
||||
<PopoverTrigger>
|
||||
<IconButton
|
||||
aria-label={t('controlLayers.opacity')}
|
||||
size="sm"
|
||||
icon={<PiDropHalfFill size={16} />}
|
||||
variant="ghost"
|
||||
onDoubleClick={stopPropagation}
|
||||
/>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent>
|
||||
<PopoverArrow />
|
||||
<PopoverBody>
|
||||
<Flex direction="column" gap={2}>
|
||||
<FormControl orientation="horizontal" w="full">
|
||||
<FormLabel m={0} flexGrow={1} cursor="pointer">
|
||||
{t('controlLayers.opacityFilter')}
|
||||
</FormLabel>
|
||||
<Switch isChecked={isFilterEnabled} onChange={onChangeFilter} />
|
||||
</FormControl>
|
||||
<FormControl orientation="horizontal">
|
||||
<FormLabel m={0}>{t('controlLayers.opacity')}</FormLabel>
|
||||
<CompositeSlider
|
||||
min={0}
|
||||
max={100}
|
||||
step={1}
|
||||
value={opacity}
|
||||
defaultValue={100}
|
||||
onChange={onChangeOpacity}
|
||||
marks={marks}
|
||||
w={48}
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
min={0}
|
||||
max={100}
|
||||
step={1}
|
||||
value={opacity}
|
||||
defaultValue={100}
|
||||
onChange={onChangeOpacity}
|
||||
w={24}
|
||||
format={formatPct}
|
||||
/>
|
||||
</FormControl>
|
||||
</Flex>
|
||||
</PopoverBody>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(CALayerOpacity);
|
@ -0,0 +1,24 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import type { Meta, StoryObj } from '@storybook/react';
|
||||
import { ControlLayersEditor } from 'features/controlLayers/components/ControlLayersEditor';
|
||||
|
||||
const meta: Meta<typeof ControlLayersEditor> = {
|
||||
title: 'Feature/ControlLayers',
|
||||
tags: ['autodocs'],
|
||||
component: ControlLayersEditor,
|
||||
};
|
||||
|
||||
export default meta;
|
||||
type Story = StoryObj<typeof ControlLayersEditor>;
|
||||
|
||||
const Component = () => {
|
||||
return (
|
||||
<Flex w={1500} h={1500}>
|
||||
<ControlLayersEditor />
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export const Default: Story = {
|
||||
render: Component,
|
||||
};
|
@ -0,0 +1,24 @@
|
||||
/* eslint-disable i18next/no-literal-string */
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { ControlLayersToolbar } from 'features/controlLayers/components/ControlLayersToolbar';
|
||||
import { StageComponent } from 'features/controlLayers/components/StageComponent';
|
||||
import { memo } from 'react';
|
||||
|
||||
export const ControlLayersEditor = memo(() => {
|
||||
return (
|
||||
<Flex
|
||||
position="relative"
|
||||
flexDirection="column"
|
||||
height="100%"
|
||||
width="100%"
|
||||
rowGap={4}
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
>
|
||||
<ControlLayersToolbar />
|
||||
<StageComponent />
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
ControlLayersEditor.displayName = 'ControlLayersEditor';
|
@ -0,0 +1,59 @@
|
||||
/* eslint-disable i18next/no-literal-string */
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
|
||||
import { AddLayerButton } from 'features/controlLayers/components/AddLayerButton';
|
||||
import { CALayerListItem } from 'features/controlLayers/components/CALayerListItem';
|
||||
import { DeleteAllLayersButton } from 'features/controlLayers/components/DeleteAllLayersButton';
|
||||
import { IPLayerListItem } from 'features/controlLayers/components/IPLayerListItem';
|
||||
import { RGLayerListItem } from 'features/controlLayers/components/RGLayerListItem';
|
||||
import { isRenderableLayer, selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { Layer } from 'features/controlLayers/store/types';
|
||||
import { partition } from 'lodash-es';
|
||||
import { memo } from 'react';
|
||||
|
||||
const selectLayerIdTypePairs = createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const [renderableLayers, ipAdapterLayers] = partition(controlLayers.present.layers, isRenderableLayer);
|
||||
return [...ipAdapterLayers, ...renderableLayers].map((l) => ({ id: l.id, type: l.type })).reverse();
|
||||
});
|
||||
|
||||
export const ControlLayersPanelContent = memo(() => {
|
||||
const layerIdTypePairs = useAppSelector(selectLayerIdTypePairs);
|
||||
return (
|
||||
<Flex flexDir="column" gap={4} w="full" h="full">
|
||||
<Flex justifyContent="space-around">
|
||||
<AddLayerButton />
|
||||
<DeleteAllLayersButton />
|
||||
</Flex>
|
||||
<ScrollableContent>
|
||||
<Flex flexDir="column" gap={4}>
|
||||
{layerIdTypePairs.map(({ id, type }) => (
|
||||
<LayerWrapper key={id} id={id} type={type} />
|
||||
))}
|
||||
</Flex>
|
||||
</ScrollableContent>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
ControlLayersPanelContent.displayName = 'ControlLayersPanelContent';
|
||||
|
||||
type LayerWrapperProps = {
|
||||
id: string;
|
||||
type: Layer['type'];
|
||||
};
|
||||
|
||||
const LayerWrapper = memo(({ id, type }: LayerWrapperProps) => {
|
||||
if (type === 'regional_guidance_layer') {
|
||||
return <RGLayerListItem key={id} layerId={id} />;
|
||||
}
|
||||
if (type === 'control_adapter_layer') {
|
||||
return <CALayerListItem key={id} layerId={id} />;
|
||||
}
|
||||
if (type === 'ip_adapter_layer') {
|
||||
return <IPLayerListItem key={id} layerId={id} />;
|
||||
}
|
||||
});
|
||||
|
||||
LayerWrapper.displayName = 'LayerWrapper';
|
@ -0,0 +1,26 @@
|
||||
import { Flex, IconButton, Popover, PopoverBody, PopoverContent, PopoverTrigger } from '@invoke-ai/ui-library';
|
||||
import { GlobalMaskLayerOpacity } from 'features/controlLayers/components/GlobalMaskLayerOpacity';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { RiSettings4Fill } from 'react-icons/ri';
|
||||
|
||||
const ControlLayersSettingsPopover = () => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<Popover isLazy>
|
||||
<PopoverTrigger>
|
||||
<IconButton aria-label={t('common.settingsLabel')} icon={<RiSettings4Fill />} />
|
||||
</PopoverTrigger>
|
||||
<PopoverContent>
|
||||
<PopoverBody>
|
||||
<Flex direction="column" gap={2}>
|
||||
<GlobalMaskLayerOpacity />
|
||||
</Flex>
|
||||
</PopoverBody>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ControlLayersSettingsPopover);
|
@ -0,0 +1,20 @@
|
||||
/* eslint-disable i18next/no-literal-string */
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { BrushSize } from 'features/controlLayers/components/BrushSize';
|
||||
import ControlLayersSettingsPopover from 'features/controlLayers/components/ControlLayersSettingsPopover';
|
||||
import { ToolChooser } from 'features/controlLayers/components/ToolChooser';
|
||||
import { UndoRedoButtonGroup } from 'features/controlLayers/components/UndoRedoButtonGroup';
|
||||
import { memo } from 'react';
|
||||
|
||||
export const ControlLayersToolbar = memo(() => {
|
||||
return (
|
||||
<Flex gap={4}>
|
||||
<BrushSize />
|
||||
<ToolChooser />
|
||||
<UndoRedoButtonGroup />
|
||||
<ControlLayersSettingsPopover />
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
ControlLayersToolbar.displayName = 'ControlLayersToolbar';
|
@ -0,0 +1,22 @@
|
||||
import { Button } from '@invoke-ai/ui-library';
|
||||
import { allLayersDeleted } from 'app/store/middleware/listenerMiddleware/listeners/controlLayersToControlAdapterBridge';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiTrashSimpleBold } from 'react-icons/pi';
|
||||
|
||||
export const DeleteAllLayersButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const onClick = useCallback(() => {
|
||||
dispatch(allLayersDeleted());
|
||||
}, [dispatch]);
|
||||
|
||||
return (
|
||||
<Button onClick={onClick} leftIcon={<PiTrashSimpleBold />} variant="ghost" colorScheme="error">
|
||||
{t('controlLayers.deleteAll')}
|
||||
</Button>
|
||||
);
|
||||
});
|
||||
|
||||
DeleteAllLayersButton.displayName = 'DeleteAllLayersButton';
|
@ -0,0 +1,54 @@
|
||||
import { CompositeNumberInput, CompositeSlider, Flex, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
globalMaskLayerOpacityChanged,
|
||||
initialControlLayersState,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const marks = [0, 25, 50, 75, 100];
|
||||
const formatPct = (v: number | string) => `${v} %`;
|
||||
|
||||
export const GlobalMaskLayerOpacity = memo(() => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const globalMaskLayerOpacity = useAppSelector((s) =>
|
||||
Math.round(s.controlLayers.present.globalMaskLayerOpacity * 100)
|
||||
);
|
||||
const onChange = useCallback(
|
||||
(v: number) => {
|
||||
dispatch(globalMaskLayerOpacityChanged(v / 100));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
return (
|
||||
<FormControl orientation="vertical">
|
||||
<FormLabel m={0}>{t('controlLayers.globalMaskOpacity')}</FormLabel>
|
||||
<Flex gap={4}>
|
||||
<CompositeSlider
|
||||
min={0}
|
||||
max={100}
|
||||
step={1}
|
||||
value={globalMaskLayerOpacity}
|
||||
defaultValue={initialControlLayersState.globalMaskLayerOpacity * 100}
|
||||
onChange={onChange}
|
||||
marks={marks}
|
||||
minW={48}
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
min={0}
|
||||
max={100}
|
||||
step={1}
|
||||
value={globalMaskLayerOpacity}
|
||||
defaultValue={initialControlLayersState.globalMaskLayerOpacity * 100}
|
||||
onChange={onChange}
|
||||
w={28}
|
||||
format={formatPct}
|
||||
/>
|
||||
</Flex>
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
GlobalMaskLayerOpacity.displayName = 'GlobalMaskLayerOpacity';
|
@ -0,0 +1,47 @@
|
||||
import { Flex, Spacer, useDisclosure } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import ControlAdapterLayerConfig from 'features/controlLayers/components/controlAdapterOverrides/ControlAdapterLayerConfig';
|
||||
import { LayerDeleteButton } from 'features/controlLayers/components/LayerDeleteButton';
|
||||
import { LayerTitle } from 'features/controlLayers/components/LayerTitle';
|
||||
import { LayerVisibilityToggle } from 'features/controlLayers/components/LayerVisibilityToggle';
|
||||
import { isIPAdapterLayer, selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
export const IPLayerListItem = memo(({ layerId }: Props) => {
|
||||
const selector = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers.find((l) => l.id === layerId);
|
||||
assert(isIPAdapterLayer(layer), `Layer ${layerId} not found or not an IP Adapter layer`);
|
||||
return layer.ipAdapterId;
|
||||
}),
|
||||
[layerId]
|
||||
);
|
||||
const ipAdapterId = useAppSelector(selector);
|
||||
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen: true });
|
||||
return (
|
||||
<Flex gap={2} bg="base.800" borderRadius="base" p="1px" px={2}>
|
||||
<Flex flexDir="column" w="full" bg="base.850" borderRadius="base">
|
||||
<Flex gap={3} alignItems="center" p={3} cursor="pointer" onDoubleClick={onToggle}>
|
||||
<LayerVisibilityToggle layerId={layerId} />
|
||||
<LayerTitle type="ip_adapter_layer" />
|
||||
<Spacer />
|
||||
<LayerDeleteButton layerId={layerId} />
|
||||
</Flex>
|
||||
{isOpen && (
|
||||
<Flex flexDir="column" gap={3} px={3} pb={3}>
|
||||
<ControlAdapterLayerConfig id={ipAdapterId} />
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
IPLayerListItem.displayName = 'IPLayerListItem';
|
@ -0,0 +1,30 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { guidanceLayerDeleted } from 'app/store/middleware/listenerMiddleware/listeners/controlLayersToControlAdapterBridge';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { stopPropagation } from 'common/util/stopPropagation';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiTrashSimpleBold } from 'react-icons/pi';
|
||||
|
||||
type Props = { layerId: string };
|
||||
|
||||
export const LayerDeleteButton = memo(({ layerId }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const deleteLayer = useCallback(() => {
|
||||
dispatch(guidanceLayerDeleted(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
return (
|
||||
<IconButton
|
||||
size="sm"
|
||||
colorScheme="error"
|
||||
aria-label={t('common.delete')}
|
||||
tooltip={t('common.delete')}
|
||||
icon={<PiTrashSimpleBold />}
|
||||
onClick={deleteLayer}
|
||||
onDoubleClick={stopPropagation} // double click expands the layer
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
LayerDeleteButton.displayName = 'LayerDeleteButton';
|
@ -0,0 +1,59 @@
|
||||
import { IconButton, Menu, MenuButton, MenuDivider, MenuItem, MenuList } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { stopPropagation } from 'common/util/stopPropagation';
|
||||
import { LayerMenuArrangeActions } from 'features/controlLayers/components/LayerMenuArrangeActions';
|
||||
import { LayerMenuRGActions } from 'features/controlLayers/components/LayerMenuRGActions';
|
||||
import { useLayerType } from 'features/controlLayers/hooks/layerStateHooks';
|
||||
import { layerDeleted, layerReset } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowCounterClockwiseBold, PiDotsThreeVerticalBold, PiTrashSimpleBold } from 'react-icons/pi';
|
||||
|
||||
type Props = { layerId: string };
|
||||
|
||||
export const LayerMenu = memo(({ layerId }: Props) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const layerType = useLayerType(layerId);
|
||||
const resetLayer = useCallback(() => {
|
||||
dispatch(layerReset(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
const deleteLayer = useCallback(() => {
|
||||
dispatch(layerDeleted(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
return (
|
||||
<Menu>
|
||||
<MenuButton
|
||||
as={IconButton}
|
||||
aria-label="Layer menu"
|
||||
size="sm"
|
||||
icon={<PiDotsThreeVerticalBold />}
|
||||
onDoubleClick={stopPropagation} // double click expands the layer
|
||||
/>
|
||||
<MenuList>
|
||||
{layerType === 'regional_guidance_layer' && (
|
||||
<>
|
||||
<LayerMenuRGActions layerId={layerId} />
|
||||
<MenuDivider />
|
||||
</>
|
||||
)}
|
||||
{(layerType === 'regional_guidance_layer' || layerType === 'control_adapter_layer') && (
|
||||
<>
|
||||
<LayerMenuArrangeActions layerId={layerId} />
|
||||
<MenuDivider />
|
||||
</>
|
||||
)}
|
||||
{layerType === 'regional_guidance_layer' && (
|
||||
<MenuItem onClick={resetLayer} icon={<PiArrowCounterClockwiseBold />}>
|
||||
{t('accessibility.reset')}
|
||||
</MenuItem>
|
||||
)}
|
||||
<MenuItem onClick={deleteLayer} icon={<PiTrashSimpleBold />} color="error.300">
|
||||
{t('common.delete')}
|
||||
</MenuItem>
|
||||
</MenuList>
|
||||
</Menu>
|
||||
);
|
||||
});
|
||||
|
||||
LayerMenu.displayName = 'LayerMenu';
|
@ -0,0 +1,69 @@
|
||||
import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
isRenderableLayer,
|
||||
layerMovedBackward,
|
||||
layerMovedForward,
|
||||
layerMovedToBack,
|
||||
layerMovedToFront,
|
||||
selectControlLayersSlice,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowDownBold, PiArrowLineDownBold, PiArrowLineUpBold, PiArrowUpBold } from 'react-icons/pi';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
type Props = { layerId: string };
|
||||
|
||||
export const LayerMenuArrangeActions = memo(({ layerId }: Props) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const selectValidActions = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers.find((l) => l.id === layerId);
|
||||
assert(isRenderableLayer(layer), `Layer ${layerId} not found or not an RP layer`);
|
||||
const layerIndex = controlLayers.present.layers.findIndex((l) => l.id === layerId);
|
||||
const layerCount = controlLayers.present.layers.length;
|
||||
return {
|
||||
canMoveForward: layerIndex < layerCount - 1,
|
||||
canMoveBackward: layerIndex > 0,
|
||||
canMoveToFront: layerIndex < layerCount - 1,
|
||||
canMoveToBack: layerIndex > 0,
|
||||
};
|
||||
}),
|
||||
[layerId]
|
||||
);
|
||||
const validActions = useAppSelector(selectValidActions);
|
||||
const moveForward = useCallback(() => {
|
||||
dispatch(layerMovedForward(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
const moveToFront = useCallback(() => {
|
||||
dispatch(layerMovedToFront(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
const moveBackward = useCallback(() => {
|
||||
dispatch(layerMovedBackward(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
const moveToBack = useCallback(() => {
|
||||
dispatch(layerMovedToBack(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
return (
|
||||
<>
|
||||
<MenuItem onClick={moveToFront} isDisabled={!validActions.canMoveToFront} icon={<PiArrowLineUpBold />}>
|
||||
{t('controlLayers.moveToFront')}
|
||||
</MenuItem>
|
||||
<MenuItem onClick={moveForward} isDisabled={!validActions.canMoveForward} icon={<PiArrowUpBold />}>
|
||||
{t('controlLayers.moveForward')}
|
||||
</MenuItem>
|
||||
<MenuItem onClick={moveBackward} isDisabled={!validActions.canMoveBackward} icon={<PiArrowDownBold />}>
|
||||
{t('controlLayers.moveBackward')}
|
||||
</MenuItem>
|
||||
<MenuItem onClick={moveToBack} isDisabled={!validActions.canMoveToBack} icon={<PiArrowLineDownBold />}>
|
||||
{t('controlLayers.moveToBack')}
|
||||
</MenuItem>
|
||||
</>
|
||||
);
|
||||
});
|
||||
|
||||
LayerMenuArrangeActions.displayName = 'LayerMenuArrangeActions';
|
@ -0,0 +1,58 @@
|
||||
import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { guidanceLayerIPAdapterAdded } from 'app/store/middleware/listenerMiddleware/listeners/controlLayersToControlAdapterBridge';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
isRegionalGuidanceLayer,
|
||||
maskLayerNegativePromptChanged,
|
||||
maskLayerPositivePromptChanged,
|
||||
selectControlLayersSlice,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiPlusBold } from 'react-icons/pi';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
type Props = { layerId: string };
|
||||
|
||||
export const LayerMenuRGActions = memo(({ layerId }: Props) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const selectValidActions = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers.find((l) => l.id === layerId);
|
||||
assert(isRegionalGuidanceLayer(layer), `Layer ${layerId} not found or not an RP layer`);
|
||||
return {
|
||||
canAddPositivePrompt: layer.positivePrompt === null,
|
||||
canAddNegativePrompt: layer.negativePrompt === null,
|
||||
};
|
||||
}),
|
||||
[layerId]
|
||||
);
|
||||
const validActions = useAppSelector(selectValidActions);
|
||||
const addPositivePrompt = useCallback(() => {
|
||||
dispatch(maskLayerPositivePromptChanged({ layerId, prompt: '' }));
|
||||
}, [dispatch, layerId]);
|
||||
const addNegativePrompt = useCallback(() => {
|
||||
dispatch(maskLayerNegativePromptChanged({ layerId, prompt: '' }));
|
||||
}, [dispatch, layerId]);
|
||||
const addIPAdapter = useCallback(() => {
|
||||
dispatch(guidanceLayerIPAdapterAdded(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
return (
|
||||
<>
|
||||
<MenuItem onClick={addPositivePrompt} isDisabled={!validActions.canAddPositivePrompt} icon={<PiPlusBold />}>
|
||||
{t('controlLayers.addPositivePrompt')}
|
||||
</MenuItem>
|
||||
<MenuItem onClick={addNegativePrompt} isDisabled={!validActions.canAddNegativePrompt} icon={<PiPlusBold />}>
|
||||
{t('controlLayers.addNegativePrompt')}
|
||||
</MenuItem>
|
||||
<MenuItem onClick={addIPAdapter} icon={<PiPlusBold />}>
|
||||
{t('controlLayers.addIPAdapter')}
|
||||
</MenuItem>
|
||||
</>
|
||||
);
|
||||
});
|
||||
|
||||
LayerMenuRGActions.displayName = 'LayerMenuRGActions';
|
@ -0,0 +1,29 @@
|
||||
import { Text } from '@invoke-ai/ui-library';
|
||||
import type { Layer } from 'features/controlLayers/store/types';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
type Props = {
|
||||
type: Layer['type'];
|
||||
};
|
||||
|
||||
export const LayerTitle = memo(({ type }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const title = useMemo(() => {
|
||||
if (type === 'regional_guidance_layer') {
|
||||
return t('controlLayers.regionalGuidance');
|
||||
} else if (type === 'control_adapter_layer') {
|
||||
return t('controlLayers.globalControlAdapter');
|
||||
} else if (type === 'ip_adapter_layer') {
|
||||
return t('controlLayers.globalIPAdapter');
|
||||
}
|
||||
}, [t, type]);
|
||||
|
||||
return (
|
||||
<Text size="sm" fontWeight="semibold" userSelect="none" color="base.300">
|
||||
{title}
|
||||
</Text>
|
||||
);
|
||||
});
|
||||
|
||||
LayerTitle.displayName = 'LayerTitle';
|
@ -0,0 +1,36 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { stopPropagation } from 'common/util/stopPropagation';
|
||||
import { useLayerIsVisible } from 'features/controlLayers/hooks/layerStateHooks';
|
||||
import { layerVisibilityToggled } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiCheckBold } from 'react-icons/pi';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
export const LayerVisibilityToggle = memo(({ layerId }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const isVisible = useLayerIsVisible(layerId);
|
||||
const onClick = useCallback(() => {
|
||||
dispatch(layerVisibilityToggled(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
size="sm"
|
||||
aria-label={t('controlLayers.toggleVisibility')}
|
||||
tooltip={t('controlLayers.toggleVisibility')}
|
||||
variant="outline"
|
||||
icon={isVisible ? <PiCheckBold /> : undefined}
|
||||
onClick={onClick}
|
||||
colorScheme="base"
|
||||
onDoubleClick={stopPropagation} // double click expands the layer
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
LayerVisibilityToggle.displayName = 'LayerVisibilityToggle';
|
@ -0,0 +1,51 @@
|
||||
import { Checkbox, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
isRegionalGuidanceLayer,
|
||||
maskLayerAutoNegativeChanged,
|
||||
selectControlLayersSlice,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
const useAutoNegative = (layerId: string) => {
|
||||
const selectAutoNegative = useMemo(
|
||||
() =>
|
||||
createSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers.find((l) => l.id === layerId);
|
||||
assert(isRegionalGuidanceLayer(layer), `Layer ${layerId} not found or not an RP layer`);
|
||||
return layer.autoNegative;
|
||||
}),
|
||||
[layerId]
|
||||
);
|
||||
const autoNegative = useAppSelector(selectAutoNegative);
|
||||
return autoNegative;
|
||||
};
|
||||
|
||||
export const RGLayerAutoNegativeCheckbox = memo(({ layerId }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const autoNegative = useAutoNegative(layerId);
|
||||
const onChange = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
dispatch(maskLayerAutoNegativeChanged({ layerId, autoNegative: e.target.checked ? 'invert' : 'off' }));
|
||||
},
|
||||
[dispatch, layerId]
|
||||
);
|
||||
|
||||
return (
|
||||
<FormControl gap={2}>
|
||||
<FormLabel m={0}>{t('controlLayers.autoNegative')}</FormLabel>
|
||||
<Checkbox size="md" isChecked={autoNegative === 'invert'} onChange={onChange} />
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
RGLayerAutoNegativeCheckbox.displayName = 'RGLayerAutoNegativeCheckbox';
|
@ -0,0 +1,69 @@
|
||||
import { Flex, Popover, PopoverBody, PopoverContent, PopoverTrigger, Tooltip } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import RgbColorPicker from 'common/components/RgbColorPicker';
|
||||
import { stopPropagation } from 'common/util/stopPropagation';
|
||||
import { rgbColorToString } from 'features/canvas/util/colorToString';
|
||||
import {
|
||||
isRegionalGuidanceLayer,
|
||||
maskLayerPreviewColorChanged,
|
||||
selectControlLayersSlice,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import type { RgbColor } from 'react-colorful';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
export const RGLayerColorPicker = memo(({ layerId }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const selectColor = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers.find((l) => l.id === layerId);
|
||||
assert(isRegionalGuidanceLayer(layer), `Layer ${layerId} not found or not an vector mask layer`);
|
||||
return layer.previewColor;
|
||||
}),
|
||||
[layerId]
|
||||
);
|
||||
const color = useAppSelector(selectColor);
|
||||
const dispatch = useAppDispatch();
|
||||
const onColorChange = useCallback(
|
||||
(color: RgbColor) => {
|
||||
dispatch(maskLayerPreviewColorChanged({ layerId, color }));
|
||||
},
|
||||
[dispatch, layerId]
|
||||
);
|
||||
return (
|
||||
<Popover isLazy>
|
||||
<PopoverTrigger>
|
||||
<span>
|
||||
<Tooltip label={t('controlLayers.maskPreviewColor')}>
|
||||
<Flex
|
||||
as="button"
|
||||
aria-label={t('controlLayers.maskPreviewColor')}
|
||||
borderRadius="base"
|
||||
borderWidth={1}
|
||||
bg={rgbColorToString(color)}
|
||||
w={8}
|
||||
h={8}
|
||||
cursor="pointer"
|
||||
tabIndex={-1}
|
||||
onDoubleClick={stopPropagation} // double click expands the layer
|
||||
/>
|
||||
</Tooltip>
|
||||
</span>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent>
|
||||
<PopoverBody minH={64}>
|
||||
<RgbColorPicker color={color} onChange={onColorChange} withNumberInput />
|
||||
</PopoverBody>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
);
|
||||
});
|
||||
|
||||
RGLayerColorPicker.displayName = 'RGLayerColorPicker';
|
@ -0,0 +1,80 @@
|
||||
import { Divider, Flex, IconButton, Spacer, Text } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { guidanceLayerIPAdapterDeleted } from 'app/store/middleware/listenerMiddleware/listeners/controlLayersToControlAdapterBridge';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import ControlAdapterLayerConfig from 'features/controlLayers/components/controlAdapterOverrides/ControlAdapterLayerConfig';
|
||||
import { isRegionalGuidanceLayer, selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { PiTrashSimpleBold } from 'react-icons/pi';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
export const RGLayerIPAdapterList = memo(({ layerId }: Props) => {
|
||||
const selectIPAdapterIds = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers.filter(isRegionalGuidanceLayer).find((l) => l.id === layerId);
|
||||
assert(layer, `Layer ${layerId} not found`);
|
||||
return layer.ipAdapterIds;
|
||||
}),
|
||||
[layerId]
|
||||
);
|
||||
const ipAdapterIds = useAppSelector(selectIPAdapterIds);
|
||||
|
||||
if (ipAdapterIds.length === 0) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<>
|
||||
{ipAdapterIds.map((id, index) => (
|
||||
<Flex flexDir="column" key={id}>
|
||||
{index > 0 && (
|
||||
<Flex pb={3}>
|
||||
<Divider />
|
||||
</Flex>
|
||||
)}
|
||||
<RGLayerIPAdapterListItem layerId={layerId} ipAdapterId={id} ipAdapterNumber={index + 1} />
|
||||
</Flex>
|
||||
))}
|
||||
</>
|
||||
);
|
||||
});
|
||||
|
||||
RGLayerIPAdapterList.displayName = 'RGLayerIPAdapterList';
|
||||
|
||||
type IPAdapterListItemProps = {
|
||||
layerId: string;
|
||||
ipAdapterId: string;
|
||||
ipAdapterNumber: number;
|
||||
};
|
||||
|
||||
const RGLayerIPAdapterListItem = memo(({ layerId, ipAdapterId, ipAdapterNumber }: IPAdapterListItemProps) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const onDeleteIPAdapter = useCallback(() => {
|
||||
dispatch(guidanceLayerIPAdapterDeleted({ layerId, ipAdapterId }));
|
||||
}, [dispatch, ipAdapterId, layerId]);
|
||||
|
||||
return (
|
||||
<Flex flexDir="column" gap={3}>
|
||||
<Flex alignItems="center" gap={3}>
|
||||
<Text fontWeight="semibold" color="base.400">{`IP Adapter ${ipAdapterNumber}`}</Text>
|
||||
<Spacer />
|
||||
<IconButton
|
||||
size="sm"
|
||||
icon={<PiTrashSimpleBold />}
|
||||
aria-label="Delete IP Adapter"
|
||||
onClick={onDeleteIPAdapter}
|
||||
variant="ghost"
|
||||
colorScheme="error"
|
||||
/>
|
||||
</Flex>
|
||||
<ControlAdapterLayerConfig id={ipAdapterId} />
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
RGLayerIPAdapterListItem.displayName = 'RGLayerIPAdapterListItem';
|
@ -0,0 +1,84 @@
|
||||
import { Badge, Flex, Spacer, useDisclosure } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { rgbColorToString } from 'features/canvas/util/colorToString';
|
||||
import { LayerDeleteButton } from 'features/controlLayers/components/LayerDeleteButton';
|
||||
import { LayerMenu } from 'features/controlLayers/components/LayerMenu';
|
||||
import { LayerTitle } from 'features/controlLayers/components/LayerTitle';
|
||||
import { LayerVisibilityToggle } from 'features/controlLayers/components/LayerVisibilityToggle';
|
||||
import { RGLayerColorPicker } from 'features/controlLayers/components/RGLayerColorPicker';
|
||||
import { RGLayerIPAdapterList } from 'features/controlLayers/components/RGLayerIPAdapterList';
|
||||
import { RGLayerNegativePrompt } from 'features/controlLayers/components/RGLayerNegativePrompt';
|
||||
import { RGLayerPositivePrompt } from 'features/controlLayers/components/RGLayerPositivePrompt';
|
||||
import RGLayerSettingsPopover from 'features/controlLayers/components/RGLayerSettingsPopover';
|
||||
import {
|
||||
isRegionalGuidanceLayer,
|
||||
layerSelected,
|
||||
selectControlLayersSlice,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { AddPromptButtons } from './AddPromptButtons';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
export const RGLayerListItem = memo(({ layerId }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const selector = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers.find((l) => l.id === layerId);
|
||||
assert(isRegionalGuidanceLayer(layer), `Layer ${layerId} not found or not an RP layer`);
|
||||
return {
|
||||
color: rgbColorToString(layer.previewColor),
|
||||
hasPositivePrompt: layer.positivePrompt !== null,
|
||||
hasNegativePrompt: layer.negativePrompt !== null,
|
||||
hasIPAdapters: layer.ipAdapterIds.length > 0,
|
||||
isSelected: layerId === controlLayers.present.selectedLayerId,
|
||||
autoNegative: layer.autoNegative,
|
||||
};
|
||||
}),
|
||||
[layerId]
|
||||
);
|
||||
const { autoNegative, color, hasPositivePrompt, hasNegativePrompt, hasIPAdapters, isSelected } =
|
||||
useAppSelector(selector);
|
||||
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen: true });
|
||||
const onClick = useCallback(() => {
|
||||
dispatch(layerSelected(layerId));
|
||||
}, [dispatch, layerId]);
|
||||
return (
|
||||
<Flex gap={2} onClick={onClick} bg={isSelected ? color : 'base.800'} px={2} borderRadius="base" py="1px">
|
||||
<Flex flexDir="column" w="full" bg="base.850" borderRadius="base">
|
||||
<Flex gap={3} alignItems="center" p={3} cursor="pointer" onDoubleClick={onToggle}>
|
||||
<LayerVisibilityToggle layerId={layerId} />
|
||||
<LayerTitle type="regional_guidance_layer" />
|
||||
<Spacer />
|
||||
{autoNegative === 'invert' && (
|
||||
<Badge color="base.300" bg="transparent" borderWidth={1} userSelect="none">
|
||||
{t('controlLayers.autoNegative')}
|
||||
</Badge>
|
||||
)}
|
||||
<RGLayerColorPicker layerId={layerId} />
|
||||
<RGLayerSettingsPopover layerId={layerId} />
|
||||
<LayerMenu layerId={layerId} />
|
||||
<LayerDeleteButton layerId={layerId} />
|
||||
</Flex>
|
||||
{isOpen && (
|
||||
<Flex flexDir="column" gap={3} px={3} pb={3}>
|
||||
{!hasPositivePrompt && !hasNegativePrompt && !hasIPAdapters && <AddPromptButtons layerId={layerId} />}
|
||||
{hasPositivePrompt && <RGLayerPositivePrompt layerId={layerId} />}
|
||||
{hasNegativePrompt && <RGLayerNegativePrompt layerId={layerId} />}
|
||||
{hasIPAdapters && <RGLayerIPAdapterList layerId={layerId} />}
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
RGLayerListItem.displayName = 'RGLayerListItem';
|
@ -0,0 +1,58 @@
|
||||
import { Box, Textarea } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { RGLayerPromptDeleteButton } from 'features/controlLayers/components/RGLayerPromptDeleteButton';
|
||||
import { useLayerNegativePrompt } from 'features/controlLayers/hooks/layerStateHooks';
|
||||
import { maskLayerNegativePromptChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
|
||||
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
|
||||
import { PromptPopover } from 'features/prompt/PromptPopover';
|
||||
import { usePrompt } from 'features/prompt/usePrompt';
|
||||
import { memo, useCallback, useRef } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
export const RGLayerNegativePrompt = memo(({ layerId }: Props) => {
|
||||
const prompt = useLayerNegativePrompt(layerId);
|
||||
const dispatch = useAppDispatch();
|
||||
const textareaRef = useRef<HTMLTextAreaElement>(null);
|
||||
const { t } = useTranslation();
|
||||
const _onChange = useCallback(
|
||||
(v: string) => {
|
||||
dispatch(maskLayerNegativePromptChanged({ layerId, prompt: v }));
|
||||
},
|
||||
[dispatch, layerId]
|
||||
);
|
||||
const { onChange, isOpen, onClose, onOpen, onSelect, onKeyDown } = usePrompt({
|
||||
prompt,
|
||||
textareaRef,
|
||||
onChange: _onChange,
|
||||
});
|
||||
|
||||
return (
|
||||
<PromptPopover isOpen={isOpen} onClose={onClose} onSelect={onSelect} width={textareaRef.current?.clientWidth}>
|
||||
<Box pos="relative" w="full">
|
||||
<Textarea
|
||||
id="prompt"
|
||||
name="prompt"
|
||||
ref={textareaRef}
|
||||
value={prompt}
|
||||
placeholder={t('parameters.negativePromptPlaceholder')}
|
||||
onChange={onChange}
|
||||
onKeyDown={onKeyDown}
|
||||
variant="darkFilled"
|
||||
paddingRight={30}
|
||||
fontSize="sm"
|
||||
/>
|
||||
<PromptOverlayButtonWrapper>
|
||||
<RGLayerPromptDeleteButton layerId={layerId} polarity="negative" />
|
||||
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
|
||||
</PromptOverlayButtonWrapper>
|
||||
</Box>
|
||||
</PromptPopover>
|
||||
);
|
||||
});
|
||||
|
||||
RGLayerNegativePrompt.displayName = 'RGLayerNegativePrompt';
|
@ -0,0 +1,58 @@
|
||||
import { Box, Textarea } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { RGLayerPromptDeleteButton } from 'features/controlLayers/components/RGLayerPromptDeleteButton';
|
||||
import { useLayerPositivePrompt } from 'features/controlLayers/hooks/layerStateHooks';
|
||||
import { maskLayerPositivePromptChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
|
||||
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
|
||||
import { PromptPopover } from 'features/prompt/PromptPopover';
|
||||
import { usePrompt } from 'features/prompt/usePrompt';
|
||||
import { memo, useCallback, useRef } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
export const RGLayerPositivePrompt = memo(({ layerId }: Props) => {
|
||||
const prompt = useLayerPositivePrompt(layerId);
|
||||
const dispatch = useAppDispatch();
|
||||
const textareaRef = useRef<HTMLTextAreaElement>(null);
|
||||
const { t } = useTranslation();
|
||||
const _onChange = useCallback(
|
||||
(v: string) => {
|
||||
dispatch(maskLayerPositivePromptChanged({ layerId, prompt: v }));
|
||||
},
|
||||
[dispatch, layerId]
|
||||
);
|
||||
const { onChange, isOpen, onClose, onOpen, onSelect, onKeyDown } = usePrompt({
|
||||
prompt,
|
||||
textareaRef,
|
||||
onChange: _onChange,
|
||||
});
|
||||
|
||||
return (
|
||||
<PromptPopover isOpen={isOpen} onClose={onClose} onSelect={onSelect} width={textareaRef.current?.clientWidth}>
|
||||
<Box pos="relative" w="full">
|
||||
<Textarea
|
||||
id="prompt"
|
||||
name="prompt"
|
||||
ref={textareaRef}
|
||||
value={prompt}
|
||||
placeholder={t('parameters.positivePromptPlaceholder')}
|
||||
onChange={onChange}
|
||||
onKeyDown={onKeyDown}
|
||||
variant="darkFilled"
|
||||
paddingRight={30}
|
||||
minH={28}
|
||||
/>
|
||||
<PromptOverlayButtonWrapper>
|
||||
<RGLayerPromptDeleteButton layerId={layerId} polarity="positive" />
|
||||
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
|
||||
</PromptOverlayButtonWrapper>
|
||||
</Box>
|
||||
</PromptPopover>
|
||||
);
|
||||
});
|
||||
|
||||
RGLayerPositivePrompt.displayName = 'RGLayerPositivePrompt';
|
@ -0,0 +1,38 @@
|
||||
import { IconButton, Tooltip } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import {
|
||||
maskLayerNegativePromptChanged,
|
||||
maskLayerPositivePromptChanged,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiTrashSimpleBold } from 'react-icons/pi';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
polarity: 'positive' | 'negative';
|
||||
};
|
||||
|
||||
export const RGLayerPromptDeleteButton = memo(({ layerId, polarity }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const onClick = useCallback(() => {
|
||||
if (polarity === 'positive') {
|
||||
dispatch(maskLayerPositivePromptChanged({ layerId, prompt: null }));
|
||||
} else {
|
||||
dispatch(maskLayerNegativePromptChanged({ layerId, prompt: null }));
|
||||
}
|
||||
}, [dispatch, layerId, polarity]);
|
||||
return (
|
||||
<Tooltip label={t('controlLayers.deletePrompt')}>
|
||||
<IconButton
|
||||
variant="promptOverlay"
|
||||
aria-label={t('controlLayers.deletePrompt')}
|
||||
icon={<PiTrashSimpleBold />}
|
||||
onClick={onClick}
|
||||
/>
|
||||
</Tooltip>
|
||||
);
|
||||
});
|
||||
|
||||
RGLayerPromptDeleteButton.displayName = 'RGLayerPromptDeleteButton';
|
@ -0,0 +1,55 @@
|
||||
import type { FormLabelProps } from '@invoke-ai/ui-library';
|
||||
import {
|
||||
Flex,
|
||||
FormControlGroup,
|
||||
IconButton,
|
||||
Popover,
|
||||
PopoverArrow,
|
||||
PopoverBody,
|
||||
PopoverContent,
|
||||
PopoverTrigger,
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { stopPropagation } from 'common/util/stopPropagation';
|
||||
import { RGLayerAutoNegativeCheckbox } from 'features/controlLayers/components/RGLayerAutoNegativeCheckbox';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiGearSixBold } from 'react-icons/pi';
|
||||
|
||||
type Props = {
|
||||
layerId: string;
|
||||
};
|
||||
|
||||
const formLabelProps: FormLabelProps = {
|
||||
flexGrow: 1,
|
||||
minW: 32,
|
||||
};
|
||||
|
||||
const RGLayerSettingsPopover = ({ layerId }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<Popover isLazy>
|
||||
<PopoverTrigger>
|
||||
<IconButton
|
||||
tooltip={t('common.settingsLabel')}
|
||||
aria-label={t('common.settingsLabel')}
|
||||
size="sm"
|
||||
icon={<PiGearSixBold />}
|
||||
onDoubleClick={stopPropagation} // double click expands the layer
|
||||
/>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent>
|
||||
<PopoverArrow />
|
||||
<PopoverBody>
|
||||
<Flex direction="column" gap={2}>
|
||||
<FormControlGroup formLabelProps={formLabelProps}>
|
||||
<RGLayerAutoNegativeCheckbox layerId={layerId} />
|
||||
</FormControlGroup>
|
||||
</Flex>
|
||||
</PopoverBody>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(RGLayerSettingsPopover);
|
@ -0,0 +1,248 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useMouseEvents } from 'features/controlLayers/hooks/mouseEventHooks';
|
||||
import {
|
||||
$cursorPosition,
|
||||
$isMouseOver,
|
||||
$lastMouseDownPos,
|
||||
$tool,
|
||||
isRegionalGuidanceLayer,
|
||||
layerBboxChanged,
|
||||
layerTranslated,
|
||||
selectControlLayersSlice,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { debouncedRenderers, renderers as normalRenderers } from 'features/controlLayers/util/renderers';
|
||||
import Konva from 'konva';
|
||||
import type { IRect } from 'konva/lib/types';
|
||||
import { memo, useCallback, useLayoutEffect, useMemo, useState } from 'react';
|
||||
import { useDevicePixelRatio } from 'use-device-pixel-ratio';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
|
||||
// This will log warnings when layers > 5 - maybe use `import.meta.env.MODE === 'development'` instead?
|
||||
Konva.showWarnings = false;
|
||||
|
||||
const log = logger('controlLayers');
|
||||
|
||||
const selectSelectedLayerColor = createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const layer = controlLayers.present.layers
|
||||
.filter(isRegionalGuidanceLayer)
|
||||
.find((l) => l.id === controlLayers.present.selectedLayerId);
|
||||
return layer?.previewColor ?? null;
|
||||
});
|
||||
|
||||
const selectSelectedLayerType = createSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const selectedLayer = controlLayers.present.layers.find((l) => l.id === controlLayers.present.selectedLayerId);
|
||||
return selectedLayer?.type ?? null;
|
||||
});
|
||||
|
||||
const useStageRenderer = (
|
||||
stage: Konva.Stage,
|
||||
container: HTMLDivElement | null,
|
||||
wrapper: HTMLDivElement | null,
|
||||
asPreview: boolean
|
||||
) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const state = useAppSelector((s) => s.controlLayers.present);
|
||||
const tool = useStore($tool);
|
||||
const { onMouseDown, onMouseUp, onMouseMove, onMouseEnter, onMouseLeave, onMouseWheel } = useMouseEvents();
|
||||
const cursorPosition = useStore($cursorPosition);
|
||||
const lastMouseDownPos = useStore($lastMouseDownPos);
|
||||
const isMouseOver = useStore($isMouseOver);
|
||||
const selectedLayerIdColor = useAppSelector(selectSelectedLayerColor);
|
||||
const selectedLayerType = useAppSelector(selectSelectedLayerType);
|
||||
const layerIds = useMemo(() => state.layers.map((l) => l.id), [state.layers]);
|
||||
const layerCount = useMemo(() => state.layers.length, [state.layers]);
|
||||
const renderers = useMemo(() => (asPreview ? debouncedRenderers : normalRenderers), [asPreview]);
|
||||
const dpr = useDevicePixelRatio({ round: false });
|
||||
|
||||
const onLayerPosChanged = useCallback(
|
||||
(layerId: string, x: number, y: number) => {
|
||||
dispatch(layerTranslated({ layerId, x, y }));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const onBboxChanged = useCallback(
|
||||
(layerId: string, bbox: IRect | null) => {
|
||||
dispatch(layerBboxChanged({ layerId, bbox }));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Initializing stage');
|
||||
if (!container) {
|
||||
return;
|
||||
}
|
||||
stage.container(container);
|
||||
return () => {
|
||||
log.trace('Cleaning up stage');
|
||||
stage.destroy();
|
||||
};
|
||||
}, [container, stage]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Adding stage listeners');
|
||||
if (asPreview) {
|
||||
return;
|
||||
}
|
||||
stage.on('mousedown', onMouseDown);
|
||||
stage.on('mouseup', onMouseUp);
|
||||
stage.on('mousemove', onMouseMove);
|
||||
stage.on('mouseenter', onMouseEnter);
|
||||
stage.on('mouseleave', onMouseLeave);
|
||||
stage.on('wheel', onMouseWheel);
|
||||
|
||||
return () => {
|
||||
log.trace('Cleaning up stage listeners');
|
||||
stage.off('mousedown', onMouseDown);
|
||||
stage.off('mouseup', onMouseUp);
|
||||
stage.off('mousemove', onMouseMove);
|
||||
stage.off('mouseenter', onMouseEnter);
|
||||
stage.off('mouseleave', onMouseLeave);
|
||||
stage.off('wheel', onMouseWheel);
|
||||
};
|
||||
}, [stage, asPreview, onMouseDown, onMouseUp, onMouseMove, onMouseEnter, onMouseLeave, onMouseWheel]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Updating stage dimensions');
|
||||
if (!wrapper) {
|
||||
return;
|
||||
}
|
||||
|
||||
const fitStageToContainer = () => {
|
||||
const newXScale = wrapper.offsetWidth / state.size.width;
|
||||
const newYScale = wrapper.offsetHeight / state.size.height;
|
||||
const newScale = Math.min(newXScale, newYScale, 1);
|
||||
stage.width(state.size.width * newScale);
|
||||
stage.height(state.size.height * newScale);
|
||||
stage.scaleX(newScale);
|
||||
stage.scaleY(newScale);
|
||||
};
|
||||
|
||||
const resizeObserver = new ResizeObserver(fitStageToContainer);
|
||||
resizeObserver.observe(wrapper);
|
||||
fitStageToContainer();
|
||||
|
||||
return () => {
|
||||
resizeObserver.disconnect();
|
||||
};
|
||||
}, [stage, state.size.width, state.size.height, wrapper]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Rendering tool preview');
|
||||
if (asPreview) {
|
||||
// Preview should not display tool
|
||||
return;
|
||||
}
|
||||
renderers.renderToolPreview(
|
||||
stage,
|
||||
tool,
|
||||
selectedLayerIdColor,
|
||||
selectedLayerType,
|
||||
state.globalMaskLayerOpacity,
|
||||
cursorPosition,
|
||||
lastMouseDownPos,
|
||||
isMouseOver,
|
||||
state.brushSize
|
||||
);
|
||||
}, [
|
||||
asPreview,
|
||||
stage,
|
||||
tool,
|
||||
selectedLayerIdColor,
|
||||
selectedLayerType,
|
||||
state.globalMaskLayerOpacity,
|
||||
cursorPosition,
|
||||
lastMouseDownPos,
|
||||
isMouseOver,
|
||||
state.brushSize,
|
||||
renderers,
|
||||
]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Rendering layers');
|
||||
renderers.renderLayers(stage, state.layers, state.globalMaskLayerOpacity, tool, onLayerPosChanged);
|
||||
}, [
|
||||
stage,
|
||||
state.layers,
|
||||
state.globalMaskLayerOpacity,
|
||||
tool,
|
||||
onLayerPosChanged,
|
||||
renderers,
|
||||
state.size.width,
|
||||
state.size.height,
|
||||
]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Rendering bbox');
|
||||
if (asPreview) {
|
||||
// Preview should not display bboxes
|
||||
return;
|
||||
}
|
||||
renderers.renderBbox(stage, state.layers, tool, onBboxChanged);
|
||||
}, [stage, asPreview, state.layers, tool, onBboxChanged, renderers]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Rendering background');
|
||||
if (asPreview) {
|
||||
// The preview should not have a background
|
||||
return;
|
||||
}
|
||||
renderers.renderBackground(stage, state.size.width, state.size.height);
|
||||
}, [stage, asPreview, state.size.width, state.size.height, renderers]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Arranging layers');
|
||||
renderers.arrangeLayers(stage, layerIds);
|
||||
}, [stage, layerIds, renderers]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Rendering no layers message');
|
||||
if (asPreview) {
|
||||
// The preview should not display the no layers message
|
||||
return;
|
||||
}
|
||||
renderers.renderNoLayersMessage(stage, layerCount, state.size.width, state.size.height);
|
||||
}, [stage, layerCount, renderers, asPreview, state.size.width, state.size.height]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
Konva.pixelRatio = dpr;
|
||||
}, [dpr]);
|
||||
};
|
||||
|
||||
type Props = {
|
||||
asPreview?: boolean;
|
||||
};
|
||||
|
||||
export const StageComponent = memo(({ asPreview = false }: Props) => {
|
||||
const [stage] = useState(
|
||||
() => new Konva.Stage({ id: uuidv4(), container: document.createElement('div'), listening: !asPreview })
|
||||
);
|
||||
const [container, setContainer] = useState<HTMLDivElement | null>(null);
|
||||
const [wrapper, setWrapper] = useState<HTMLDivElement | null>(null);
|
||||
|
||||
const containerRef = useCallback((el: HTMLDivElement | null) => {
|
||||
setContainer(el);
|
||||
}, []);
|
||||
|
||||
const wrapperRef = useCallback((el: HTMLDivElement | null) => {
|
||||
setWrapper(el);
|
||||
}, []);
|
||||
|
||||
useStageRenderer(stage, container, wrapper, asPreview);
|
||||
|
||||
return (
|
||||
<Flex overflow="hidden" w="full" h="full">
|
||||
<Flex ref={wrapperRef} w="full" h="full" alignItems="center" justifyContent="center">
|
||||
<Flex ref={containerRef} tabIndex={-1} bg="base.850" borderRadius="base" overflow="hidden" />
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
StageComponent.displayName = 'StageComponent';
|
@ -0,0 +1,90 @@
|
||||
import { ButtonGroup, IconButton } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
$tool,
|
||||
selectControlLayersSlice,
|
||||
selectedLayerDeleted,
|
||||
selectedLayerReset,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { useCallback } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowsOutCardinalBold, PiEraserBold, PiPaintBrushBold, PiRectangleBold } from 'react-icons/pi';
|
||||
|
||||
const selectIsDisabled = createSelector(selectControlLayersSlice, (controlLayers) => {
|
||||
const selectedLayer = controlLayers.present.layers.find((l) => l.id === controlLayers.present.selectedLayerId);
|
||||
return selectedLayer?.type !== 'regional_guidance_layer';
|
||||
});
|
||||
|
||||
export const ToolChooser: React.FC = () => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const isDisabled = useAppSelector(selectIsDisabled);
|
||||
const tool = useStore($tool);
|
||||
|
||||
const setToolToBrush = useCallback(() => {
|
||||
$tool.set('brush');
|
||||
}, []);
|
||||
useHotkeys('b', setToolToBrush, { enabled: !isDisabled }, [isDisabled]);
|
||||
const setToolToEraser = useCallback(() => {
|
||||
$tool.set('eraser');
|
||||
}, []);
|
||||
useHotkeys('e', setToolToEraser, { enabled: !isDisabled }, [isDisabled]);
|
||||
const setToolToRect = useCallback(() => {
|
||||
$tool.set('rect');
|
||||
}, []);
|
||||
useHotkeys('u', setToolToRect, { enabled: !isDisabled }, [isDisabled]);
|
||||
const setToolToMove = useCallback(() => {
|
||||
$tool.set('move');
|
||||
}, []);
|
||||
useHotkeys('v', setToolToMove, { enabled: !isDisabled }, [isDisabled]);
|
||||
|
||||
const resetSelectedLayer = useCallback(() => {
|
||||
dispatch(selectedLayerReset());
|
||||
}, [dispatch]);
|
||||
useHotkeys('shift+c', resetSelectedLayer);
|
||||
|
||||
const deleteSelectedLayer = useCallback(() => {
|
||||
dispatch(selectedLayerDeleted());
|
||||
}, [dispatch]);
|
||||
useHotkeys('shift+d', deleteSelectedLayer);
|
||||
|
||||
return (
|
||||
<ButtonGroup isAttached>
|
||||
<IconButton
|
||||
aria-label={`${t('unifiedCanvas.brush')} (B)`}
|
||||
tooltip={`${t('unifiedCanvas.brush')} (B)`}
|
||||
icon={<PiPaintBrushBold />}
|
||||
variant={tool === 'brush' ? 'solid' : 'outline'}
|
||||
onClick={setToolToBrush}
|
||||
isDisabled={isDisabled}
|
||||
/>
|
||||
<IconButton
|
||||
aria-label={`${t('unifiedCanvas.eraser')} (E)`}
|
||||
tooltip={`${t('unifiedCanvas.eraser')} (E)`}
|
||||
icon={<PiEraserBold />}
|
||||
variant={tool === 'eraser' ? 'solid' : 'outline'}
|
||||
onClick={setToolToEraser}
|
||||
isDisabled={isDisabled}
|
||||
/>
|
||||
<IconButton
|
||||
aria-label={`${t('controlLayers.rectangle')} (U)`}
|
||||
tooltip={`${t('controlLayers.rectangle')} (U)`}
|
||||
icon={<PiRectangleBold />}
|
||||
variant={tool === 'rect' ? 'solid' : 'outline'}
|
||||
onClick={setToolToRect}
|
||||
isDisabled={isDisabled}
|
||||
/>
|
||||
<IconButton
|
||||
aria-label={`${t('unifiedCanvas.move')} (V)`}
|
||||
tooltip={`${t('unifiedCanvas.move')} (V)`}
|
||||
icon={<PiArrowsOutCardinalBold />}
|
||||
variant={tool === 'move' ? 'solid' : 'outline'}
|
||||
onClick={setToolToMove}
|
||||
isDisabled={isDisabled}
|
||||
/>
|
||||
</ButtonGroup>
|
||||
);
|
||||
};
|
@ -0,0 +1,49 @@
|
||||
/* eslint-disable i18next/no-literal-string */
|
||||
import { ButtonGroup, IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { redo, undo } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowClockwiseBold, PiArrowCounterClockwiseBold } from 'react-icons/pi';
|
||||
|
||||
export const UndoRedoButtonGroup = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const mayUndo = useAppSelector((s) => s.controlLayers.past.length > 0);
|
||||
const handleUndo = useCallback(() => {
|
||||
dispatch(undo());
|
||||
}, [dispatch]);
|
||||
useHotkeys(['meta+z', 'ctrl+z'], handleUndo, { enabled: mayUndo, preventDefault: true }, [mayUndo, handleUndo]);
|
||||
|
||||
const mayRedo = useAppSelector((s) => s.controlLayers.future.length > 0);
|
||||
const handleRedo = useCallback(() => {
|
||||
dispatch(redo());
|
||||
}, [dispatch]);
|
||||
useHotkeys(['meta+shift+z', 'ctrl+shift+z'], handleRedo, { enabled: mayRedo, preventDefault: true }, [
|
||||
mayRedo,
|
||||
handleRedo,
|
||||
]);
|
||||
|
||||
return (
|
||||
<ButtonGroup>
|
||||
<IconButton
|
||||
aria-label={t('unifiedCanvas.undo')}
|
||||
tooltip={t('unifiedCanvas.undo')}
|
||||
onClick={handleUndo}
|
||||
icon={<PiArrowCounterClockwiseBold />}
|
||||
isDisabled={!mayUndo}
|
||||
/>
|
||||
<IconButton
|
||||
aria-label={t('unifiedCanvas.redo')}
|
||||
tooltip={t('unifiedCanvas.redo')}
|
||||
onClick={handleRedo}
|
||||
icon={<PiArrowClockwiseBold />}
|
||||
isDisabled={!mayRedo}
|
||||
/>
|
||||
</ButtonGroup>
|
||||
);
|
||||
});
|
||||
|
||||
UndoRedoButtonGroup.displayName = 'UndoRedoButtonGroup';
|
@ -0,0 +1,237 @@
|
||||
import type { SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import { Box, Flex, Spinner, useShiftModifier } from '@invoke-ai/ui-library';
|
||||
import { skipToken } from '@reduxjs/toolkit/query';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIDndImage from 'common/components/IAIDndImage';
|
||||
import IAIDndImageIcon from 'common/components/IAIDndImageIcon';
|
||||
import { setBoundingBoxDimensions } from 'features/canvas/store/canvasSlice';
|
||||
import { useControlAdapterControlImage } from 'features/controlAdapters/hooks/useControlAdapterControlImage';
|
||||
import { useControlAdapterProcessedControlImage } from 'features/controlAdapters/hooks/useControlAdapterProcessedControlImage';
|
||||
import { useControlAdapterProcessorType } from 'features/controlAdapters/hooks/useControlAdapterProcessorType';
|
||||
import {
|
||||
controlAdapterImageChanged,
|
||||
selectControlAdaptersSlice,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
|
||||
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
|
||||
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { memo, useCallback, useEffect, useMemo, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowCounterClockwiseBold, PiFloppyDiskBold, PiRulerBold } from 'react-icons/pi';
|
||||
import {
|
||||
useAddImageToBoardMutation,
|
||||
useChangeImageIsIntermediateMutation,
|
||||
useGetImageDTOQuery,
|
||||
useRemoveImageFromBoardMutation,
|
||||
} from 'services/api/endpoints/images';
|
||||
import type { PostUploadAction } from 'services/api/types';
|
||||
|
||||
type Props = {
|
||||
id: string;
|
||||
isSmall?: boolean;
|
||||
};
|
||||
|
||||
const selectPendingControlImages = createMemoizedSelector(
|
||||
selectControlAdaptersSlice,
|
||||
(controlAdapters) => controlAdapters.pendingControlImages
|
||||
);
|
||||
|
||||
const ControlAdapterImagePreview = ({ isSmall, id }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const controlImageName = useControlAdapterControlImage(id);
|
||||
const processedControlImageName = useControlAdapterProcessedControlImage(id);
|
||||
const processorType = useControlAdapterProcessorType(id);
|
||||
const autoAddBoardId = useAppSelector((s) => s.gallery.autoAddBoardId);
|
||||
const isConnected = useAppSelector((s) => s.system.isConnected);
|
||||
const activeTabName = useAppSelector(activeTabNameSelector);
|
||||
const optimalDimension = useAppSelector(selectOptimalDimension);
|
||||
const pendingControlImages = useAppSelector(selectPendingControlImages);
|
||||
const shift = useShiftModifier();
|
||||
|
||||
const [isMouseOverImage, setIsMouseOverImage] = useState(false);
|
||||
|
||||
const { currentData: controlImage, isError: isErrorControlImage } = useGetImageDTOQuery(
|
||||
controlImageName ?? skipToken
|
||||
);
|
||||
|
||||
const { currentData: processedControlImage, isError: isErrorProcessedControlImage } = useGetImageDTOQuery(
|
||||
processedControlImageName ?? skipToken
|
||||
);
|
||||
|
||||
const [changeIsIntermediate] = useChangeImageIsIntermediateMutation();
|
||||
const [addToBoard] = useAddImageToBoardMutation();
|
||||
const [removeFromBoard] = useRemoveImageFromBoardMutation();
|
||||
const handleResetControlImage = useCallback(() => {
|
||||
dispatch(controlAdapterImageChanged({ id, controlImage: null }));
|
||||
}, [id, dispatch]);
|
||||
|
||||
const handleSaveControlImage = useCallback(async () => {
|
||||
if (!processedControlImage) {
|
||||
return;
|
||||
}
|
||||
|
||||
await changeIsIntermediate({
|
||||
imageDTO: processedControlImage,
|
||||
is_intermediate: false,
|
||||
}).unwrap();
|
||||
|
||||
if (autoAddBoardId !== 'none') {
|
||||
addToBoard({
|
||||
imageDTO: processedControlImage,
|
||||
board_id: autoAddBoardId,
|
||||
});
|
||||
} else {
|
||||
removeFromBoard({ imageDTO: processedControlImage });
|
||||
}
|
||||
}, [processedControlImage, changeIsIntermediate, autoAddBoardId, addToBoard, removeFromBoard]);
|
||||
|
||||
const handleSetControlImageToDimensions = useCallback(() => {
|
||||
if (!controlImage) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (activeTabName === 'unifiedCanvas') {
|
||||
dispatch(setBoundingBoxDimensions({ width: controlImage.width, height: controlImage.height }, optimalDimension));
|
||||
} else {
|
||||
if (shift) {
|
||||
const { width, height } = controlImage;
|
||||
dispatch(widthChanged({ width, updateAspectRatio: true }));
|
||||
dispatch(heightChanged({ height, updateAspectRatio: true }));
|
||||
} else {
|
||||
const { width, height } = calculateNewSize(
|
||||
controlImage.width / controlImage.height,
|
||||
optimalDimension * optimalDimension
|
||||
);
|
||||
dispatch(widthChanged({ width, updateAspectRatio: true }));
|
||||
dispatch(heightChanged({ height, updateAspectRatio: true }));
|
||||
}
|
||||
}
|
||||
}, [controlImage, activeTabName, dispatch, optimalDimension, shift]);
|
||||
|
||||
const handleMouseEnter = useCallback(() => {
|
||||
setIsMouseOverImage(true);
|
||||
}, []);
|
||||
|
||||
const handleMouseLeave = useCallback(() => {
|
||||
setIsMouseOverImage(false);
|
||||
}, []);
|
||||
|
||||
const draggableData = useMemo<TypesafeDraggableData | undefined>(() => {
|
||||
if (controlImage) {
|
||||
return {
|
||||
id,
|
||||
payloadType: 'IMAGE_DTO',
|
||||
payload: { imageDTO: controlImage },
|
||||
};
|
||||
}
|
||||
}, [controlImage, id]);
|
||||
|
||||
const droppableData = useMemo<TypesafeDroppableData | undefined>(
|
||||
() => ({
|
||||
id,
|
||||
actionType: 'SET_CONTROL_ADAPTER_IMAGE',
|
||||
context: { id },
|
||||
}),
|
||||
[id]
|
||||
);
|
||||
|
||||
const postUploadAction = useMemo<PostUploadAction>(() => ({ type: 'SET_CONTROL_ADAPTER_IMAGE', id }), [id]);
|
||||
|
||||
const shouldShowProcessedImage =
|
||||
controlImage &&
|
||||
processedControlImage &&
|
||||
!isMouseOverImage &&
|
||||
!pendingControlImages.includes(id) &&
|
||||
processorType !== 'none';
|
||||
|
||||
useEffect(() => {
|
||||
if (isConnected && (isErrorControlImage || isErrorProcessedControlImage)) {
|
||||
handleResetControlImage();
|
||||
}
|
||||
}, [handleResetControlImage, isConnected, isErrorControlImage, isErrorProcessedControlImage]);
|
||||
|
||||
return (
|
||||
<Flex
|
||||
onMouseEnter={handleMouseEnter}
|
||||
onMouseLeave={handleMouseLeave}
|
||||
position="relative"
|
||||
w="full"
|
||||
h={isSmall ? 36 : 366} // magic no touch
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
>
|
||||
<IAIDndImage
|
||||
draggableData={draggableData}
|
||||
droppableData={droppableData}
|
||||
imageDTO={controlImage}
|
||||
isDropDisabled={shouldShowProcessedImage}
|
||||
postUploadAction={postUploadAction}
|
||||
/>
|
||||
|
||||
<Box
|
||||
position="absolute"
|
||||
top={0}
|
||||
insetInlineStart={0}
|
||||
w="full"
|
||||
h="full"
|
||||
opacity={shouldShowProcessedImage ? 1 : 0}
|
||||
transitionProperty="common"
|
||||
transitionDuration="normal"
|
||||
pointerEvents="none"
|
||||
>
|
||||
<IAIDndImage
|
||||
draggableData={draggableData}
|
||||
droppableData={droppableData}
|
||||
imageDTO={processedControlImage}
|
||||
isUploadDisabled={true}
|
||||
/>
|
||||
</Box>
|
||||
|
||||
<>
|
||||
<IAIDndImageIcon
|
||||
onClick={handleResetControlImage}
|
||||
icon={controlImage ? <PiArrowCounterClockwiseBold size={16} /> : undefined}
|
||||
tooltip={t('controlnet.resetControlImage')}
|
||||
/>
|
||||
<IAIDndImageIcon
|
||||
onClick={handleSaveControlImage}
|
||||
icon={controlImage ? <PiFloppyDiskBold size={16} /> : undefined}
|
||||
tooltip={t('controlnet.saveControlImage')}
|
||||
styleOverrides={saveControlImageStyleOverrides}
|
||||
/>
|
||||
<IAIDndImageIcon
|
||||
onClick={handleSetControlImageToDimensions}
|
||||
icon={controlImage ? <PiRulerBold size={16} /> : undefined}
|
||||
tooltip={shift ? t('controlnet.setControlImageDimensionsForce') : t('controlnet.setControlImageDimensions')}
|
||||
styleOverrides={setControlImageDimensionsStyleOverrides}
|
||||
/>
|
||||
</>
|
||||
|
||||
{pendingControlImages.includes(id) && (
|
||||
<Flex
|
||||
position="absolute"
|
||||
top={0}
|
||||
insetInlineStart={0}
|
||||
w="full"
|
||||
h="full"
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
opacity={0.8}
|
||||
borderRadius="base"
|
||||
bg="base.900"
|
||||
>
|
||||
<Spinner size="xl" color="base.400" />
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ControlAdapterImagePreview);
|
||||
|
||||
const saveControlImageStyleOverrides: SystemStyleObject = { mt: 6 };
|
||||
const setControlImageDimensionsStyleOverrides: SystemStyleObject = { mt: 12 };
|
@ -0,0 +1,72 @@
|
||||
import { Box, Flex, Icon, IconButton } from '@invoke-ai/ui-library';
|
||||
import ControlAdapterProcessorComponent from 'features/controlAdapters/components/ControlAdapterProcessorComponent';
|
||||
import ControlAdapterShouldAutoConfig from 'features/controlAdapters/components/ControlAdapterShouldAutoConfig';
|
||||
import ParamControlAdapterIPMethod from 'features/controlAdapters/components/parameters/ParamControlAdapterIPMethod';
|
||||
import ParamControlAdapterProcessorSelect from 'features/controlAdapters/components/parameters/ParamControlAdapterProcessorSelect';
|
||||
import { useControlAdapterType } from 'features/controlAdapters/hooks/useControlAdapterType';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiCaretUpBold } from 'react-icons/pi';
|
||||
import { useToggle } from 'react-use';
|
||||
|
||||
import ControlAdapterImagePreview from './ControlAdapterImagePreview';
|
||||
import { ParamControlAdapterBeginEnd } from './ParamControlAdapterBeginEnd';
|
||||
import ParamControlAdapterControlMode from './ParamControlAdapterControlMode';
|
||||
import ParamControlAdapterModel from './ParamControlAdapterModel';
|
||||
import ParamControlAdapterWeight from './ParamControlAdapterWeight';
|
||||
|
||||
const ControlAdapterLayerConfig = (props: { id: string }) => {
|
||||
const { id } = props;
|
||||
const controlAdapterType = useControlAdapterType(id);
|
||||
const { t } = useTranslation();
|
||||
const [isExpanded, toggleIsExpanded] = useToggle(false);
|
||||
|
||||
return (
|
||||
<Flex flexDir="column" gap={4} position="relative" w="full">
|
||||
<Flex gap={3} alignItems="center" w="full">
|
||||
<Box minW={0} w="full" transitionProperty="common" transitionDuration="0.1s">
|
||||
<ParamControlAdapterModel id={id} />{' '}
|
||||
</Box>
|
||||
|
||||
{controlAdapterType !== 'ip_adapter' && (
|
||||
<IconButton
|
||||
size="sm"
|
||||
tooltip={isExpanded ? t('controlnet.hideAdvanced') : t('controlnet.showAdvanced')}
|
||||
aria-label={isExpanded ? t('controlnet.hideAdvanced') : t('controlnet.showAdvanced')}
|
||||
onClick={toggleIsExpanded}
|
||||
variant="ghost"
|
||||
icon={
|
||||
<Icon
|
||||
boxSize={4}
|
||||
as={PiCaretUpBold}
|
||||
transform={isExpanded ? 'rotate(0deg)' : 'rotate(180deg)'}
|
||||
transitionProperty="common"
|
||||
transitionDuration="normal"
|
||||
/>
|
||||
}
|
||||
/>
|
||||
)}
|
||||
</Flex>
|
||||
<Flex gap={4} w="full" alignItems="center">
|
||||
<Flex flexDir="column" gap={3} w="full">
|
||||
{controlAdapterType === 'ip_adapter' && <ParamControlAdapterIPMethod id={id} />}
|
||||
{controlAdapterType === 'controlnet' && <ParamControlAdapterControlMode id={id} />}
|
||||
<ParamControlAdapterWeight id={id} />
|
||||
<ParamControlAdapterBeginEnd id={id} />
|
||||
</Flex>
|
||||
<Flex alignItems="center" justifyContent="center" h={36} w={36} aspectRatio="1/1">
|
||||
<ControlAdapterImagePreview id={id} isSmall />
|
||||
</Flex>
|
||||
</Flex>
|
||||
{isExpanded && (
|
||||
<>
|
||||
<ControlAdapterShouldAutoConfig id={id} />
|
||||
<ParamControlAdapterProcessorSelect id={id} />
|
||||
<ControlAdapterProcessorComponent id={id} />
|
||||
</>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ControlAdapterLayerConfig);
|
@ -0,0 +1,89 @@
|
||||
import { CompositeRangeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
|
||||
import { useControlAdapterBeginEndStepPct } from 'features/controlAdapters/hooks/useControlAdapterBeginEndStepPct';
|
||||
import { useControlAdapterIsEnabled } from 'features/controlAdapters/hooks/useControlAdapterIsEnabled';
|
||||
import {
|
||||
controlAdapterBeginStepPctChanged,
|
||||
controlAdapterEndStepPctChanged,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
type Props = {
|
||||
id: string;
|
||||
};
|
||||
|
||||
const formatPct = (v: number) => `${Math.round(v * 100)}%`;
|
||||
|
||||
export const ParamControlAdapterBeginEnd = memo(({ id }: Props) => {
|
||||
const isEnabled = useControlAdapterIsEnabled(id);
|
||||
const stepPcts = useControlAdapterBeginEndStepPct(id);
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const onChange = useCallback(
|
||||
(v: [number, number]) => {
|
||||
dispatch(
|
||||
controlAdapterBeginStepPctChanged({
|
||||
id,
|
||||
beginStepPct: v[0],
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
controlAdapterEndStepPctChanged({
|
||||
id,
|
||||
endStepPct: v[1],
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, id]
|
||||
);
|
||||
|
||||
const onReset = useCallback(() => {
|
||||
dispatch(
|
||||
controlAdapterBeginStepPctChanged({
|
||||
id,
|
||||
beginStepPct: 0,
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
controlAdapterEndStepPctChanged({
|
||||
id,
|
||||
endStepPct: 1,
|
||||
})
|
||||
);
|
||||
}, [dispatch, id]);
|
||||
|
||||
const value = useMemo<[number, number]>(() => [stepPcts?.beginStepPct ?? 0, stepPcts?.endStepPct ?? 1], [stepPcts]);
|
||||
|
||||
if (!stepPcts) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<FormControl isDisabled={!isEnabled} orientation="horizontal">
|
||||
<InformationalPopover feature="controlNetBeginEnd">
|
||||
<FormLabel m={0}>{t('controlnet.beginEndStepPercentShort')}</FormLabel>
|
||||
</InformationalPopover>
|
||||
<CompositeRangeSlider
|
||||
aria-label={ariaLabel}
|
||||
value={value}
|
||||
onChange={onChange}
|
||||
onReset={onReset}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.05}
|
||||
fineStep={0.01}
|
||||
minStepsBetweenThumbs={1}
|
||||
formatValue={formatPct}
|
||||
marks
|
||||
withThumbTooltip
|
||||
/>
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
ParamControlAdapterBeginEnd.displayName = 'ParamControlAdapterBeginEnd';
|
||||
|
||||
const ariaLabel = ['Begin Step %', 'End Step %'];
|
@ -0,0 +1,66 @@
|
||||
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
|
||||
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
|
||||
import { useControlAdapterControlMode } from 'features/controlAdapters/hooks/useControlAdapterControlMode';
|
||||
import { useControlAdapterIsEnabled } from 'features/controlAdapters/hooks/useControlAdapterIsEnabled';
|
||||
import { controlAdapterControlModeChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import type { ControlMode } from 'features/controlAdapters/store/types';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
type Props = {
|
||||
id: string;
|
||||
};
|
||||
|
||||
const ParamControlAdapterControlMode = ({ id }: Props) => {
|
||||
const isEnabled = useControlAdapterIsEnabled(id);
|
||||
const controlMode = useControlAdapterControlMode(id);
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const CONTROL_MODE_DATA = useMemo(
|
||||
() => [
|
||||
{ label: t('controlnet.balanced'), value: 'balanced' },
|
||||
{ label: t('controlnet.prompt'), value: 'more_prompt' },
|
||||
{ label: t('controlnet.control'), value: 'more_control' },
|
||||
{ label: t('controlnet.megaControl'), value: 'unbalanced' },
|
||||
],
|
||||
[t]
|
||||
);
|
||||
|
||||
const handleControlModeChange = useCallback<ComboboxOnChange>(
|
||||
(v) => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
dispatch(
|
||||
controlAdapterControlModeChanged({
|
||||
id,
|
||||
controlMode: v.value as ControlMode,
|
||||
})
|
||||
);
|
||||
},
|
||||
[id, dispatch]
|
||||
);
|
||||
|
||||
const value = useMemo(
|
||||
() => CONTROL_MODE_DATA.filter((o) => o.value === controlMode)[0],
|
||||
[CONTROL_MODE_DATA, controlMode]
|
||||
);
|
||||
|
||||
if (!controlMode) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<FormControl isDisabled={!isEnabled}>
|
||||
<InformationalPopover feature="controlNetControlMode">
|
||||
<FormLabel m={0}>{t('controlnet.control')}</FormLabel>
|
||||
</InformationalPopover>
|
||||
<Combobox value={value} options={CONTROL_MODE_DATA} onChange={handleControlModeChange} />
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamControlAdapterControlMode);
|
@ -0,0 +1,136 @@
|
||||
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
|
||||
import { Combobox, Flex, FormControl, Tooltip } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
|
||||
import { useControlAdapterCLIPVisionModel } from 'features/controlAdapters/hooks/useControlAdapterCLIPVisionModel';
|
||||
import { useControlAdapterIsEnabled } from 'features/controlAdapters/hooks/useControlAdapterIsEnabled';
|
||||
import { useControlAdapterModel } from 'features/controlAdapters/hooks/useControlAdapterModel';
|
||||
import { useControlAdapterModels } from 'features/controlAdapters/hooks/useControlAdapterModels';
|
||||
import { useControlAdapterType } from 'features/controlAdapters/hooks/useControlAdapterType';
|
||||
import {
|
||||
controlAdapterCLIPVisionModelChanged,
|
||||
controlAdapterModelChanged,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import type { CLIPVisionModel } from 'features/controlAdapters/store/types';
|
||||
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import type {
|
||||
AnyModelConfig,
|
||||
ControlNetModelConfig,
|
||||
IPAdapterModelConfig,
|
||||
T2IAdapterModelConfig,
|
||||
} from 'services/api/types';
|
||||
|
||||
type ParamControlAdapterModelProps = {
|
||||
id: string;
|
||||
};
|
||||
|
||||
const selectMainModel = createMemoizedSelector(selectGenerationSlice, (generation) => generation.model);
|
||||
|
||||
const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
|
||||
const isEnabled = useControlAdapterIsEnabled(id);
|
||||
const controlAdapterType = useControlAdapterType(id);
|
||||
const { modelConfig } = useControlAdapterModel(id);
|
||||
const dispatch = useAppDispatch();
|
||||
const currentBaseModel = useAppSelector((s) => s.generation.model?.base);
|
||||
const currentCLIPVisionModel = useControlAdapterCLIPVisionModel(id);
|
||||
const mainModel = useAppSelector(selectMainModel);
|
||||
const { t } = useTranslation();
|
||||
|
||||
const [modelConfigs, { isLoading }] = useControlAdapterModels(controlAdapterType);
|
||||
|
||||
const _onChange = useCallback(
|
||||
(modelConfig: ControlNetModelConfig | IPAdapterModelConfig | T2IAdapterModelConfig | null) => {
|
||||
if (!modelConfig) {
|
||||
return;
|
||||
}
|
||||
dispatch(
|
||||
controlAdapterModelChanged({
|
||||
id,
|
||||
modelConfig,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, id]
|
||||
);
|
||||
|
||||
const onCLIPVisionModelChange = useCallback<ComboboxOnChange>(
|
||||
(v) => {
|
||||
if (!v?.value) {
|
||||
return;
|
||||
}
|
||||
dispatch(controlAdapterCLIPVisionModelChanged({ id, clipVisionModel: v.value as CLIPVisionModel }));
|
||||
},
|
||||
[dispatch, id]
|
||||
);
|
||||
|
||||
const selectedModel = useMemo(
|
||||
() => (modelConfig && controlAdapterType ? { ...modelConfig, model_type: controlAdapterType } : null),
|
||||
[controlAdapterType, modelConfig]
|
||||
);
|
||||
|
||||
const getIsDisabled = useCallback(
|
||||
(model: AnyModelConfig): boolean => {
|
||||
const isCompatible = currentBaseModel === model.base;
|
||||
const hasMainModel = Boolean(currentBaseModel);
|
||||
return !hasMainModel || !isCompatible;
|
||||
},
|
||||
[currentBaseModel]
|
||||
);
|
||||
|
||||
const { options, value, onChange, noOptionsMessage } = useGroupedModelCombobox({
|
||||
modelConfigs,
|
||||
onChange: _onChange,
|
||||
selectedModel,
|
||||
getIsDisabled,
|
||||
isLoading,
|
||||
});
|
||||
|
||||
const clipVisionOptions = useMemo<ComboboxOption[]>(
|
||||
() => [
|
||||
{ label: 'ViT-H', value: 'ViT-H' },
|
||||
{ label: 'ViT-G', value: 'ViT-G' },
|
||||
],
|
||||
[]
|
||||
);
|
||||
|
||||
const clipVisionModel = useMemo(
|
||||
() => clipVisionOptions.find((o) => o.value === currentCLIPVisionModel),
|
||||
[clipVisionOptions, currentCLIPVisionModel]
|
||||
);
|
||||
|
||||
return (
|
||||
<Flex gap={4}>
|
||||
<Tooltip label={selectedModel?.description}>
|
||||
<FormControl isDisabled={!isEnabled} isInvalid={!value || mainModel?.base !== modelConfig?.base} w="full">
|
||||
<Combobox
|
||||
options={options}
|
||||
placeholder={t('controlnet.selectModel')}
|
||||
value={value}
|
||||
onChange={onChange}
|
||||
noOptionsMessage={noOptionsMessage}
|
||||
/>
|
||||
</FormControl>
|
||||
</Tooltip>
|
||||
{modelConfig?.type === 'ip_adapter' && modelConfig.format === 'checkpoint' && (
|
||||
<FormControl
|
||||
isDisabled={!isEnabled}
|
||||
isInvalid={!value || mainModel?.base !== modelConfig?.base}
|
||||
width="max-content"
|
||||
minWidth={28}
|
||||
>
|
||||
<Combobox
|
||||
options={clipVisionOptions}
|
||||
placeholder={t('controlnet.selectCLIPVisionModel')}
|
||||
value={clipVisionModel}
|
||||
onChange={onCLIPVisionModelChange}
|
||||
/>
|
||||
</FormControl>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamControlAdapterModel);
|
@ -0,0 +1,74 @@
|
||||
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
|
||||
import { useControlAdapterIsEnabled } from 'features/controlAdapters/hooks/useControlAdapterIsEnabled';
|
||||
import { useControlAdapterWeight } from 'features/controlAdapters/hooks/useControlAdapterWeight';
|
||||
import { controlAdapterWeightChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { isNil } from 'lodash-es';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
type ParamControlAdapterWeightProps = {
|
||||
id: string;
|
||||
};
|
||||
|
||||
const formatValue = (v: number) => v.toFixed(2);
|
||||
|
||||
const ParamControlAdapterWeight = ({ id }: ParamControlAdapterWeightProps) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const isEnabled = useControlAdapterIsEnabled(id);
|
||||
const weight = useControlAdapterWeight(id);
|
||||
const initial = useAppSelector((s) => s.config.sd.ca.weight.initial);
|
||||
const sliderMin = useAppSelector((s) => s.config.sd.ca.weight.sliderMin);
|
||||
const sliderMax = useAppSelector((s) => s.config.sd.ca.weight.sliderMax);
|
||||
const numberInputMin = useAppSelector((s) => s.config.sd.ca.weight.numberInputMin);
|
||||
const numberInputMax = useAppSelector((s) => s.config.sd.ca.weight.numberInputMax);
|
||||
const coarseStep = useAppSelector((s) => s.config.sd.ca.weight.coarseStep);
|
||||
const fineStep = useAppSelector((s) => s.config.sd.ca.weight.fineStep);
|
||||
|
||||
const onChange = useCallback(
|
||||
(weight: number) => {
|
||||
dispatch(controlAdapterWeightChanged({ id, weight }));
|
||||
},
|
||||
[dispatch, id]
|
||||
);
|
||||
|
||||
if (isNil(weight)) {
|
||||
// should never happen
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<FormControl isDisabled={!isEnabled} orientation="horizontal">
|
||||
<InformationalPopover feature="controlNetWeight">
|
||||
<FormLabel m={0}>{t('controlnet.weight')}</FormLabel>
|
||||
</InformationalPopover>
|
||||
<CompositeSlider
|
||||
value={weight}
|
||||
onChange={onChange}
|
||||
defaultValue={initial}
|
||||
min={sliderMin}
|
||||
max={sliderMax}
|
||||
step={coarseStep}
|
||||
fineStep={fineStep}
|
||||
marks={marks}
|
||||
formatValue={formatValue}
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
value={weight}
|
||||
onChange={onChange}
|
||||
min={numberInputMin}
|
||||
max={numberInputMax}
|
||||
step={coarseStep}
|
||||
fineStep={fineStep}
|
||||
maxW={20}
|
||||
defaultValue={initial}
|
||||
/>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamControlAdapterWeight);
|
||||
|
||||
const marks = [0, 1, 2];
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user