reduce peak VRAM memory usage of IP adapter

This commit is contained in:
Lincoln Stein 2024-05-28 22:41:44 -04:00 committed by Kent Keirsey
parent 6b24424727
commit 1c59fce6ad

View File

@ -50,7 +50,6 @@ from invokeai.app.invocations.primitives import DenoiseMaskOutput, ImageOutput,
from invokeai.app.invocations.t2i_adapter import T2IAdapterField from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.lora import LoRAModelRaw from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
@ -672,6 +671,39 @@ class DenoiseLatentsInvocation(BaseInvocation):
return controlnet_data return controlnet_data
def prep_ip_adapter_image_prompts(
self,
context: InvocationContext,
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]],
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
# ip_adapter could be a list or a single IPAdapterField. Normalize to a list here.
if not isinstance(ip_adapter, list):
ip_adapter = [ip_adapter]
if len(ip_adapter) == 0:
return []
image_prompts = []
for single_ip_adapter in ip_adapter:
with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model:
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
single_ipa_image_fields = [single_ipa_image_fields]
single_ipa_images = [context.images.get_pil(image.image_name) for image in single_ipa_image_fields]
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model
)
image_prompts.append((image_prompt_embeds, uncond_image_prompt_embeds))
return image_prompts
def prep_ip_adapter_data( def prep_ip_adapter_data(
self, self,
context: InvocationContext, context: InvocationContext,
@ -680,6 +712,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
latent_height: int, latent_height: int,
latent_width: int, latent_width: int,
dtype: torch.dtype, dtype: torch.dtype,
image_prompts: List[Tuple[torch.Tensor, torch.Tensor]],
) -> Optional[list[IPAdapterData]]: ) -> Optional[list[IPAdapterData]]:
"""If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings """If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings
to the `conditioning_data` (in-place). to the `conditioning_data` (in-place).
@ -696,26 +729,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
ip_adapter_data_list = [] ip_adapter_data_list = []
for single_ip_adapter in ip_adapter: for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context( ip_adapter_model = exit_stack.enter_context(context.models.load(single_ip_adapter.ip_adapter_model))
context.models.load(single_ip_adapter.ip_adapter_model)
)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model) image_prompt_embeds, uncond_image_prompt_embeds = image_prompts.pop(0)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
single_ipa_image_fields = [single_ipa_image_fields]
single_ipa_images = [context.images.get_pil(image.image_name) for image in single_ipa_image_fields]
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model
)
mask = single_ip_adapter.mask mask = single_ip_adapter.mask
if mask is not None: if mask is not None:
@ -912,6 +928,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
do_classifier_free_guidance=True, do_classifier_free_guidance=True,
) )
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapter=self.ip_adapter)
# get the unet's config so that we can pass the base to dispatch_progress() # get the unet's config so that we can pass the base to dispatch_progress()
unet_config = context.models.get_config(self.unet.unet.key) unet_config = context.models.get_config(self.unet.unet.key)
@ -975,6 +993,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
latent_height=latent_height, latent_height=latent_height,
latent_width=latent_width, latent_width=latent_width,
dtype=unet.dtype, dtype=unet.dtype,
image_prompts=image_prompts,
) )
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler( num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(