mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Use CLIPVisionModel under model management for IP-Adapter.
This commit is contained in:
@ -46,7 +46,6 @@ class IPAdapter:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_encoder_path: str,
|
||||
ip_adapter_ckpt_path: str,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype = torch.float16,
|
||||
@ -55,13 +54,9 @@ class IPAdapter:
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
|
||||
self._image_encoder_path = image_encoder_path
|
||||
self._ip_adapter_ckpt_path = ip_adapter_ckpt_path
|
||||
self._num_tokens = num_tokens
|
||||
|
||||
self._image_encoder = CLIPVisionModelWithProjection.from_pretrained(self._image_encoder_path).to(
|
||||
self.device, dtype=self.dtype
|
||||
)
|
||||
self._clip_image_processor = CLIPImageProcessor()
|
||||
|
||||
# Fields to be initialized later in initialize().
|
||||
@ -74,7 +69,7 @@ class IPAdapter:
|
||||
def is_initialized(self):
|
||||
return self._unet is not None and self._image_proj_model is not None and self._attn_processors is not None
|
||||
|
||||
def initialize(self, unet: UNet2DConditionModel):
|
||||
def initialize(self, unet: UNet2DConditionModel, image_encoder: CLIPVisionModelWithProjection):
|
||||
"""Finish the model initialization process.
|
||||
|
||||
HACK: This is separate from __init__ for compatibility with the model manager. The full initialization requires
|
||||
@ -87,7 +82,9 @@ class IPAdapter:
|
||||
raise Exception("IPAdapter has already been initialized.")
|
||||
|
||||
self._unet = unet
|
||||
self._image_proj_model = self._init_image_proj_model()
|
||||
# TODO(ryand): Eliminate the need to pass the image_encoder to initialize(). It should be possible to infer the
|
||||
# necessary information from the state_dict.
|
||||
self._image_proj_model = self._init_image_proj_model(image_encoder)
|
||||
self._attn_processors = self._prepare_attention_processors()
|
||||
|
||||
# Copy the weights from the _state_dict into the models.
|
||||
@ -102,16 +99,16 @@ class IPAdapter:
|
||||
if dtype is not None:
|
||||
self.dtype = dtype
|
||||
|
||||
for model in [self._image_encoder, self._image_proj_model, self._attn_processors]:
|
||||
for model in [self._image_proj_model, self._attn_processors]:
|
||||
# If this is called before initialize(), then some models will still be None. We just update the non-None
|
||||
# models.
|
||||
if model is not None:
|
||||
model.to(device=self.device, dtype=self.dtype)
|
||||
|
||||
def _init_image_proj_model(self):
|
||||
def _init_image_proj_model(self, image_encoder: CLIPVisionModelWithProjection):
|
||||
image_proj_model = ImageProjModel(
|
||||
cross_attention_dim=self._unet.config.cross_attention_dim,
|
||||
clip_embeddings_dim=self._image_encoder.config.projection_dim,
|
||||
clip_embeddings_dim=image_encoder.config.projection_dim,
|
||||
clip_extra_context_tokens=self._num_tokens,
|
||||
).to(self.device, dtype=self.dtype)
|
||||
return image_proj_model
|
||||
@ -162,14 +159,14 @@ class IPAdapter:
|
||||
self._unet.set_attn_processor(orig_attn_processors)
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_image_embeds(self, pil_image):
|
||||
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection):
|
||||
if not self.is_initialized():
|
||||
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.get_image_embeds().")
|
||||
|
||||
if isinstance(pil_image, Image.Image):
|
||||
pil_image = [pil_image]
|
||||
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
||||
clip_image_embeds = self._image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds
|
||||
clip_image_embeds = image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds
|
||||
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
|
||||
uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds))
|
||||
return image_prompt_embeds, uncond_image_prompt_embeds
|
||||
@ -186,21 +183,21 @@ class IPAdapter:
|
||||
class IPAdapterPlus(IPAdapter):
|
||||
"""IP-Adapter with fine-grained features"""
|
||||
|
||||
def _init_image_proj_model(self):
|
||||
def _init_image_proj_model(self, image_encoder: CLIPVisionModelWithProjection):
|
||||
image_proj_model = Resampler(
|
||||
dim=self._unet.config.cross_attention_dim,
|
||||
depth=4,
|
||||
dim_head=64,
|
||||
heads=12,
|
||||
num_queries=self._num_tokens,
|
||||
embedding_dim=self._image_encoder.config.hidden_size,
|
||||
embedding_dim=image_encoder.config.hidden_size,
|
||||
output_dim=self._unet.config.cross_attention_dim,
|
||||
ff_mult=4,
|
||||
).to(self.device, dtype=self.dtype)
|
||||
return image_proj_model
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_image_embeds(self, pil_image):
|
||||
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection):
|
||||
if not self.is_initialized():
|
||||
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.get_image_embeds().")
|
||||
|
||||
@ -208,10 +205,10 @@ class IPAdapterPlus(IPAdapter):
|
||||
pil_image = [pil_image]
|
||||
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
||||
clip_image = clip_image.to(self.device, dtype=self.dtype)
|
||||
clip_image_embeds = self._image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
||||
clip_image_embeds = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
||||
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
|
||||
uncond_clip_image_embeds = self._image_encoder(
|
||||
torch.zeros_like(clip_image), output_hidden_states=True
|
||||
).hidden_states[-2]
|
||||
uncond_clip_image_embeds = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
|
||||
-2
|
||||
]
|
||||
uncond_image_prompt_embeds = self._image_proj_model(uncond_clip_image_embeds)
|
||||
return image_prompt_embeds, uncond_image_prompt_embeds
|
||||
|
Reference in New Issue
Block a user