mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Apply ruff rule to disallow all relative imports.
This commit is contained in:
@ -2,6 +2,11 @@
|
||||
Initialization file for invokeai.backend.image_util methods.
|
||||
"""
|
||||
|
||||
from .infill_methods.patchmatch import PatchMatch # noqa: F401
|
||||
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
|
||||
from .util import InitImageResizer, make_grid # noqa: F401
|
||||
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch # noqa: F401
|
||||
from invokeai.backend.image_util.pngwriter import ( # noqa: F401
|
||||
PngWriter,
|
||||
PromptFormatter,
|
||||
retrieve_metadata,
|
||||
write_metadata,
|
||||
)
|
||||
from invokeai.backend.image_util.util import InitImageResizer, make_grid # noqa: F401
|
||||
|
@ -2,7 +2,7 @@ import torch
|
||||
from torch import nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
|
||||
from invokeai.backend.image_util.basicsr.arch_util import default_init_weights, make_layer, pixel_unshuffle
|
||||
|
||||
|
||||
class ResidualDenseBlock(nn.Module):
|
||||
|
@ -4,7 +4,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .blocks import FeatureFusionBlock, _make_scratch
|
||||
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
|
||||
|
||||
torchhub_path = Path(__file__).parent.parent / "torchhub"
|
||||
|
||||
|
@ -8,11 +8,10 @@ import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.image_util.dw_openpose.onnxdet import inference_detector
|
||||
from invokeai.backend.image_util.dw_openpose.onnxpose import inference_pose
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .onnxdet import inference_detector
|
||||
from .onnxpose import inference_pose
|
||||
|
||||
config = get_config()
|
||||
|
||||
|
||||
|
@ -11,10 +11,9 @@ from PIL import Image
|
||||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
|
||||
from invokeai.backend.ip_adapter.resampler import Resampler
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
from .resampler import Resampler
|
||||
|
||||
|
||||
class IPAdapterStateDict(TypedDict):
|
||||
ip_adapter: dict[str, torch.Tensor]
|
||||
|
@ -10,10 +10,9 @@ from safetensors.torch import load_file
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .raw_model import RawModel
|
||||
|
||||
|
||||
class LoRALayerBase:
|
||||
# rank: Optional[int]
|
||||
|
@ -1,6 +1,6 @@
|
||||
"""Re-export frequently-used symbols from the Model Manager backend."""
|
||||
|
||||
from .config import (
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
@ -13,9 +13,9 @@ from .config import (
|
||||
SchedulerPredictionType,
|
||||
SubModelType,
|
||||
)
|
||||
from .load import LoadedModel
|
||||
from .probe import ModelProbe
|
||||
from .search import ModelSearch
|
||||
from invokeai.backend.model_manager.load import LoadedModel
|
||||
from invokeai.backend.model_manager.probe import ModelProbe
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
|
||||
__all__ = [
|
||||
"AnyModel",
|
||||
|
@ -6,10 +6,10 @@ Init file for the model loader.
|
||||
from importlib import import_module
|
||||
from pathlib import Path
|
||||
|
||||
from .load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
|
||||
from .load_default import ModelLoader
|
||||
from .model_cache.model_cache_default import ModelCache
|
||||
from .model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_default import ModelCache
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
|
||||
|
||||
# This registers the subclasses that implement loaders of specific model types
|
||||
loaders = [x.stem for x in Path(Path(__file__).parent, "model_loaders").glob("*.py") if x.stem != "__init__"]
|
||||
|
@ -29,13 +29,17 @@ import torch
|
||||
|
||||
from invokeai.backend.model_manager import AnyModel, SubModelType
|
||||
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import (
|
||||
CacheRecord,
|
||||
CacheStats,
|
||||
ModelCacheBase,
|
||||
ModelLockerBase,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.model_cache.model_locker import ModelLocker
|
||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .model_cache_base import CacheRecord, CacheStats, ModelCacheBase, ModelLockerBase
|
||||
from .model_locker import ModelLocker
|
||||
|
||||
# Maximum size of the cache, in gigs
|
||||
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
|
||||
DEFAULT_MAX_CACHE_SIZE = 6.0
|
||||
|
@ -7,8 +7,11 @@ from typing import Dict, Optional
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager import AnyModel
|
||||
|
||||
from .model_cache_base import CacheRecord, ModelCacheBase, ModelLockerBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import (
|
||||
CacheRecord,
|
||||
ModelCacheBase,
|
||||
ModelLockerBase,
|
||||
)
|
||||
|
||||
|
||||
class ModelLocker(ModelLockerBase):
|
||||
|
@ -26,8 +26,7 @@ from invokeai.backend.model_manager.config import (
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
|
||||
from . import ModelLoaderBase
|
||||
from invokeai.backend.model_manager.load import ModelLoaderBase
|
||||
|
||||
|
||||
class ModelLoaderRegistryBase(ABC):
|
||||
|
@ -14,8 +14,7 @@ from invokeai.backend.model_manager import (
|
||||
)
|
||||
from invokeai.backend.model_manager.config import ControlNetCheckpointConfig, SubModelType
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
|
||||
from .generic_diffusers import GenericDiffusersLoader
|
||||
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ControlNet, format=ModelFormat.Diffusers)
|
||||
|
@ -14,8 +14,7 @@ from invokeai.backend.model_manager import (
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
|
||||
from .generic_diffusers import GenericDiffusersLoader
|
||||
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ONNX, format=ModelFormat.ONNX)
|
||||
|
@ -26,10 +26,9 @@ from invokeai.backend.model_manager.config import (
|
||||
MainCheckpointConfig,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
from .generic_diffusers import GenericDiffusersLoader
|
||||
|
||||
VARIANT_TO_IN_CHANNEL_MAP = {
|
||||
ModelVariantType.Normal: 4,
|
||||
ModelVariantType.Depth: 5,
|
||||
|
@ -13,8 +13,7 @@ from invokeai.backend.model_manager import (
|
||||
)
|
||||
from invokeai.backend.model_manager.config import AnyModel, SubModelType, VAECheckpointConfig
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
|
||||
from .generic_diffusers import GenericDiffusersLoader
|
||||
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Diffusers)
|
||||
|
@ -17,16 +17,10 @@ from diffusers.utils import logging as dlogging
|
||||
|
||||
from invokeai.app.services.model_install import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
|
||||
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, ModelType, ModelVariantType
|
||||
from invokeai.backend.model_manager.config import MainDiffusersConfig
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from . import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelType,
|
||||
ModelVariantType,
|
||||
)
|
||||
from .config import MainDiffusersConfig
|
||||
|
||||
|
||||
class MergeInterpolationMethod(str, Enum):
|
||||
WeightedSum = "weighted_sum"
|
||||
|
@ -16,8 +16,8 @@ data = HuggingFaceMetadataFetch().from_id("<REPO_ID>")
|
||||
assert isinstance(data, HuggingFaceMetadata)
|
||||
"""
|
||||
|
||||
from .fetch import HuggingFaceMetadataFetch, ModelMetadataFetchBase
|
||||
from .metadata_base import (
|
||||
from invokeai.backend.model_manager.metadata.fetch import HuggingFaceMetadataFetch, ModelMetadataFetchBase
|
||||
from invokeai.backend.model_manager.metadata.metadata_base import (
|
||||
AnyModelRepoMetadata,
|
||||
AnyModelRepoMetadataValidator,
|
||||
BaseMetadata,
|
||||
|
@ -10,7 +10,7 @@ data = HuggingFaceMetadataFetch().from_id("<repo_id>")
|
||||
assert isinstance(data, HuggingFaceMetadata)
|
||||
"""
|
||||
|
||||
from .fetch_base import ModelMetadataFetchBase
|
||||
from .huggingface import HuggingFaceMetadataFetch
|
||||
from invokeai.backend.model_manager.metadata.fetch.fetch_base import ModelMetadataFetchBase
|
||||
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
|
||||
|
||||
__all__ = ["ModelMetadataFetchBase", "HuggingFaceMetadataFetch"]
|
||||
|
@ -25,6 +25,7 @@ from pydantic.networks import AnyHttpUrl
|
||||
from requests.sessions import Session
|
||||
|
||||
from invokeai.backend.model_manager.config import ModelRepoVariant
|
||||
from invokeai.backend.model_manager.metadata.fetch.fetch_base import ModelMetadataFetchBase
|
||||
from invokeai.backend.model_manager.metadata.metadata_base import (
|
||||
AnyModelRepoMetadata,
|
||||
HuggingFaceMetadata,
|
||||
@ -32,8 +33,6 @@ from invokeai.backend.model_manager.metadata.metadata_base import (
|
||||
UnknownMetadataException,
|
||||
)
|
||||
|
||||
from .fetch_base import ModelMetadataFetchBase
|
||||
|
||||
HF_MODEL_RE = r"https?://huggingface.co/([\w\-.]+/[\w\-.]+)"
|
||||
|
||||
|
||||
|
@ -10,9 +10,7 @@ from picklescan.scanner import scan_file_path
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
from .config import (
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ControlAdapterDefaultSettings,
|
||||
@ -26,7 +24,8 @@ from .config import (
|
||||
ModelVariantType,
|
||||
SchedulerPredictionType,
|
||||
)
|
||||
from .util.model_util import lora_token_vector_length, read_checkpoint_meta
|
||||
from invokeai.backend.model_manager.util.model_util import lora_token_vector_length, read_checkpoint_meta
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
CkptType = Dict[str | int, Any]
|
||||
|
||||
|
@ -13,14 +13,13 @@ from diffusers import OnnxRuntimeModel, UNet2DConditionModel
|
||||
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
||||
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import AnyModel
|
||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.textual_inversion import TextualInversionManager, TextualInversionModelRaw
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .lora import LoRAModelRaw
|
||||
from .textual_inversion import TextualInversionManager, TextualInversionModelRaw
|
||||
|
||||
"""
|
||||
loras = [
|
||||
(lora_model1, 0.7),
|
||||
@ -338,7 +337,7 @@ class ONNXModelPatcher:
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
) -> None:
|
||||
from .models.base import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.models.base import IAIOnnxRuntimeModel
|
||||
|
||||
if not isinstance(model, IAIOnnxRuntimeModel):
|
||||
raise Exception("Only IAIOnnxRuntimeModel models supported")
|
||||
@ -425,7 +424,7 @@ class ONNXModelPatcher:
|
||||
text_encoder: IAIOnnxRuntimeModel,
|
||||
ti_list: List[Tuple[str, Any]],
|
||||
) -> Iterator[Tuple[CLIPTokenizer, TextualInversionManager]]:
|
||||
from .models.base import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.models.base import IAIOnnxRuntimeModel
|
||||
|
||||
if not isinstance(text_encoder, IAIOnnxRuntimeModel):
|
||||
raise Exception("Only IAIOnnxRuntimeModel models supported")
|
||||
|
@ -2,9 +2,12 @@
|
||||
Initialization file for the invokeai.backend.stable_diffusion package
|
||||
"""
|
||||
|
||||
from .diffusers_pipeline import PipelineIntermediateState, StableDiffusionGeneratorPipeline # noqa: F401
|
||||
from .diffusion import InvokeAIDiffuserComponent # noqa: F401
|
||||
from .seamless import set_seamless # noqa: F401
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import ( # noqa: F401
|
||||
PipelineIntermediateState,
|
||||
StableDiffusionGeneratorPipeline,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent # noqa: F401
|
||||
from invokeai.backend.stable_diffusion.seamless import set_seamless # noqa: F401
|
||||
|
||||
__all__ = [
|
||||
"PipelineIntermediateState",
|
||||
|
@ -2,4 +2,6 @@
|
||||
Initialization file for invokeai.models.diffusion
|
||||
"""
|
||||
|
||||
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent # noqa: F401
|
||||
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import (
|
||||
InvokeAIDiffuserComponent, # noqa: F401
|
||||
)
|
||||
|
@ -1,3 +1,3 @@
|
||||
from .schedulers import SCHEDULER_MAP # noqa: F401
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_MAP # noqa: F401
|
||||
|
||||
__all__ = ["SCHEDULER_MAP"]
|
||||
|
@ -9,7 +9,7 @@ from safetensors.torch import load_file
|
||||
from transformers import CLIPTokenizer
|
||||
from typing_extensions import Self
|
||||
|
||||
from .raw_model import RawModel
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
|
||||
class TextualInversionModelRaw(RawModel):
|
||||
|
@ -2,8 +2,8 @@
|
||||
Initialization file for invokeai.backend.util
|
||||
"""
|
||||
|
||||
from .logging import InvokeAILogger
|
||||
from .util import GIG, Chdir, directory_size
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.backend.util.util import GIG, Chdir, directory_size
|
||||
|
||||
__all__ = [
|
||||
"GIG",
|
||||
|
Reference in New Issue
Block a user