mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
WIP on moving from diffusers to FLUX
This commit is contained in:
@ -4,7 +4,8 @@ from pathlib import Path
|
||||
|
||||
import accelerate
|
||||
import torch
|
||||
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
||||
from flux.model import Flux
|
||||
from flux.util import configs as flux_configs
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
|
||||
@ -22,22 +23,24 @@ def log_time(name: str):
|
||||
|
||||
|
||||
def main():
|
||||
# Load the FLUX transformer model onto the meta device.
|
||||
model_path = Path(
|
||||
"/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/"
|
||||
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
|
||||
)
|
||||
|
||||
# inference_dtype = torch.bfloat16
|
||||
with log_time("Intialize FLUX transformer on meta device"):
|
||||
model_config = FluxTransformer2DModel.load_config(model_path, local_files_only=True)
|
||||
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
||||
params = flux_configs["flux-schnell"].params
|
||||
|
||||
# Initialize the model on the "meta" device.
|
||||
with accelerate.init_empty_weights():
|
||||
empty_model = FluxTransformer2DModel.from_config(model_config)
|
||||
assert isinstance(empty_model, FluxTransformer2DModel)
|
||||
model = Flux(params)
|
||||
|
||||
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
|
||||
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
|
||||
modules_to_not_convert: set[str] = set()
|
||||
|
||||
model_nf4_path = model_path / "bnb_nf4"
|
||||
model_nf4_path = model_path.parent / "bnb_nf4.safetensors"
|
||||
if model_nf4_path.exists():
|
||||
# The quantized model already exists, load it and return it.
|
||||
print(f"A pre-quantized model already exists at '{model_nf4_path}'. Attempting to load it...")
|
||||
@ -45,12 +48,12 @@ def main():
|
||||
# Replace the linear layers with NF4 quantized linear layers (still on the meta device).
|
||||
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_nf4(
|
||||
empty_model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
|
||||
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
|
||||
)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
sd = load_file(model_nf4_path / "model.safetensors")
|
||||
model.load_state_dict(sd, strict=True, assign=True)
|
||||
state_dict = load_file(model_nf4_path)
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda"):
|
||||
model = model.to("cuda")
|
||||
@ -63,30 +66,24 @@ def main():
|
||||
|
||||
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_nf4(
|
||||
empty_model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
|
||||
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
|
||||
)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
# Load sharded state dict.
|
||||
files = list(model_path.glob("*.safetensors"))
|
||||
state_dict = dict()
|
||||
for file in files:
|
||||
sd = load_file(file)
|
||||
state_dict.update(sd)
|
||||
|
||||
state_dict = load_file(model_path)
|
||||
# TODO(ryand): Cast the state_dict to the appropriate dtype?
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda and quantize"):
|
||||
model = model.to("cuda")
|
||||
|
||||
with log_time("Save quantized model"):
|
||||
model_nf4_path.mkdir(parents=True, exist_ok=True)
|
||||
output_path = model_nf4_path / "model.safetensors"
|
||||
save_file(model.state_dict(), output_path)
|
||||
model_nf4_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
save_file(model.state_dict(), model_nf4_path)
|
||||
|
||||
print(f"Successfully quantized and saved model to '{output_path}'.")
|
||||
print(f"Successfully quantized and saved model to '{model_nf4_path}'.")
|
||||
|
||||
assert isinstance(model, FluxTransformer2DModel)
|
||||
assert isinstance(model, Flux)
|
||||
return model
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user