mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into fix/controlnet_cfg_inj_cond
This commit is contained in:
commit
20fbe81395
@ -87,16 +87,16 @@ Prior to installing PyPatchMatch, you need to take the following steps:
|
||||
sudo pacman -S --needed base-devel
|
||||
```
|
||||
|
||||
2. Install `opencv`:
|
||||
2. Install `opencv` and `blas`:
|
||||
|
||||
```sh
|
||||
sudo pacman -S opencv
|
||||
sudo pacman -S opencv blas
|
||||
```
|
||||
|
||||
or for CUDA support
|
||||
|
||||
```sh
|
||||
sudo pacman -S opencv-cuda
|
||||
sudo pacman -S opencv-cuda blas
|
||||
```
|
||||
|
||||
3. Fix the naming of the `opencv` package configuration file:
|
||||
|
@ -1,13 +1,13 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
|
||||
|
||||
from typing import Annotated, Literal, Optional, Union, Dict
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
from fastapi import Query
|
||||
from fastapi.routing import APIRouter, HTTPException
|
||||
from pydantic import BaseModel, Field, parse_obj_as
|
||||
from ..dependencies import ApiDependencies
|
||||
from invokeai.backend import BaseModelType, ModelType
|
||||
from invokeai.backend.model_management.models import OPENAPI_MODEL_CONFIGS
|
||||
from invokeai.backend.model_management.models import OPENAPI_MODEL_CONFIGS, SchedulerPredictionType
|
||||
MODEL_CONFIGS = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
||||
|
||||
models_router = APIRouter(prefix="/v1/models", tags=["models"])
|
||||
@ -51,12 +51,15 @@ class CreateModelResponse(BaseModel):
|
||||
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
|
||||
status: str = Field(description="The status of the API response")
|
||||
|
||||
class ImportModelRequest(BaseModel):
|
||||
name: str = Field(description="A model path, repo_id or URL to import")
|
||||
prediction_type: Optional[Literal['epsilon','v_prediction','sample']] = Field(description='Prediction type for SDv2 checkpoint files')
|
||||
|
||||
class ConversionRequest(BaseModel):
|
||||
name: str = Field(description="The name of the new model")
|
||||
info: CkptModelInfo = Field(description="The converted model info")
|
||||
save_location: str = Field(description="The path to save the converted model weights")
|
||||
|
||||
|
||||
class ConvertedModelResponse(BaseModel):
|
||||
name: str = Field(description="The name of the new model")
|
||||
info: DiffusersModelInfo = Field(description="The converted model info")
|
||||
@ -105,6 +108,28 @@ async def update_model(
|
||||
|
||||
return model_response
|
||||
|
||||
@models_router.post(
|
||||
"/",
|
||||
operation_id="import_model",
|
||||
responses={200: {"status": "success"}},
|
||||
)
|
||||
async def import_model(
|
||||
model_request: ImportModelRequest
|
||||
) -> None:
|
||||
""" Add Model """
|
||||
items_to_import = set([model_request.name])
|
||||
prediction_types = { x.value: x for x in SchedulerPredictionType }
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
|
||||
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
|
||||
items_to_import = items_to_import,
|
||||
prediction_type_helper = lambda x: prediction_types.get(model_request.prediction_type)
|
||||
)
|
||||
if len(installed_models) > 0:
|
||||
logger.info(f'Successfully imported {model_request.name}')
|
||||
else:
|
||||
logger.error(f'Model {model_request.name} not imported')
|
||||
raise HTTPException(status_code=500, detail=f'Model {model_request.name} not imported')
|
||||
|
||||
@models_router.delete(
|
||||
"/{model_name}",
|
||||
|
@ -1,10 +1,11 @@
|
||||
# InvokeAI nodes for ControlNet image preprocessors
|
||||
# Invocations for ControlNet image preprocessors
|
||||
# initial implementation by Gregg Helt, 2023
|
||||
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
|
||||
from builtins import float, bool
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from typing import Literal, Optional, Union, List
|
||||
from typing import Literal, Optional, Union, List, Dict
|
||||
from PIL import Image, ImageFilter, ImageOps
|
||||
from pydantic import BaseModel, Field, validator
|
||||
|
||||
@ -29,8 +30,13 @@ from controlnet_aux import (
|
||||
ContentShuffleDetector,
|
||||
ZoeDetector,
|
||||
MediapipeFaceDetector,
|
||||
SamDetector,
|
||||
LeresDetector,
|
||||
)
|
||||
|
||||
from controlnet_aux.util import HWC3, ade_palette
|
||||
|
||||
|
||||
from .image import ImageOutput, PILInvocationConfig
|
||||
|
||||
CONTROLNET_DEFAULT_MODELS = [
|
||||
@ -95,6 +101,9 @@ CONTROLNET_DEFAULT_MODELS = [
|
||||
|
||||
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
|
||||
CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])]
|
||||
# crop and fill options not ready yet
|
||||
# CONTROLNET_RESIZE_VALUES = Literal[tuple(["just_resize", "crop_resize", "fill_resize"])]
|
||||
|
||||
|
||||
class ControlField(BaseModel):
|
||||
image: ImageField = Field(default=None, description="The control image")
|
||||
@ -105,7 +114,8 @@ class ControlField(BaseModel):
|
||||
description="When the ControlNet is first applied (% of total steps)")
|
||||
end_step_percent: float = Field(default=1, ge=0, le=1,
|
||||
description="When the ControlNet is last applied (% of total steps)")
|
||||
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The contorl mode to use")
|
||||
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
|
||||
# resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
|
||||
|
||||
@validator("control_weight")
|
||||
def abs_le_one(cls, v):
|
||||
@ -180,7 +190,7 @@ class ControlNetInvocation(BaseInvocation):
|
||||
),
|
||||
)
|
||||
|
||||
# TODO: move image processors to separate file (image_analysis.py
|
||||
|
||||
class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
|
||||
"""Base class for invocations that preprocess images for ControlNet"""
|
||||
|
||||
@ -452,6 +462,104 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationCo
|
||||
# fmt: on
|
||||
|
||||
def run_processor(self, image):
|
||||
# MediaPipeFaceDetector throws an error if image has alpha channel
|
||||
# so convert to RGB if needed
|
||||
if image.mode == 'RGBA':
|
||||
image = image.convert('RGB')
|
||||
mediapipe_face_processor = MediapipeFaceDetector()
|
||||
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
|
||||
return processed_image
|
||||
|
||||
class LeresImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
||||
"""Applies leres processing to image"""
|
||||
# fmt: off
|
||||
type: Literal["leres_image_processor"] = "leres_image_processor"
|
||||
# Inputs
|
||||
thr_a: float = Field(default=0, description="Leres parameter `thr_a`")
|
||||
thr_b: float = Field(default=0, description="Leres parameter `thr_b`")
|
||||
boost: bool = Field(default=False, description="Whether to use boost mode")
|
||||
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
||||
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
||||
# fmt: on
|
||||
|
||||
def run_processor(self, image):
|
||||
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = leres_processor(image,
|
||||
thr_a=self.thr_a,
|
||||
thr_b=self.thr_b,
|
||||
boost=self.boost,
|
||||
detect_resolution=self.detect_resolution,
|
||||
image_resolution=self.image_resolution)
|
||||
return processed_image
|
||||
|
||||
|
||||
class TileResamplerProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
||||
|
||||
# fmt: off
|
||||
type: Literal["tile_image_processor"] = "tile_image_processor"
|
||||
# Inputs
|
||||
#res: int = Field(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
|
||||
down_sampling_rate: float = Field(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
|
||||
# fmt: on
|
||||
|
||||
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
|
||||
def tile_resample(self,
|
||||
np_img: np.ndarray,
|
||||
res=512, # never used?
|
||||
down_sampling_rate=1.0,
|
||||
):
|
||||
np_img = HWC3(np_img)
|
||||
if down_sampling_rate < 1.1:
|
||||
return np_img
|
||||
H, W, C = np_img.shape
|
||||
H = int(float(H) / float(down_sampling_rate))
|
||||
W = int(float(W) / float(down_sampling_rate))
|
||||
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
|
||||
return np_img
|
||||
|
||||
def run_processor(self, img):
|
||||
np_img = np.array(img, dtype=np.uint8)
|
||||
processed_np_image = self.tile_resample(np_img,
|
||||
#res=self.tile_size,
|
||||
down_sampling_rate=self.down_sampling_rate
|
||||
)
|
||||
processed_image = Image.fromarray(processed_np_image)
|
||||
return processed_image
|
||||
|
||||
|
||||
|
||||
|
||||
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
||||
"""Applies segment anything processing to image"""
|
||||
# fmt: off
|
||||
type: Literal["segment_anything_processor"] = "segment_anything_processor"
|
||||
# fmt: on
|
||||
|
||||
def run_processor(self, image):
|
||||
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
|
||||
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
|
||||
np_img = np.array(image, dtype=np.uint8)
|
||||
processed_image = segment_anything_processor(np_img)
|
||||
return processed_image
|
||||
|
||||
class SamDetectorReproducibleColors(SamDetector):
|
||||
|
||||
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
|
||||
# base class show_anns() method randomizes colors,
|
||||
# which seems to also lead to non-reproducible image generation
|
||||
# so using ADE20k color palette instead
|
||||
def show_anns(self, anns: List[Dict]):
|
||||
if len(anns) == 0:
|
||||
return
|
||||
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
|
||||
h, w = anns[0]['segmentation'].shape
|
||||
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
|
||||
palette = ade_palette()
|
||||
for i, ann in enumerate(sorted_anns):
|
||||
m = ann['segmentation']
|
||||
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
|
||||
# doing modulo just in case number of annotated regions exceeds number of colors in palette
|
||||
ann_color = palette[i % len(palette)]
|
||||
img[:, :] = ann_color
|
||||
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
|
||||
return np.array(final_img, dtype=np.uint8)
|
||||
|
@ -23,7 +23,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
|
||||
PostprocessingSettings
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||
from ...backend.util.devices import torch_dtype
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
||||
InvocationConfig, InvocationContext)
|
||||
@ -59,31 +59,12 @@ def build_latents_output(latents_name: str, latents: torch.Tensor):
|
||||
height=latents.size()[2] * 8,
|
||||
)
|
||||
|
||||
class NoiseOutput(BaseInvocationOutput):
|
||||
"""Invocation noise output"""
|
||||
#fmt: off
|
||||
type: Literal["noise_output"] = "noise_output"
|
||||
|
||||
# Inputs
|
||||
noise: LatentsField = Field(default=None, description="The output noise")
|
||||
width: int = Field(description="The width of the noise in pixels")
|
||||
height: int = Field(description="The height of the noise in pixels")
|
||||
#fmt: on
|
||||
|
||||
def build_noise_output(latents_name: str, latents: torch.Tensor):
|
||||
return NoiseOutput(
|
||||
noise=LatentsField(latents_name=latents_name),
|
||||
width=latents.size()[3] * 8,
|
||||
height=latents.size()[2] * 8,
|
||||
)
|
||||
|
||||
|
||||
SAMPLER_NAME_VALUES = Literal[
|
||||
tuple(list(SCHEDULER_MAP.keys()))
|
||||
]
|
||||
|
||||
|
||||
|
||||
def get_scheduler(
|
||||
context: InvocationContext,
|
||||
scheduler_info: ModelInfo,
|
||||
@ -105,62 +86,6 @@ def get_scheduler(
|
||||
return scheduler
|
||||
|
||||
|
||||
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(latent_channels, 4)
|
||||
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
|
||||
generator = torch.Generator(device=use_device).manual_seed(seed)
|
||||
x = torch.randn(
|
||||
[
|
||||
1,
|
||||
input_channels,
|
||||
height // downsampling_factor,
|
||||
width // downsampling_factor,
|
||||
],
|
||||
dtype=torch_dtype(device),
|
||||
device=use_device,
|
||||
generator=generator,
|
||||
).to(device)
|
||||
# if self.perlin > 0.0:
|
||||
# perlin_noise = self.get_perlin_noise(
|
||||
# width // self.downsampling_factor, height // self.downsampling_factor
|
||||
# )
|
||||
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
|
||||
return x
|
||||
|
||||
class NoiseInvocation(BaseInvocation):
|
||||
"""Generates latent noise."""
|
||||
|
||||
type: Literal["noise"] = "noise"
|
||||
|
||||
# Inputs
|
||||
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed)
|
||||
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
|
||||
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
|
||||
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["latents", "noise"],
|
||||
},
|
||||
}
|
||||
|
||||
@validator("seed", pre=True)
|
||||
def modulo_seed(cls, v):
|
||||
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
|
||||
return v % SEED_MAX
|
||||
|
||||
def invoke(self, context: InvocationContext) -> NoiseOutput:
|
||||
device = torch.device(choose_torch_device())
|
||||
noise = get_noise(self.width, self.height, device, self.seed)
|
||||
|
||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||
context.services.latents.save(name, noise)
|
||||
return build_noise_output(latents_name=name, latents=noise)
|
||||
|
||||
|
||||
# Text to image
|
||||
class TextToLatentsInvocation(BaseInvocation):
|
||||
"""Generates latents from conditionings."""
|
||||
|
@ -73,7 +73,7 @@ class PipelineModelLoaderInvocation(BaseInvocation):
|
||||
|
||||
base_model = self.model.base_model
|
||||
model_name = self.model.model_name
|
||||
model_type = ModelType.Pipeline
|
||||
model_type = ModelType.Main
|
||||
|
||||
# TODO: not found exceptions
|
||||
if not context.services.model_manager.model_exists(
|
||||
|
134
invokeai/app/invocations/noise.py
Normal file
134
invokeai/app/invocations/noise.py
Normal file
@ -0,0 +1,134 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
|
||||
|
||||
import math
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import Field, validator
|
||||
import torch
|
||||
from invokeai.app.invocations.latent import LatentsField
|
||||
|
||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
InvocationConfig,
|
||||
InvocationContext,
|
||||
)
|
||||
|
||||
"""
|
||||
Utilities
|
||||
"""
|
||||
|
||||
|
||||
def get_noise(
|
||||
width: int,
|
||||
height: int,
|
||||
device: torch.device,
|
||||
seed: int = 0,
|
||||
latent_channels: int = 4,
|
||||
downsampling_factor: int = 8,
|
||||
use_cpu: bool = True,
|
||||
perlin: float = 0.0,
|
||||
):
|
||||
"""Generate noise for a given image size."""
|
||||
noise_device_type = "cpu" if (use_cpu or device.type == "mps") else device.type
|
||||
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(latent_channels, 4)
|
||||
generator = torch.Generator(device=noise_device_type).manual_seed(seed)
|
||||
|
||||
noise_tensor = torch.randn(
|
||||
[
|
||||
1,
|
||||
input_channels,
|
||||
height // downsampling_factor,
|
||||
width // downsampling_factor,
|
||||
],
|
||||
dtype=torch_dtype(device),
|
||||
device=noise_device_type,
|
||||
generator=generator,
|
||||
).to(device)
|
||||
|
||||
return noise_tensor
|
||||
|
||||
|
||||
"""
|
||||
Nodes
|
||||
"""
|
||||
|
||||
|
||||
class NoiseOutput(BaseInvocationOutput):
|
||||
"""Invocation noise output"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["noise_output"] = "noise_output"
|
||||
|
||||
# Inputs
|
||||
noise: LatentsField = Field(default=None, description="The output noise")
|
||||
width: int = Field(description="The width of the noise in pixels")
|
||||
height: int = Field(description="The height of the noise in pixels")
|
||||
# fmt: on
|
||||
|
||||
|
||||
def build_noise_output(latents_name: str, latents: torch.Tensor):
|
||||
return NoiseOutput(
|
||||
noise=LatentsField(latents_name=latents_name),
|
||||
width=latents.size()[3] * 8,
|
||||
height=latents.size()[2] * 8,
|
||||
)
|
||||
|
||||
|
||||
class NoiseInvocation(BaseInvocation):
|
||||
"""Generates latent noise."""
|
||||
|
||||
type: Literal["noise"] = "noise"
|
||||
|
||||
# Inputs
|
||||
seed: int = Field(
|
||||
ge=0,
|
||||
le=SEED_MAX,
|
||||
description="The seed to use",
|
||||
default_factory=get_random_seed,
|
||||
)
|
||||
width: int = Field(
|
||||
default=512,
|
||||
multiple_of=8,
|
||||
gt=0,
|
||||
description="The width of the resulting noise",
|
||||
)
|
||||
height: int = Field(
|
||||
default=512,
|
||||
multiple_of=8,
|
||||
gt=0,
|
||||
description="The height of the resulting noise",
|
||||
)
|
||||
use_cpu: bool = Field(
|
||||
default=True,
|
||||
description="Use CPU for noise generation (for reproducible results across platforms)",
|
||||
)
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["latents", "noise"],
|
||||
},
|
||||
}
|
||||
|
||||
@validator("seed", pre=True)
|
||||
def modulo_seed(cls, v):
|
||||
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
|
||||
return v % SEED_MAX
|
||||
|
||||
def invoke(self, context: InvocationContext) -> NoiseOutput:
|
||||
noise = get_noise(
|
||||
width=self.width,
|
||||
height=self.height,
|
||||
device=choose_torch_device(),
|
||||
seed=self.seed,
|
||||
use_cpu=self.use_cpu,
|
||||
)
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.save(name, noise)
|
||||
return build_noise_output(latents_name=name, latents=noise)
|
@ -133,20 +133,19 @@ class StepParamEasingInvocation(BaseInvocation):
|
||||
postlist = list(num_poststeps * [self.post_end_value])
|
||||
|
||||
if log_diagnostics:
|
||||
logger = InvokeAILogger.getLogger(name="StepParamEasing")
|
||||
logger.debug("start_step: " + str(start_step))
|
||||
logger.debug("end_step: " + str(end_step))
|
||||
logger.debug("num_easing_steps: " + str(num_easing_steps))
|
||||
logger.debug("num_presteps: " + str(num_presteps))
|
||||
logger.debug("num_poststeps: " + str(num_poststeps))
|
||||
logger.debug("prelist size: " + str(len(prelist)))
|
||||
logger.debug("postlist size: " + str(len(postlist)))
|
||||
logger.debug("prelist: " + str(prelist))
|
||||
logger.debug("postlist: " + str(postlist))
|
||||
context.services.logger.debug("start_step: " + str(start_step))
|
||||
context.services.logger.debug("end_step: " + str(end_step))
|
||||
context.services.logger.debug("num_easing_steps: " + str(num_easing_steps))
|
||||
context.services.logger.debug("num_presteps: " + str(num_presteps))
|
||||
context.services.logger.debug("num_poststeps: " + str(num_poststeps))
|
||||
context.services.logger.debug("prelist size: " + str(len(prelist)))
|
||||
context.services.logger.debug("postlist size: " + str(len(postlist)))
|
||||
context.services.logger.debug("prelist: " + str(prelist))
|
||||
context.services.logger.debug("postlist: " + str(postlist))
|
||||
|
||||
easing_class = EASING_FUNCTIONS_MAP[self.easing]
|
||||
if log_diagnostics:
|
||||
logger.debug("easing class: " + str(easing_class))
|
||||
context.services.logger.debug("easing class: " + str(easing_class))
|
||||
easing_list = list()
|
||||
if self.mirror: # "expected" mirroring
|
||||
# if number of steps is even, squeeze duration down to (number_of_steps)/2
|
||||
@ -156,7 +155,7 @@ class StepParamEasingInvocation(BaseInvocation):
|
||||
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
|
||||
|
||||
base_easing_duration = int(np.ceil(num_easing_steps/2.0))
|
||||
if log_diagnostics: logger.debug("base easing duration: " + str(base_easing_duration))
|
||||
if log_diagnostics: context.services.logger.debug("base easing duration: " + str(base_easing_duration))
|
||||
even_num_steps = (num_easing_steps % 2 == 0) # even number of steps
|
||||
easing_function = easing_class(start=self.start_value,
|
||||
end=self.end_value,
|
||||
@ -166,14 +165,14 @@ class StepParamEasingInvocation(BaseInvocation):
|
||||
easing_val = easing_function.ease(step_index)
|
||||
base_easing_vals.append(easing_val)
|
||||
if log_diagnostics:
|
||||
logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
|
||||
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
|
||||
if even_num_steps:
|
||||
mirror_easing_vals = list(reversed(base_easing_vals))
|
||||
else:
|
||||
mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
|
||||
if log_diagnostics:
|
||||
logger.debug("base easing vals: " + str(base_easing_vals))
|
||||
logger.debug("mirror easing vals: " + str(mirror_easing_vals))
|
||||
context.services.logger.debug("base easing vals: " + str(base_easing_vals))
|
||||
context.services.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
|
||||
easing_list = base_easing_vals + mirror_easing_vals
|
||||
|
||||
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
|
||||
@ -206,12 +205,12 @@ class StepParamEasingInvocation(BaseInvocation):
|
||||
step_val = easing_function.ease(step_index)
|
||||
easing_list.append(step_val)
|
||||
if log_diagnostics:
|
||||
logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
|
||||
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
|
||||
|
||||
if log_diagnostics:
|
||||
logger.debug("prelist size: " + str(len(prelist)))
|
||||
logger.debug("easing_list size: " + str(len(easing_list)))
|
||||
logger.debug("postlist size: " + str(len(postlist)))
|
||||
context.services.logger.debug("prelist size: " + str(len(prelist)))
|
||||
context.services.logger.debug("easing_list size: " + str(len(easing_list)))
|
||||
context.services.logger.debug("postlist size: " + str(len(postlist)))
|
||||
|
||||
param_list = prelist + easing_list + postlist
|
||||
|
||||
|
@ -15,7 +15,7 @@ InvokeAI:
|
||||
conf_path: configs/models.yaml
|
||||
legacy_conf_dir: configs/stable-diffusion
|
||||
outdir: outputs
|
||||
autoconvert_dir: null
|
||||
autoimport_dir: null
|
||||
Models:
|
||||
model: stable-diffusion-1.5
|
||||
embeddings: true
|
||||
@ -367,16 +367,19 @@ setting environment variables INVOKEAI_<setting>.
|
||||
|
||||
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
|
||||
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
|
||||
max_loaded_models : int = Field(default=2, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
|
||||
max_loaded_models : int = Field(default=3, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
|
||||
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
|
||||
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
|
||||
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
|
||||
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
|
||||
|
||||
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
|
||||
autoconvert_dir : Path = Field(default=None, description='Path to a directory of ckpt files to be converted into diffusers and imported on startup.', category='Paths')
|
||||
autoimport_dir : Path = Field(default='autoimport/main', description='Path to a directory of models files to be imported on startup.', category='Paths')
|
||||
lora_dir : Path = Field(default='autoimport/lora', description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
|
||||
embedding_dir : Path = Field(default='autoimport/embedding', description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
|
||||
controlnet_dir : Path = Field(default='autoimport/controlnet', description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
|
||||
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
|
||||
models_dir : Path = Field(default='./models', description='Path to the models directory', category='Paths')
|
||||
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
|
||||
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
|
||||
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
|
||||
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
|
||||
|
@ -1,4 +1,5 @@
|
||||
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
|
||||
from ..invocations.latent import LatentsToImageInvocation, TextToLatentsInvocation
|
||||
from ..invocations.noise import NoiseInvocation
|
||||
from ..invocations.compel import CompelInvocation
|
||||
from ..invocations.params import ParamIntInvocation
|
||||
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
|
||||
|
@ -7,8 +7,6 @@
|
||||
# Coauthor: Kevin Turner http://github.com/keturn
|
||||
#
|
||||
import sys
|
||||
print("Loading Python libraries...\n",file=sys.stderr)
|
||||
|
||||
import argparse
|
||||
import io
|
||||
import os
|
||||
@ -16,6 +14,7 @@ import shutil
|
||||
import textwrap
|
||||
import traceback
|
||||
import warnings
|
||||
import yaml
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from shutil import get_terminal_size
|
||||
@ -25,6 +24,7 @@ from urllib import request
|
||||
import npyscreen
|
||||
import transformers
|
||||
from diffusers import AutoencoderKL
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
from huggingface_hub import HfFolder
|
||||
from huggingface_hub import login as hf_hub_login
|
||||
from omegaconf import OmegaConf
|
||||
@ -34,6 +34,8 @@ from transformers import (
|
||||
CLIPSegForImageSegmentation,
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
AutoFeatureExtractor,
|
||||
BertTokenizerFast,
|
||||
)
|
||||
import invokeai.configs as configs
|
||||
|
||||
@ -52,12 +54,13 @@ from invokeai.frontend.install.widgets import (
|
||||
)
|
||||
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
|
||||
from invokeai.backend.install.model_install_backend import (
|
||||
default_dataset,
|
||||
download_from_hf,
|
||||
hf_download_with_resume,
|
||||
recommended_datasets,
|
||||
UserSelections,
|
||||
hf_download_from_pretrained,
|
||||
InstallSelections,
|
||||
ModelInstall,
|
||||
)
|
||||
from invokeai.backend.model_management.model_probe import (
|
||||
ModelType, BaseModelType
|
||||
)
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
transformers.logging.set_verbosity_error()
|
||||
@ -81,7 +84,7 @@ INIT_FILE_PREAMBLE = """# InvokeAI initialization file
|
||||
# or renaming it and then running invokeai-configure again.
|
||||
"""
|
||||
|
||||
logger=None
|
||||
logger=InvokeAILogger.getLogger()
|
||||
|
||||
# --------------------------------------------
|
||||
def postscript(errors: None):
|
||||
@ -162,75 +165,91 @@ class ProgressBar:
|
||||
# ---------------------------------------------
|
||||
def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"):
|
||||
try:
|
||||
print(f"Installing {label} model file {model_url}...", end="", file=sys.stderr)
|
||||
logger.info(f"Installing {label} model file {model_url}...")
|
||||
if not os.path.exists(model_dest):
|
||||
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
||||
request.urlretrieve(
|
||||
model_url, model_dest, ProgressBar(os.path.basename(model_dest))
|
||||
)
|
||||
print("...downloaded successfully", file=sys.stderr)
|
||||
logger.info("...downloaded successfully")
|
||||
else:
|
||||
print("...exists", file=sys.stderr)
|
||||
logger.info("...exists")
|
||||
except Exception:
|
||||
print("...download failed", file=sys.stderr)
|
||||
print(f"Error downloading {label} model", file=sys.stderr)
|
||||
logger.info("...download failed")
|
||||
logger.info(f"Error downloading {label} model")
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
# this will preload the Bert tokenizer fles
|
||||
def download_bert():
|
||||
print("Installing bert tokenizer...", file=sys.stderr)
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
from transformers import BertTokenizerFast
|
||||
def download_conversion_models():
|
||||
target_dir = config.root_path / 'models/core/convert'
|
||||
kwargs = dict() # for future use
|
||||
try:
|
||||
logger.info('Downloading core tokenizers and text encoders')
|
||||
|
||||
download_from_hf(BertTokenizerFast, "bert-base-uncased")
|
||||
# bert
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs)
|
||||
bert.save_pretrained(target_dir / 'bert-base-uncased', safe_serialization=True)
|
||||
|
||||
# sd-1
|
||||
repo_id = 'openai/clip-vit-large-patch14'
|
||||
hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / 'clip-vit-large-patch14')
|
||||
hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / 'clip-vit-large-patch14')
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_sd1_clip():
|
||||
print("Installing SD1 clip model...", file=sys.stderr)
|
||||
version = "openai/clip-vit-large-patch14"
|
||||
download_from_hf(CLIPTokenizer, version)
|
||||
download_from_hf(CLIPTextModel, version)
|
||||
# sd-2
|
||||
repo_id = "stabilityai/stable-diffusion-2"
|
||||
pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'tokenizer', safe_serialization=True)
|
||||
|
||||
pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'text_encoder', safe_serialization=True)
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_sd2_clip():
|
||||
version = "stabilityai/stable-diffusion-2"
|
||||
print("Installing SD2 clip model...", file=sys.stderr)
|
||||
download_from_hf(CLIPTokenizer, version, subfolder="tokenizer")
|
||||
download_from_hf(CLIPTextModel, version, subfolder="text_encoder")
|
||||
# VAE
|
||||
logger.info('Downloading stable diffusion VAE')
|
||||
vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse', **kwargs)
|
||||
vae.save_pretrained(target_dir / 'sd-vae-ft-mse', safe_serialization=True)
|
||||
|
||||
# safety checking
|
||||
logger.info('Downloading safety checker')
|
||||
repo_id = "CompVis/stable-diffusion-safety-checker"
|
||||
pipeline = AutoFeatureExtractor.from_pretrained(repo_id,**kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True)
|
||||
|
||||
pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id,**kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True)
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_realesrgan():
|
||||
print("Installing models from RealESRGAN...", file=sys.stderr)
|
||||
logger.info("Installing models from RealESRGAN...")
|
||||
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
|
||||
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
|
||||
|
||||
model_dest = config.root_path / "models/realesrgan/realesr-general-x4v3.pth"
|
||||
wdn_model_dest = config.root_path / "models/realesrgan/realesr-general-wdn-x4v3.pth"
|
||||
model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-x4v3.pth"
|
||||
wdn_model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-wdn-x4v3.pth"
|
||||
|
||||
download_with_progress_bar(model_url, str(model_dest), "RealESRGAN")
|
||||
download_with_progress_bar(wdn_model_url, str(wdn_model_dest), "RealESRGANwdn")
|
||||
|
||||
|
||||
def download_gfpgan():
|
||||
print("Installing GFPGAN models...", file=sys.stderr)
|
||||
logger.info("Installing GFPGAN models...")
|
||||
for model in (
|
||||
[
|
||||
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
|
||||
"./models/gfpgan/GFPGANv1.4.pth",
|
||||
"./models/core/face_restoration/gfpgan/GFPGANv1.4.pth",
|
||||
],
|
||||
[
|
||||
"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",
|
||||
"./models/gfpgan/weights/detection_Resnet50_Final.pth",
|
||||
"./models/core/face_restoration/gfpgan/weights/detection_Resnet50_Final.pth",
|
||||
],
|
||||
[
|
||||
"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",
|
||||
"./models/gfpgan/weights/parsing_parsenet.pth",
|
||||
"./models/core/face_restoration/gfpgan/weights/parsing_parsenet.pth",
|
||||
],
|
||||
):
|
||||
model_url, model_dest = model[0], config.root_path / model[1]
|
||||
@ -239,70 +258,32 @@ def download_gfpgan():
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_codeformer():
|
||||
print("Installing CodeFormer model file...", file=sys.stderr)
|
||||
logger.info("Installing CodeFormer model file...")
|
||||
model_url = (
|
||||
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
|
||||
)
|
||||
model_dest = config.root_path / "models/codeformer/codeformer.pth"
|
||||
model_dest = config.root_path / "models/core/face_restoration/codeformer/codeformer.pth"
|
||||
download_with_progress_bar(model_url, str(model_dest), "CodeFormer")
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_clipseg():
|
||||
print("Installing clipseg model for text-based masking...", file=sys.stderr)
|
||||
logger.info("Installing clipseg model for text-based masking...")
|
||||
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
|
||||
try:
|
||||
download_from_hf(AutoProcessor, CLIPSEG_MODEL)
|
||||
download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL)
|
||||
hf_download_from_pretrained(AutoProcessor, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
|
||||
hf_download_from_pretrained(CLIPSegForImageSegmentation, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
|
||||
except Exception:
|
||||
print("Error installing clipseg model:")
|
||||
print(traceback.format_exc())
|
||||
logger.info("Error installing clipseg model:")
|
||||
logger.info(traceback.format_exc())
|
||||
|
||||
|
||||
# -------------------------------------
|
||||
def download_safety_checker():
|
||||
print("Installing model for NSFW content detection...", file=sys.stderr)
|
||||
try:
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
||||
StableDiffusionSafetyChecker,
|
||||
)
|
||||
from transformers import AutoFeatureExtractor
|
||||
except ModuleNotFoundError:
|
||||
print("Error installing NSFW checker model:")
|
||||
print(traceback.format_exc())
|
||||
return
|
||||
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
||||
print("AutoFeatureExtractor...", file=sys.stderr)
|
||||
download_from_hf(AutoFeatureExtractor, safety_model_id)
|
||||
print("StableDiffusionSafetyChecker...", file=sys.stderr)
|
||||
download_from_hf(StableDiffusionSafetyChecker, safety_model_id)
|
||||
|
||||
|
||||
# -------------------------------------
|
||||
def download_vaes():
|
||||
print("Installing stabilityai VAE...", file=sys.stderr)
|
||||
try:
|
||||
# first the diffusers version
|
||||
repo_id = "stabilityai/sd-vae-ft-mse"
|
||||
args = dict(
|
||||
cache_dir=config.cache_dir,
|
||||
)
|
||||
if not AutoencoderKL.from_pretrained(repo_id, **args):
|
||||
raise Exception(f"download of {repo_id} failed")
|
||||
|
||||
repo_id = "stabilityai/sd-vae-ft-mse-original"
|
||||
model_name = "vae-ft-mse-840000-ema-pruned.ckpt"
|
||||
# next the legacy checkpoint version
|
||||
if not hf_download_with_resume(
|
||||
repo_id=repo_id,
|
||||
model_name=model_name,
|
||||
model_dir=str(config.root_path / Model_dir / Weights_dir),
|
||||
):
|
||||
raise Exception(f"download of {model_name} failed")
|
||||
except Exception as e:
|
||||
print(f"Error downloading StabilityAI standard VAE: {str(e)}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
def download_support_models():
|
||||
download_realesrgan()
|
||||
download_gfpgan()
|
||||
download_codeformer()
|
||||
download_clipseg()
|
||||
download_conversion_models()
|
||||
|
||||
# -------------------------------------
|
||||
def get_root(root: str = None) -> str:
|
||||
@ -465,39 +446,19 @@ to allow InvokeAI to download restricted styles & subjects from the "Concept Lib
|
||||
editable=False,
|
||||
color="CONTROL",
|
||||
)
|
||||
self.embedding_dir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name=" Textual Inversion Embeddings:",
|
||||
value=str(default_embedding_dir()),
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
use_two_lines=False,
|
||||
labelColor="GOOD",
|
||||
begin_entry_at=32,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.lora_dir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name=" LoRA and LyCORIS:",
|
||||
value=str(default_lora_dir()),
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
use_two_lines=False,
|
||||
labelColor="GOOD",
|
||||
begin_entry_at=32,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.controlnet_dir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name=" ControlNets:",
|
||||
value=str(default_controlnet_dir()),
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
use_two_lines=False,
|
||||
labelColor="GOOD",
|
||||
begin_entry_at=32,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.autoimport_dirs = {}
|
||||
for description, config_name, path in autoimport_paths(old_opts):
|
||||
self.autoimport_dirs[config_name] = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name=description+':',
|
||||
value=str(path),
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
use_two_lines=False,
|
||||
labelColor="GOOD",
|
||||
begin_entry_at=32,
|
||||
scroll_exit=True
|
||||
)
|
||||
self.nextrely += 1
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.TitleFixedText,
|
||||
@ -562,10 +523,6 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
||||
bad_fields.append(
|
||||
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
|
||||
)
|
||||
if not Path(opt.embedding_dir).parent.exists():
|
||||
bad_fields.append(
|
||||
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
|
||||
)
|
||||
if len(bad_fields) > 0:
|
||||
message = "The following problems were detected and must be corrected:\n"
|
||||
for problem in bad_fields:
|
||||
@ -585,12 +542,15 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
||||
"max_loaded_models",
|
||||
"xformers_enabled",
|
||||
"always_use_cpu",
|
||||
"embedding_dir",
|
||||
"lora_dir",
|
||||
"controlnet_dir",
|
||||
]:
|
||||
setattr(new_opts, attr, getattr(self, attr).value)
|
||||
|
||||
for attr in self.autoimport_dirs:
|
||||
directory = Path(self.autoimport_dirs[attr].value)
|
||||
if directory.is_relative_to(config.root_path):
|
||||
directory = directory.relative_to(config.root_path)
|
||||
setattr(new_opts, attr, directory)
|
||||
|
||||
new_opts.hf_token = self.hf_token.value
|
||||
new_opts.license_acceptance = self.license_acceptance.value
|
||||
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
|
||||
@ -607,7 +567,8 @@ class EditOptApplication(npyscreen.NPSAppManaged):
|
||||
self.program_opts = program_opts
|
||||
self.invokeai_opts = invokeai_opts
|
||||
self.user_cancelled = False
|
||||
self.user_selections = default_user_selections(program_opts)
|
||||
self.autoload_pending = True
|
||||
self.install_selections = default_user_selections(program_opts)
|
||||
|
||||
def onStart(self):
|
||||
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
||||
@ -642,40 +603,61 @@ def default_startup_options(init_file: Path) -> Namespace:
|
||||
opts.nsfw_checker = True
|
||||
return opts
|
||||
|
||||
def default_user_selections(program_opts: Namespace) -> UserSelections:
|
||||
return UserSelections(
|
||||
install_models=default_dataset()
|
||||
def default_user_selections(program_opts: Namespace) -> InstallSelections:
|
||||
installer = ModelInstall(config)
|
||||
models = installer.all_models()
|
||||
return InstallSelections(
|
||||
install_models=[models[installer.default_model()].path or models[installer.default_model()].repo_id]
|
||||
if program_opts.default_only
|
||||
else recommended_datasets()
|
||||
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
|
||||
if program_opts.yes_to_all
|
||||
else dict(),
|
||||
purge_deleted_models=False,
|
||||
scan_directory=None,
|
||||
autoscan_on_startup=None,
|
||||
else list(),
|
||||
# scan_directory=None,
|
||||
# autoscan_on_startup=None,
|
||||
)
|
||||
|
||||
# -------------------------------------
|
||||
def autoimport_paths(config: InvokeAIAppConfig):
|
||||
return [
|
||||
('Checkpoints & diffusers models', 'autoimport_dir', config.root_path / config.autoimport_dir),
|
||||
('LoRA/LyCORIS models', 'lora_dir', config.root_path / config.lora_dir),
|
||||
('Controlnet models', 'controlnet_dir', config.root_path / config.controlnet_dir),
|
||||
('Textual Inversion Embeddings', 'embedding_dir', config.root_path / config.embedding_dir),
|
||||
]
|
||||
|
||||
# -------------------------------------
|
||||
def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
||||
print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
|
||||
|
||||
logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
|
||||
for name in (
|
||||
"models",
|
||||
"configs",
|
||||
"embeddings",
|
||||
"databases",
|
||||
"loras",
|
||||
"controlnets",
|
||||
"text-inversion-output",
|
||||
"text-inversion-training-data",
|
||||
"configs"
|
||||
):
|
||||
os.makedirs(os.path.join(root, name), exist_ok=True)
|
||||
for model_type in ModelType:
|
||||
Path(root, 'autoimport', model_type.value).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
configs_src = Path(configs.__path__[0])
|
||||
configs_dest = root / "configs"
|
||||
if not os.path.samefile(configs_src, configs_dest):
|
||||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||||
|
||||
dest = root / 'models'
|
||||
for model_base in BaseModelType:
|
||||
for model_type in ModelType:
|
||||
path = dest / model_base.value / model_type.value
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
path = dest / 'core'
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with open(root / 'configs' / 'models.yaml','w') as yaml_file:
|
||||
yaml_file.write(yaml.dump({'__metadata__':
|
||||
{'version':'3.0.0'}
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
# -------------------------------------
|
||||
def run_console_ui(
|
||||
@ -699,7 +681,7 @@ def run_console_ui(
|
||||
if editApp.user_cancelled:
|
||||
return (None, None)
|
||||
else:
|
||||
return (editApp.new_opts, editApp.user_selections)
|
||||
return (editApp.new_opts, editApp.install_selections)
|
||||
|
||||
|
||||
# -------------------------------------
|
||||
@ -722,18 +704,6 @@ def write_opts(opts: Namespace, init_file: Path):
|
||||
def default_output_dir() -> Path:
|
||||
return config.root_path / "outputs"
|
||||
|
||||
# -------------------------------------
|
||||
def default_embedding_dir() -> Path:
|
||||
return config.root_path / "embeddings"
|
||||
|
||||
# -------------------------------------
|
||||
def default_lora_dir() -> Path:
|
||||
return config.root_path / "loras"
|
||||
|
||||
# -------------------------------------
|
||||
def default_controlnet_dir() -> Path:
|
||||
return config.root_path / "controlnets"
|
||||
|
||||
# -------------------------------------
|
||||
def write_default_options(program_opts: Namespace, initfile: Path):
|
||||
opt = default_startup_options(initfile)
|
||||
@ -758,13 +728,41 @@ def migrate_init_file(legacy_format:Path):
|
||||
new.nsfw_checker = old.safety_checker
|
||||
new.xformers_enabled = old.xformers
|
||||
new.conf_path = old.conf
|
||||
new.embedding_dir = old.embedding_path
|
||||
new.root = legacy_format.parent.resolve()
|
||||
|
||||
invokeai_yaml = legacy_format.parent / 'invokeai.yaml'
|
||||
with open(invokeai_yaml,"w", encoding="utf-8") as outfile:
|
||||
outfile.write(new.to_yaml())
|
||||
|
||||
legacy_format.replace(legacy_format.parent / 'invokeai.init.old')
|
||||
legacy_format.replace(legacy_format.parent / 'invokeai.init.orig')
|
||||
|
||||
# -------------------------------------
|
||||
def migrate_models(root: Path):
|
||||
from invokeai.backend.install.migrate_to_3 import do_migrate
|
||||
do_migrate(root, root)
|
||||
|
||||
def migrate_if_needed(opt: Namespace, root: Path)->bool:
|
||||
# We check for to see if the runtime directory is correctly initialized.
|
||||
old_init_file = root / 'invokeai.init'
|
||||
new_init_file = root / 'invokeai.yaml'
|
||||
old_hub = root / 'models/hub'
|
||||
migration_needed = old_init_file.exists() and not new_init_file.exists() or old_hub.exists()
|
||||
|
||||
if migration_needed:
|
||||
if opt.yes_to_all or \
|
||||
yes_or_no(f'{str(config.root_path)} appears to be a 2.3 format root directory. Convert to version 3.0?'):
|
||||
|
||||
logger.info('** Migrating invokeai.init to invokeai.yaml')
|
||||
migrate_init_file(old_init_file)
|
||||
config.parse_args(argv=[],conf=OmegaConf.load(new_init_file))
|
||||
|
||||
if old_hub.exists():
|
||||
migrate_models(config.root_path)
|
||||
else:
|
||||
print('Cannot continue without conversion. Aborting.')
|
||||
|
||||
return migration_needed
|
||||
|
||||
|
||||
# -------------------------------------
|
||||
def main():
|
||||
@ -831,20 +829,16 @@ def main():
|
||||
errors = set()
|
||||
|
||||
try:
|
||||
models_to_download = default_user_selections(opt)
|
||||
|
||||
# We check for to see if the runtime directory is correctly initialized.
|
||||
old_init_file = config.root_path / 'invokeai.init'
|
||||
new_init_file = config.root_path / 'invokeai.yaml'
|
||||
if old_init_file.exists() and not new_init_file.exists():
|
||||
print('** Migrating invokeai.init to invokeai.yaml')
|
||||
migrate_init_file(old_init_file)
|
||||
# Load new init file into config
|
||||
config.parse_args(argv=[],conf=OmegaConf.load(new_init_file))
|
||||
# if we do a root migration/upgrade, then we are keeping previous
|
||||
# configuration and we are done.
|
||||
if migrate_if_needed(opt, config.root_path):
|
||||
sys.exit(0)
|
||||
|
||||
if not config.model_conf_path.exists():
|
||||
initialize_rootdir(config.root_path, opt.yes_to_all)
|
||||
|
||||
models_to_download = default_user_selections(opt)
|
||||
new_init_file = config.root_path / 'invokeai.yaml'
|
||||
if opt.yes_to_all:
|
||||
write_default_options(opt, new_init_file)
|
||||
init_options = Namespace(
|
||||
@ -855,29 +849,21 @@ def main():
|
||||
if init_options:
|
||||
write_opts(init_options, new_init_file)
|
||||
else:
|
||||
print(
|
||||
logger.info(
|
||||
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
|
||||
)
|
||||
sys.exit(0)
|
||||
|
||||
if opt.skip_support_models:
|
||||
print("\n** SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST **")
|
||||
logger.info("SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST")
|
||||
else:
|
||||
print("\n** CHECKING/UPDATING SUPPORT MODELS **")
|
||||
download_bert()
|
||||
download_sd1_clip()
|
||||
download_sd2_clip()
|
||||
download_realesrgan()
|
||||
download_gfpgan()
|
||||
download_codeformer()
|
||||
download_clipseg()
|
||||
download_safety_checker()
|
||||
download_vaes()
|
||||
logger.info("CHECKING/UPDATING SUPPORT MODELS")
|
||||
download_support_models()
|
||||
|
||||
if opt.skip_sd_weights:
|
||||
print("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
|
||||
logger.info("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
|
||||
elif models_to_download:
|
||||
print("\n** DOWNLOADING DIFFUSION WEIGHTS **")
|
||||
logger.info("\n** DOWNLOADING DIFFUSION WEIGHTS **")
|
||||
process_and_execute(opt, models_to_download)
|
||||
|
||||
postscript(errors=errors)
|
||||
|
581
invokeai/backend/install/migrate_to_3.py
Normal file
581
invokeai/backend/install/migrate_to_3.py
Normal file
@ -0,0 +1,581 @@
|
||||
'''
|
||||
Migrate the models directory and models.yaml file from an existing
|
||||
InvokeAI 2.3 installation to 3.0.0.
|
||||
'''
|
||||
|
||||
import io
|
||||
import os
|
||||
import argparse
|
||||
import shutil
|
||||
import yaml
|
||||
|
||||
import transformers
|
||||
import diffusers
|
||||
import warnings
|
||||
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from omegaconf import OmegaConf, DictConfig
|
||||
from typing import Union
|
||||
|
||||
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
from transformers import (
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
AutoFeatureExtractor,
|
||||
BertTokenizerFast,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.model_management import ModelManager
|
||||
from invokeai.backend.model_management.model_probe import (
|
||||
ModelProbe, ModelType, BaseModelType, SchedulerPredictionType, ModelProbeInfo
|
||||
)
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
transformers.logging.set_verbosity_error()
|
||||
diffusers.logging.set_verbosity_error()
|
||||
|
||||
# holder for paths that we will migrate
|
||||
@dataclass
|
||||
class ModelPaths:
|
||||
models: Path
|
||||
embeddings: Path
|
||||
loras: Path
|
||||
controlnets: Path
|
||||
|
||||
class MigrateTo3(object):
|
||||
def __init__(self,
|
||||
root_directory: Path,
|
||||
dest_models: Path,
|
||||
yaml_file: io.TextIOBase,
|
||||
src_paths: ModelPaths,
|
||||
):
|
||||
self.root_directory = root_directory
|
||||
self.dest_models = dest_models
|
||||
self.dest_yaml = yaml_file
|
||||
self.model_names = set()
|
||||
self.src_paths = src_paths
|
||||
|
||||
self._initialize_yaml()
|
||||
|
||||
def _initialize_yaml(self):
|
||||
self.dest_yaml.write(
|
||||
yaml.dump(
|
||||
{
|
||||
'__metadata__':
|
||||
{
|
||||
'version':'3.0.0'}
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
def unique_name(self,name,info)->str:
|
||||
'''
|
||||
Create a unique name for a model for use within models.yaml.
|
||||
'''
|
||||
done = False
|
||||
key = ModelManager.create_key(name,info.base_type,info.model_type)
|
||||
unique_name = key
|
||||
counter = 1
|
||||
while not done:
|
||||
if unique_name in self.model_names:
|
||||
unique_name = f'{key}-{counter:0>2d}'
|
||||
counter += 1
|
||||
else:
|
||||
done = True
|
||||
self.model_names.add(unique_name)
|
||||
name,_,_ = ModelManager.parse_key(unique_name)
|
||||
return name
|
||||
|
||||
def create_directory_structure(self):
|
||||
'''
|
||||
Create the basic directory structure for the models folder.
|
||||
'''
|
||||
for model_base in [BaseModelType.StableDiffusion1,BaseModelType.StableDiffusion2]:
|
||||
for model_type in [ModelType.Main, ModelType.Vae, ModelType.Lora,
|
||||
ModelType.ControlNet,ModelType.TextualInversion]:
|
||||
path = self.dest_models / model_base.value / model_type.value
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
path = self.dest_models / 'core'
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
@staticmethod
|
||||
def copy_file(src:Path,dest:Path):
|
||||
'''
|
||||
copy a single file with logging
|
||||
'''
|
||||
if dest.exists():
|
||||
logger.info(f'Skipping existing {str(dest)}')
|
||||
return
|
||||
logger.info(f'Copying {str(src)} to {str(dest)}')
|
||||
try:
|
||||
shutil.copy(src, dest)
|
||||
except Exception as e:
|
||||
logger.error(f'COPY FAILED: {str(e)}')
|
||||
|
||||
@staticmethod
|
||||
def copy_dir(src:Path,dest:Path):
|
||||
'''
|
||||
Recursively copy a directory with logging
|
||||
'''
|
||||
if dest.exists():
|
||||
logger.info(f'Skipping existing {str(dest)}')
|
||||
return
|
||||
|
||||
logger.info(f'Copying {str(src)} to {str(dest)}')
|
||||
try:
|
||||
shutil.copytree(src, dest)
|
||||
except Exception as e:
|
||||
logger.error(f'COPY FAILED: {str(e)}')
|
||||
|
||||
def migrate_models(self, src_dir: Path):
|
||||
'''
|
||||
Recursively walk through src directory, probe anything
|
||||
that looks like a model, and copy the model into the
|
||||
appropriate location within the destination models directory.
|
||||
'''
|
||||
for root, dirs, files in os.walk(src_dir):
|
||||
for f in files:
|
||||
# hack - don't copy raw learned_embeds.bin, let them
|
||||
# be copied as part of a tree copy operation
|
||||
if f == 'learned_embeds.bin':
|
||||
continue
|
||||
try:
|
||||
model = Path(root,f)
|
||||
info = ModelProbe().heuristic_probe(model)
|
||||
if not info:
|
||||
continue
|
||||
dest = self._model_probe_to_path(info) / f
|
||||
self.copy_file(model, dest)
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
for d in dirs:
|
||||
try:
|
||||
model = Path(root,d)
|
||||
info = ModelProbe().heuristic_probe(model)
|
||||
if not info:
|
||||
continue
|
||||
dest = self._model_probe_to_path(info) / model.name
|
||||
self.copy_dir(model, dest)
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
|
||||
def migrate_support_models(self):
|
||||
'''
|
||||
Copy the clipseg, upscaler, and restoration models to their new
|
||||
locations.
|
||||
'''
|
||||
dest_directory = self.dest_models
|
||||
if (self.root_directory / 'models/clipseg').exists():
|
||||
self.copy_dir(self.root_directory / 'models/clipseg', dest_directory / 'core/misc/clipseg')
|
||||
if (self.root_directory / 'models/realesrgan').exists():
|
||||
self.copy_dir(self.root_directory / 'models/realesrgan', dest_directory / 'core/upscaling/realesrgan')
|
||||
for d in ['codeformer','gfpgan']:
|
||||
path = self.root_directory / 'models' / d
|
||||
if path.exists():
|
||||
self.copy_dir(path,dest_directory / f'core/face_restoration/{d}')
|
||||
|
||||
def migrate_tuning_models(self):
|
||||
'''
|
||||
Migrate the embeddings, loras and controlnets directories to their new homes.
|
||||
'''
|
||||
for src in [self.src_paths.embeddings, self.src_paths.loras, self.src_paths.controlnets]:
|
||||
if not src:
|
||||
continue
|
||||
if src.is_dir():
|
||||
logger.info(f'Scanning {src}')
|
||||
self.migrate_models(src)
|
||||
else:
|
||||
logger.info(f'{src} directory not found; skipping')
|
||||
continue
|
||||
|
||||
def migrate_conversion_models(self):
|
||||
'''
|
||||
Migrate all the models that are needed by the ckpt_to_diffusers conversion
|
||||
script.
|
||||
'''
|
||||
|
||||
dest_directory = self.dest_models
|
||||
kwargs = dict(
|
||||
cache_dir = self.root_directory / 'models/hub',
|
||||
#local_files_only = True
|
||||
)
|
||||
try:
|
||||
logger.info('Migrating core tokenizers and text encoders')
|
||||
target_dir = dest_directory / 'core' / 'convert'
|
||||
|
||||
self._migrate_pretrained(BertTokenizerFast,
|
||||
repo_id='bert-base-uncased',
|
||||
dest = target_dir / 'bert-base-uncased',
|
||||
**kwargs)
|
||||
|
||||
# sd-1
|
||||
repo_id = 'openai/clip-vit-large-patch14'
|
||||
self._migrate_pretrained(CLIPTokenizer,
|
||||
repo_id= repo_id,
|
||||
dest= target_dir / 'clip-vit-large-patch14' / 'tokenizer',
|
||||
**kwargs)
|
||||
self._migrate_pretrained(CLIPTextModel,
|
||||
repo_id = repo_id,
|
||||
dest = target_dir / 'clip-vit-large-patch14' / 'text_encoder',
|
||||
**kwargs)
|
||||
|
||||
# sd-2
|
||||
repo_id = "stabilityai/stable-diffusion-2"
|
||||
self._migrate_pretrained(CLIPTokenizer,
|
||||
repo_id = repo_id,
|
||||
dest = target_dir / 'stable-diffusion-2-clip' / 'tokenizer',
|
||||
**{'subfolder':'tokenizer',**kwargs}
|
||||
)
|
||||
self._migrate_pretrained(CLIPTextModel,
|
||||
repo_id = repo_id,
|
||||
dest = target_dir / 'stable-diffusion-2-clip' / 'text_encoder',
|
||||
**{'subfolder':'text_encoder',**kwargs}
|
||||
)
|
||||
|
||||
# VAE
|
||||
logger.info('Migrating stable diffusion VAE')
|
||||
self._migrate_pretrained(AutoencoderKL,
|
||||
repo_id = 'stabilityai/sd-vae-ft-mse',
|
||||
dest = target_dir / 'sd-vae-ft-mse',
|
||||
**kwargs)
|
||||
|
||||
# safety checking
|
||||
logger.info('Migrating safety checker')
|
||||
repo_id = "CompVis/stable-diffusion-safety-checker"
|
||||
self._migrate_pretrained(AutoFeatureExtractor,
|
||||
repo_id = repo_id,
|
||||
dest = target_dir / 'stable-diffusion-safety-checker',
|
||||
**kwargs)
|
||||
self._migrate_pretrained(StableDiffusionSafetyChecker,
|
||||
repo_id = repo_id,
|
||||
dest = target_dir / 'stable-diffusion-safety-checker',
|
||||
**kwargs)
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
|
||||
def write_yaml(self, model_name: str, path:Path, info:ModelProbeInfo, **kwargs):
|
||||
'''
|
||||
Write a stanza for a moved model into the new models.yaml file.
|
||||
'''
|
||||
name = self.unique_name(model_name, info)
|
||||
stanza = {
|
||||
f'{info.base_type.value}/{info.model_type.value}/{name}': {
|
||||
'name': model_name,
|
||||
'path': str(path),
|
||||
'description': f'A {info.base_type.value} {info.model_type.value} model',
|
||||
'format': info.format,
|
||||
'image_size': info.image_size,
|
||||
'base': info.base_type.value,
|
||||
'variant': info.variant_type.value,
|
||||
'prediction_type': info.prediction_type.value,
|
||||
'upcast_attention': info.prediction_type == SchedulerPredictionType.VPrediction,
|
||||
**kwargs,
|
||||
}
|
||||
}
|
||||
self.dest_yaml.write(yaml.dump(stanza))
|
||||
self.dest_yaml.flush()
|
||||
|
||||
def _model_probe_to_path(self, info: ModelProbeInfo)->Path:
|
||||
return Path(self.dest_models, info.base_type.value, info.model_type.value)
|
||||
|
||||
def _migrate_pretrained(self, model_class, repo_id: str, dest: Path, **kwargs):
|
||||
if dest.exists():
|
||||
logger.info(f'Skipping existing {dest}')
|
||||
return
|
||||
model = model_class.from_pretrained(repo_id, **kwargs)
|
||||
self._save_pretrained(model, dest)
|
||||
|
||||
def _save_pretrained(self, model, dest: Path):
|
||||
if dest.exists():
|
||||
logger.info(f'Skipping existing {dest}')
|
||||
return
|
||||
model_name = dest.name
|
||||
download_path = dest.with_name(f'{model_name}.downloading')
|
||||
model.save_pretrained(download_path, safe_serialization=True)
|
||||
download_path.replace(dest)
|
||||
|
||||
def _download_vae(self, repo_id: str, subfolder:str=None)->Path:
|
||||
vae = AutoencoderKL.from_pretrained(repo_id, cache_dir=self.root_directory / 'models/hub', subfolder=subfolder)
|
||||
info = ModelProbe().heuristic_probe(vae)
|
||||
_, model_name = repo_id.split('/')
|
||||
dest = self._model_probe_to_path(info) / self.unique_name(model_name, info)
|
||||
vae.save_pretrained(dest, safe_serialization=True)
|
||||
return dest
|
||||
|
||||
def _vae_path(self, vae: Union[str,dict])->Path:
|
||||
'''
|
||||
Convert 2.3 VAE stanza to a straight path.
|
||||
'''
|
||||
vae_path = None
|
||||
|
||||
# First get a path
|
||||
if isinstance(vae,str):
|
||||
vae_path = vae
|
||||
|
||||
elif isinstance(vae,DictConfig):
|
||||
if p := vae.get('path'):
|
||||
vae_path = p
|
||||
elif repo_id := vae.get('repo_id'):
|
||||
if repo_id=='stabilityai/sd-vae-ft-mse': # this guy is already downloaded
|
||||
vae_path = 'models/core/convert/se-vae-ft-mse'
|
||||
else:
|
||||
vae_path = self._download_vae(repo_id, vae.get('subfolder'))
|
||||
|
||||
assert vae_path is not None, "Couldn't find VAE for this model"
|
||||
|
||||
# if the VAE is in the old models directory, then we must move it into the new
|
||||
# one. VAEs outside of this directory can stay where they are.
|
||||
vae_path = Path(vae_path)
|
||||
if vae_path.is_relative_to(self.src_paths.models):
|
||||
info = ModelProbe().heuristic_probe(vae_path)
|
||||
dest = self._model_probe_to_path(info) / vae_path.name
|
||||
if not dest.exists():
|
||||
self.copy_dir(vae_path,dest)
|
||||
vae_path = dest
|
||||
|
||||
if vae_path.is_relative_to(self.dest_models):
|
||||
rel_path = vae_path.relative_to(self.dest_models)
|
||||
return Path('models',rel_path)
|
||||
else:
|
||||
return vae_path
|
||||
|
||||
def migrate_repo_id(self, repo_id: str, model_name :str=None, **extra_config):
|
||||
'''
|
||||
Migrate a locally-cached diffusers pipeline identified with a repo_id
|
||||
'''
|
||||
dest_dir = self.dest_models
|
||||
|
||||
cache = self.root_directory / 'models/hub'
|
||||
kwargs = dict(
|
||||
cache_dir = cache,
|
||||
safety_checker = None,
|
||||
# local_files_only = True,
|
||||
)
|
||||
|
||||
owner,repo_name = repo_id.split('/')
|
||||
model_name = model_name or repo_name
|
||||
model = cache / '--'.join(['models',owner,repo_name])
|
||||
|
||||
if len(list(model.glob('snapshots/**/model_index.json')))==0:
|
||||
return
|
||||
revisions = [x.name for x in model.glob('refs/*')]
|
||||
|
||||
# if an fp16 is available we use that
|
||||
revision = 'fp16' if len(revisions) > 1 and 'fp16' in revisions else revisions[0]
|
||||
pipeline = StableDiffusionPipeline.from_pretrained(
|
||||
repo_id,
|
||||
revision=revision,
|
||||
**kwargs)
|
||||
|
||||
info = ModelProbe().heuristic_probe(pipeline)
|
||||
if not info:
|
||||
return
|
||||
|
||||
dest = self._model_probe_to_path(info) / repo_name
|
||||
self._save_pretrained(pipeline, dest)
|
||||
|
||||
rel_path = Path('models',dest.relative_to(dest_dir))
|
||||
self.write_yaml(model_name, path=rel_path, info=info, **extra_config)
|
||||
|
||||
def migrate_path(self, location: Path, model_name: str=None, **extra_config):
|
||||
'''
|
||||
Migrate a model referred to using 'weights' or 'path'
|
||||
'''
|
||||
|
||||
# handle relative paths
|
||||
dest_dir = self.dest_models
|
||||
location = self.root_directory / location
|
||||
|
||||
info = ModelProbe().heuristic_probe(location)
|
||||
if not info:
|
||||
return
|
||||
|
||||
# uh oh, weights is in the old models directory - move it into the new one
|
||||
if Path(location).is_relative_to(self.src_paths.models):
|
||||
dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name)
|
||||
self.copy_dir(location,dest)
|
||||
location = Path('models', info.base_type.value, info.model_type.value, location.name)
|
||||
model_name = model_name or location.stem
|
||||
model_name = self.unique_name(model_name, info)
|
||||
self.write_yaml(model_name, path=location, info=info, **extra_config)
|
||||
|
||||
def migrate_defined_models(self):
|
||||
'''
|
||||
Migrate models defined in models.yaml
|
||||
'''
|
||||
# find any models referred to in old models.yaml
|
||||
conf = OmegaConf.load(self.root_directory / 'configs/models.yaml')
|
||||
|
||||
for model_name, stanza in conf.items():
|
||||
|
||||
try:
|
||||
passthru_args = {}
|
||||
|
||||
if vae := stanza.get('vae'):
|
||||
try:
|
||||
passthru_args['vae'] = str(self._vae_path(vae))
|
||||
except Exception as e:
|
||||
logger.warning(f'Could not find a VAE matching "{vae}" for model "{model_name}"')
|
||||
logger.warning(str(e))
|
||||
|
||||
if config := stanza.get('config'):
|
||||
passthru_args['config'] = config
|
||||
|
||||
if repo_id := stanza.get('repo_id'):
|
||||
logger.info(f'Migrating diffusers model {model_name}')
|
||||
self.migrate_repo_id(repo_id, model_name, **passthru_args)
|
||||
|
||||
elif location := stanza.get('weights'):
|
||||
logger.info(f'Migrating checkpoint model {model_name}')
|
||||
self.migrate_path(Path(location), model_name, **passthru_args)
|
||||
|
||||
elif location := stanza.get('path'):
|
||||
logger.info(f'Migrating diffusers model {model_name}')
|
||||
self.migrate_path(Path(location), model_name, **passthru_args)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
|
||||
def migrate(self):
|
||||
self.create_directory_structure()
|
||||
# the configure script is doing this
|
||||
self.migrate_support_models()
|
||||
self.migrate_conversion_models()
|
||||
self.migrate_tuning_models()
|
||||
self.migrate_defined_models()
|
||||
|
||||
def _parse_legacy_initfile(root: Path, initfile: Path)->ModelPaths:
|
||||
'''
|
||||
Returns tuple of (embedding_path, lora_path, controlnet_path)
|
||||
'''
|
||||
parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
|
||||
parser.add_argument(
|
||||
'--embedding_directory',
|
||||
'--embedding_path',
|
||||
type=Path,
|
||||
dest='embedding_path',
|
||||
default=Path('embeddings'),
|
||||
)
|
||||
parser.add_argument(
|
||||
'--lora_directory',
|
||||
dest='lora_path',
|
||||
type=Path,
|
||||
default=Path('loras'),
|
||||
)
|
||||
opt,_ = parser.parse_known_args([f'@{str(initfile)}'])
|
||||
return ModelPaths(
|
||||
models = root / 'models',
|
||||
embeddings = root / str(opt.embedding_path).strip('"'),
|
||||
loras = root / str(opt.lora_path).strip('"'),
|
||||
controlnets = root / 'controlnets',
|
||||
)
|
||||
|
||||
def _parse_legacy_yamlfile(root: Path, initfile: Path)->ModelPaths:
|
||||
'''
|
||||
Returns tuple of (embedding_path, lora_path, controlnet_path)
|
||||
'''
|
||||
# Don't use the config object because it is unforgiving of version updates
|
||||
# Just use omegaconf directly
|
||||
opt = OmegaConf.load(initfile)
|
||||
paths = opt.InvokeAI.Paths
|
||||
models = paths.get('models_dir','models')
|
||||
embeddings = paths.get('embedding_dir','embeddings')
|
||||
loras = paths.get('lora_dir','loras')
|
||||
controlnets = paths.get('controlnet_dir','controlnets')
|
||||
return ModelPaths(
|
||||
models = root / models,
|
||||
embeddings = root / embeddings,
|
||||
loras = root /loras,
|
||||
controlnets = root / controlnets,
|
||||
)
|
||||
|
||||
def get_legacy_embeddings(root: Path) -> ModelPaths:
|
||||
path = root / 'invokeai.init'
|
||||
if path.exists():
|
||||
return _parse_legacy_initfile(root, path)
|
||||
path = root / 'invokeai.yaml'
|
||||
if path.exists():
|
||||
return _parse_legacy_yamlfile(root, path)
|
||||
|
||||
def do_migrate(src_directory: Path, dest_directory: Path):
|
||||
|
||||
dest_models = dest_directory / 'models-3.0'
|
||||
dest_yaml = dest_directory / 'configs/models.yaml-3.0'
|
||||
|
||||
paths = get_legacy_embeddings(src_directory)
|
||||
|
||||
with open(dest_yaml,'w') as yaml_file:
|
||||
migrator = MigrateTo3(src_directory,
|
||||
dest_models,
|
||||
yaml_file,
|
||||
src_paths = paths,
|
||||
)
|
||||
migrator.migrate()
|
||||
|
||||
shutil.rmtree(dest_directory / 'models.orig', ignore_errors=True)
|
||||
(dest_directory / 'models').replace(dest_directory / 'models.orig')
|
||||
dest_models.replace(dest_directory / 'models')
|
||||
|
||||
(dest_directory /'configs/models.yaml').replace(dest_directory / 'configs/models.yaml.orig')
|
||||
dest_yaml.replace(dest_directory / 'configs/models.yaml')
|
||||
print(f"""Migration successful.
|
||||
Original models directory moved to {dest_directory}/models.orig
|
||||
Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig
|
||||
""")
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(prog="invokeai-migrate3",
|
||||
description="""
|
||||
This will copy and convert the models directory and the configs/models.yaml from the InvokeAI 2.3 format
|
||||
'--from-directory' root to the InvokeAI 3.0 '--to-directory' root. These may be abbreviated '--from' and '--to'.a
|
||||
|
||||
The old models directory and config file will be renamed 'models.orig' and 'models.yaml.orig' respectively.
|
||||
It is safe to provide the same directory for both arguments, but it is better to use the invokeai_configure
|
||||
script, which will perform a full upgrade in place."""
|
||||
)
|
||||
parser.add_argument('--from-directory',
|
||||
dest='root_directory',
|
||||
type=Path,
|
||||
required=True,
|
||||
help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")'
|
||||
)
|
||||
parser.add_argument('--to-directory',
|
||||
dest='dest_directory',
|
||||
type=Path,
|
||||
required=True,
|
||||
help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")'
|
||||
)
|
||||
# TO DO: Implement full directory scanning
|
||||
# parser.add_argument('--all-models',
|
||||
# action="store_true",
|
||||
# help='Migrate all models found in `models` directory, not just those mentioned in models.yaml',
|
||||
# )
|
||||
args = parser.parse_args()
|
||||
root_directory = args.root_directory
|
||||
assert root_directory.is_dir(), f"{root_directory} is not a valid directory"
|
||||
assert (root_directory / 'models').is_dir(), f"{root_directory} does not contain a 'models' subdirectory"
|
||||
assert (root_directory / 'invokeai.init').exists() or (root_directory / 'invokeai.yaml').exists(), f"{root_directory} does not contain an InvokeAI init file."
|
||||
|
||||
dest_directory = args.dest_directory
|
||||
assert dest_directory.is_dir(), f"{dest_directory} is not a valid directory"
|
||||
assert (dest_directory / 'models').is_dir(), f"{dest_directory} does not contain a 'models' subdirectory"
|
||||
assert (dest_directory / 'invokeai.yaml').exists(), f"{dest_directory} does not contain an InvokeAI init file."
|
||||
|
||||
do_migrate(root_directory,dest_directory)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
|
||||
|
@ -2,46 +2,36 @@
|
||||
Utility (backend) functions used by model_install.py
|
||||
"""
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass,field
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryFile
|
||||
from typing import List, Dict, Callable
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import List, Dict, Callable, Union, Set
|
||||
|
||||
import requests
|
||||
from diffusers import AutoencoderKL
|
||||
from huggingface_hub import hf_hub_url, HfFolder
|
||||
from diffusers import StableDiffusionPipeline
|
||||
from huggingface_hub import hf_hub_url, HfFolder, HfApi
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf.dictconfig import DictConfig
|
||||
from tqdm import tqdm
|
||||
|
||||
import invokeai.configs as configs
|
||||
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
||||
from invokeai.backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType
|
||||
from invokeai.backend.model_management.model_probe import ModelProbe, SchedulerPredictionType, ModelProbeInfo
|
||||
from invokeai.backend.util import download_with_resume
|
||||
from ..util.logging import InvokeAILogger
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
# --------------------------globals-----------------------
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
|
||||
Model_dir = "models"
|
||||
Weights_dir = "ldm/stable-diffusion-v1/"
|
||||
logger = InvokeAILogger.getLogger(name='InvokeAI')
|
||||
|
||||
# the initial "configs" dir is now bundled in the `invokeai.configs` package
|
||||
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
|
||||
|
||||
# initial models omegaconf
|
||||
Datasets = None
|
||||
|
||||
# logger
|
||||
logger = InvokeAILogger.getLogger(name='InvokeAI')
|
||||
|
||||
Config_preamble = """
|
||||
# This file describes the alternative machine learning models
|
||||
# available to InvokeAI script.
|
||||
@ -52,6 +42,24 @@ Config_preamble = """
|
||||
# was trained on.
|
||||
"""
|
||||
|
||||
LEGACY_CONFIGS = {
|
||||
BaseModelType.StableDiffusion1: {
|
||||
ModelVariantType.Normal: 'v1-inference.yaml',
|
||||
ModelVariantType.Inpaint: 'v1-inpainting-inference.yaml',
|
||||
},
|
||||
|
||||
BaseModelType.StableDiffusion2: {
|
||||
ModelVariantType.Normal: {
|
||||
SchedulerPredictionType.Epsilon: 'v2-inference.yaml',
|
||||
SchedulerPredictionType.VPrediction: 'v2-inference-v.yaml',
|
||||
},
|
||||
ModelVariantType.Inpaint: {
|
||||
SchedulerPredictionType.Epsilon: 'v2-inpainting-inference.yaml',
|
||||
SchedulerPredictionType.VPrediction: 'v2-inpainting-inference-v.yaml',
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@dataclass
|
||||
class ModelInstallList:
|
||||
'''Class for listing models to be installed/removed'''
|
||||
@ -59,133 +67,321 @@ class ModelInstallList:
|
||||
remove_models: List[str] = field(default_factory=list)
|
||||
|
||||
@dataclass
|
||||
class UserSelections():
|
||||
class InstallSelections():
|
||||
install_models: List[str]= field(default_factory=list)
|
||||
remove_models: List[str]=field(default_factory=list)
|
||||
purge_deleted_models: bool=field(default_factory=list)
|
||||
install_cn_models: List[str] = field(default_factory=list)
|
||||
remove_cn_models: List[str] = field(default_factory=list)
|
||||
install_lora_models: List[str] = field(default_factory=list)
|
||||
remove_lora_models: List[str] = field(default_factory=list)
|
||||
install_ti_models: List[str] = field(default_factory=list)
|
||||
remove_ti_models: List[str] = field(default_factory=list)
|
||||
scan_directory: Path = None
|
||||
autoscan_on_startup: bool=False
|
||||
import_model_paths: str=None
|
||||
# scan_directory: Path = None
|
||||
# autoscan_on_startup: bool=False
|
||||
|
||||
def default_config_file():
|
||||
return config.model_conf_path
|
||||
@dataclass
|
||||
class ModelLoadInfo():
|
||||
name: str
|
||||
model_type: ModelType
|
||||
base_type: BaseModelType
|
||||
path: Path = None
|
||||
repo_id: str = None
|
||||
description: str = ''
|
||||
installed: bool = False
|
||||
recommended: bool = False
|
||||
default: bool = False
|
||||
|
||||
def sd_configs():
|
||||
return config.legacy_conf_path
|
||||
class ModelInstall(object):
|
||||
def __init__(self,
|
||||
config:InvokeAIAppConfig,
|
||||
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
|
||||
model_manager: ModelManager = None,
|
||||
access_token:str = None):
|
||||
self.config = config
|
||||
self.mgr = model_manager or ModelManager(config.model_conf_path)
|
||||
self.datasets = OmegaConf.load(Dataset_path)
|
||||
self.prediction_helper = prediction_type_helper
|
||||
self.access_token = access_token or HfFolder.get_token()
|
||||
self.reverse_paths = self._reverse_paths(self.datasets)
|
||||
|
||||
def initial_models():
|
||||
global Datasets
|
||||
if Datasets:
|
||||
return Datasets
|
||||
return (Datasets := OmegaConf.load(Dataset_path)['diffusers'])
|
||||
def all_models(self)->Dict[str,ModelLoadInfo]:
|
||||
'''
|
||||
Return dict of model_key=>ModelLoadInfo objects.
|
||||
This method consolidates and simplifies the entries in both
|
||||
models.yaml and INITIAL_MODELS.yaml so that they can
|
||||
be treated uniformly. It also sorts the models alphabetically
|
||||
by their name, to improve the display somewhat.
|
||||
'''
|
||||
model_dict = dict()
|
||||
|
||||
def install_requested_models(
|
||||
diffusers: ModelInstallList = None,
|
||||
controlnet: ModelInstallList = None,
|
||||
lora: ModelInstallList = None,
|
||||
ti: ModelInstallList = None,
|
||||
cn_model_map: Dict[str,str] = None, # temporary - move to model manager
|
||||
scan_directory: Path = None,
|
||||
external_models: List[str] = None,
|
||||
scan_at_startup: bool = False,
|
||||
precision: str = "float16",
|
||||
purge_deleted: bool = False,
|
||||
config_file_path: Path = None,
|
||||
model_config_file_callback: Callable[[Path],Path] = None
|
||||
):
|
||||
"""
|
||||
Entry point for installing/deleting starter models, or installing external models.
|
||||
"""
|
||||
access_token = HfFolder.get_token()
|
||||
config_file_path = config_file_path or default_config_file()
|
||||
if not config_file_path.exists():
|
||||
open(config_file_path, "w")
|
||||
# first populate with the entries in INITIAL_MODELS.yaml
|
||||
for key, value in self.datasets.items():
|
||||
name,base,model_type = ModelManager.parse_key(key)
|
||||
value['name'] = name
|
||||
value['base_type'] = base
|
||||
value['model_type'] = model_type
|
||||
model_dict[key] = ModelLoadInfo(**value)
|
||||
|
||||
# prevent circular import here
|
||||
from ..model_management import ModelManager
|
||||
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
|
||||
if controlnet:
|
||||
model_manager.install_controlnet_models(controlnet.install_models, access_token=access_token)
|
||||
model_manager.delete_controlnet_models(controlnet.remove_models)
|
||||
|
||||
if lora:
|
||||
model_manager.install_lora_models(lora.install_models, access_token=access_token)
|
||||
model_manager.delete_lora_models(lora.remove_models)
|
||||
|
||||
if ti:
|
||||
model_manager.install_ti_models(ti.install_models, access_token=access_token)
|
||||
model_manager.delete_ti_models(ti.remove_models)
|
||||
|
||||
if diffusers:
|
||||
# TODO: Replace next three paragraphs with calls into new model manager
|
||||
if diffusers.remove_models and len(diffusers.remove_models) > 0:
|
||||
logger.info("Processing requested deletions")
|
||||
for model in diffusers.remove_models:
|
||||
logger.info(f"{model}...")
|
||||
model_manager.del_model(model, delete_files=purge_deleted)
|
||||
model_manager.commit(config_file_path)
|
||||
|
||||
if diffusers.install_models and len(diffusers.install_models) > 0:
|
||||
logger.info("Installing requested models")
|
||||
downloaded_paths = download_weight_datasets(
|
||||
models=diffusers.install_models,
|
||||
access_token=None,
|
||||
precision=precision,
|
||||
)
|
||||
successful = {x:v for x,v in downloaded_paths.items() if v is not None}
|
||||
if len(successful) > 0:
|
||||
update_config_file(successful, config_file_path)
|
||||
if len(successful) < len(diffusers.install_models):
|
||||
unsuccessful = [x for x in downloaded_paths if downloaded_paths[x] is None]
|
||||
logger.warning(f"Some of the model downloads were not successful: {unsuccessful}")
|
||||
|
||||
# due to above, we have to reload the model manager because conf file
|
||||
# was changed behind its back
|
||||
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
|
||||
|
||||
external_models = external_models or list()
|
||||
if scan_directory:
|
||||
external_models.append(str(scan_directory))
|
||||
|
||||
if len(external_models) > 0:
|
||||
logger.info("INSTALLING EXTERNAL MODELS")
|
||||
for path_url_or_repo in external_models:
|
||||
try:
|
||||
logger.debug(f'In install_requested_models; callback = {model_config_file_callback}')
|
||||
model_manager.heuristic_import(
|
||||
path_url_or_repo,
|
||||
commit_to_conf=config_file_path,
|
||||
config_file_callback = model_config_file_callback,
|
||||
# supplement with entries in models.yaml
|
||||
installed_models = self.mgr.list_models()
|
||||
for md in installed_models:
|
||||
base = md['base_model']
|
||||
model_type = md['type']
|
||||
name = md['name']
|
||||
key = ModelManager.create_key(name, base, model_type)
|
||||
if key in model_dict:
|
||||
model_dict[key].installed = True
|
||||
else:
|
||||
model_dict[key] = ModelLoadInfo(
|
||||
name = name,
|
||||
base_type = base,
|
||||
model_type = model_type,
|
||||
path = value.get('path'),
|
||||
installed = True,
|
||||
)
|
||||
except KeyboardInterrupt:
|
||||
sys.exit(-1)
|
||||
except Exception:
|
||||
return {x : model_dict[x] for x in sorted(model_dict.keys(),key=lambda y: model_dict[y].name.lower())}
|
||||
|
||||
def starter_models(self)->Set[str]:
|
||||
models = set()
|
||||
for key, value in self.datasets.items():
|
||||
name,base,model_type = ModelManager.parse_key(key)
|
||||
if model_type==ModelType.Main:
|
||||
models.add(key)
|
||||
return models
|
||||
|
||||
def recommended_models(self)->Set[str]:
|
||||
starters = self.starter_models()
|
||||
return set([x for x in starters if self.datasets[x].get('recommended',False)])
|
||||
|
||||
def default_model(self)->str:
|
||||
starters = self.starter_models()
|
||||
defaults = [x for x in starters if self.datasets[x].get('default',False)]
|
||||
return defaults[0]
|
||||
|
||||
def install(self, selections: InstallSelections):
|
||||
job = 1
|
||||
jobs = len(selections.remove_models) + len(selections.install_models)
|
||||
|
||||
# remove requested models
|
||||
for key in selections.remove_models:
|
||||
name,base,mtype = self.mgr.parse_key(key)
|
||||
logger.info(f'Deleting {mtype} model {name} [{job}/{jobs}]')
|
||||
self.mgr.del_model(name,base,mtype)
|
||||
job += 1
|
||||
|
||||
# add requested models
|
||||
for path in selections.install_models:
|
||||
logger.info(f'Installing {path} [{job}/{jobs}]')
|
||||
self.heuristic_install(path)
|
||||
job += 1
|
||||
|
||||
self.mgr.commit()
|
||||
|
||||
def heuristic_install(self,
|
||||
model_path_id_or_url: Union[str,Path],
|
||||
models_installed: Set[Path]=None)->Set[Path]:
|
||||
|
||||
if not models_installed:
|
||||
models_installed = set()
|
||||
|
||||
# A little hack to allow nested routines to retrieve info on the requested ID
|
||||
self.current_id = model_path_id_or_url
|
||||
path = Path(model_path_id_or_url)
|
||||
|
||||
try:
|
||||
# checkpoint file, or similar
|
||||
if path.is_file():
|
||||
models_installed.add(self._install_path(path))
|
||||
|
||||
# folders style or similar
|
||||
elif path.is_dir() and any([(path/x).exists() for x in {'config.json','model_index.json','learned_embeds.bin'}]):
|
||||
models_installed.add(self._install_path(path))
|
||||
|
||||
# recursive scan
|
||||
elif path.is_dir():
|
||||
for child in path.iterdir():
|
||||
self.heuristic_install(child, models_installed=models_installed)
|
||||
|
||||
# huggingface repo
|
||||
elif len(str(path).split('/')) == 2:
|
||||
models_installed.add(self._install_repo(str(path)))
|
||||
|
||||
# a URL
|
||||
elif model_path_id_or_url.startswith(("http:", "https:", "ftp:")):
|
||||
models_installed.add(self._install_url(model_path_id_or_url))
|
||||
|
||||
else:
|
||||
logger.warning(f'{str(model_path_id_or_url)} is not recognized as a local path, repo ID or URL. Skipping')
|
||||
|
||||
except ValueError as e:
|
||||
logger.error(str(e))
|
||||
|
||||
return models_installed
|
||||
|
||||
# install a model from a local path. The optional info parameter is there to prevent
|
||||
# the model from being probed twice in the event that it has already been probed.
|
||||
def _install_path(self, path: Path, info: ModelProbeInfo=None)->Path:
|
||||
try:
|
||||
# logger.debug(f'Probing {path}')
|
||||
info = info or ModelProbe().heuristic_probe(path,self.prediction_helper)
|
||||
model_name = path.stem if info.format=='checkpoint' else path.name
|
||||
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
|
||||
raise ValueError(f'A model named "{model_name}" is already installed.')
|
||||
attributes = self._make_attributes(path,info)
|
||||
self.mgr.add_model(model_name = model_name,
|
||||
base_model = info.base_type,
|
||||
model_type = info.model_type,
|
||||
model_attributes = attributes,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f'{str(e)} Skipping registration.')
|
||||
return path
|
||||
|
||||
def _install_url(self, url: str)->Path:
|
||||
# copy to a staging area, probe, import and delete
|
||||
with TemporaryDirectory(dir=self.config.models_path) as staging:
|
||||
location = download_with_resume(url,Path(staging))
|
||||
if not location:
|
||||
logger.error(f'Unable to download {url}. Skipping.')
|
||||
info = ModelProbe().heuristic_probe(location)
|
||||
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
|
||||
models_path = shutil.move(location,dest)
|
||||
|
||||
# staged version will be garbage-collected at this time
|
||||
return self._install_path(Path(models_path), info)
|
||||
|
||||
def _install_repo(self, repo_id: str)->Path:
|
||||
hinfo = HfApi().model_info(repo_id)
|
||||
|
||||
# we try to figure out how to download this most economically
|
||||
# list all the files in the repo
|
||||
files = [x.rfilename for x in hinfo.siblings]
|
||||
location = None
|
||||
|
||||
with TemporaryDirectory(dir=self.config.models_path) as staging:
|
||||
staging = Path(staging)
|
||||
if 'model_index.json' in files:
|
||||
location = self._download_hf_pipeline(repo_id, staging) # pipeline
|
||||
else:
|
||||
for suffix in ['safetensors','bin']:
|
||||
if f'pytorch_lora_weights.{suffix}' in files:
|
||||
location = self._download_hf_model(repo_id, ['pytorch_lora_weights.bin'], staging) # LoRA
|
||||
break
|
||||
elif self.config.precision=='float16' and f'diffusion_pytorch_model.fp16.{suffix}' in files: # vae, controlnet or some other standalone
|
||||
files = ['config.json', f'diffusion_pytorch_model.fp16.{suffix}']
|
||||
location = self._download_hf_model(repo_id, files, staging)
|
||||
break
|
||||
elif f'diffusion_pytorch_model.{suffix}' in files:
|
||||
files = ['config.json', f'diffusion_pytorch_model.{suffix}']
|
||||
location = self._download_hf_model(repo_id, files, staging)
|
||||
break
|
||||
elif f'learned_embeds.{suffix}' in files:
|
||||
location = self._download_hf_model(repo_id, ['learned_embeds.suffix'], staging)
|
||||
break
|
||||
if not location:
|
||||
logger.warning(f'Could not determine type of repo {repo_id}. Skipping install.')
|
||||
return
|
||||
|
||||
info = ModelProbe().heuristic_probe(location, self.prediction_helper)
|
||||
if not info:
|
||||
logger.warning(f'Could not probe {location}. Skipping install.')
|
||||
return
|
||||
dest = self.config.models_path / info.base_type.value / info.model_type.value / self._get_model_name(repo_id,location)
|
||||
if dest.exists():
|
||||
shutil.rmtree(dest)
|
||||
shutil.copytree(location,dest)
|
||||
return self._install_path(dest, info)
|
||||
|
||||
def _get_model_name(self,path_name: str, location: Path)->str:
|
||||
'''
|
||||
Calculate a name for the model - primitive implementation.
|
||||
'''
|
||||
if key := self.reverse_paths.get(path_name):
|
||||
(name, base, mtype) = ModelManager.parse_key(key)
|
||||
return name
|
||||
else:
|
||||
return location.stem
|
||||
|
||||
def _make_attributes(self, path: Path, info: ModelProbeInfo)->dict:
|
||||
model_name = path.name if path.is_dir() else path.stem
|
||||
description = f'{info.base_type.value} {info.model_type.value} model {model_name}'
|
||||
if key := self.reverse_paths.get(self.current_id):
|
||||
if key in self.datasets:
|
||||
description = self.datasets[key].get('description') or description
|
||||
|
||||
rel_path = self.relative_to_root(path)
|
||||
|
||||
attributes = dict(
|
||||
path = str(rel_path),
|
||||
description = str(description),
|
||||
model_format = info.format,
|
||||
)
|
||||
if info.model_type == ModelType.Main:
|
||||
attributes.update(dict(variant = info.variant_type,))
|
||||
if info.format=="checkpoint":
|
||||
try:
|
||||
possible_conf = path.with_suffix('.yaml')
|
||||
if possible_conf.exists():
|
||||
legacy_conf = str(self.relative_to_root(possible_conf))
|
||||
elif info.base_type == BaseModelType.StableDiffusion2:
|
||||
legacy_conf = Path(self.config.legacy_conf_dir, LEGACY_CONFIGS[info.base_type][info.variant_type][info.prediction_type])
|
||||
else:
|
||||
legacy_conf = Path(self.config.legacy_conf_dir, LEGACY_CONFIGS[info.base_type][info.variant_type])
|
||||
except KeyError:
|
||||
legacy_conf = Path(self.config.legacy_conf_dir, 'v1-inference.yaml') # best guess
|
||||
|
||||
attributes.update(
|
||||
dict(
|
||||
config = str(legacy_conf)
|
||||
)
|
||||
)
|
||||
return attributes
|
||||
|
||||
def relative_to_root(self, path: Path)->Path:
|
||||
root = self.config.root_path
|
||||
if path.is_relative_to(root):
|
||||
return path.relative_to(root)
|
||||
else:
|
||||
return path
|
||||
|
||||
def _download_hf_pipeline(self, repo_id: str, staging: Path)->Path:
|
||||
'''
|
||||
This retrieves a StableDiffusion model from cache or remote and then
|
||||
does a save_pretrained() to the indicated staging area.
|
||||
'''
|
||||
_,name = repo_id.split("/")
|
||||
revisions = ['fp16','main'] if self.config.precision=='float16' else ['main']
|
||||
model = None
|
||||
for revision in revisions:
|
||||
try:
|
||||
model = StableDiffusionPipeline.from_pretrained(repo_id,revision=revision,safety_checker=None)
|
||||
except: # most errors are due to fp16 not being present. Fix this to catch other errors
|
||||
pass
|
||||
if model:
|
||||
break
|
||||
if not model:
|
||||
logger.error(f'Diffusers model {repo_id} could not be downloaded. Skipping.')
|
||||
return None
|
||||
model.save_pretrained(staging / name, safe_serialization=True)
|
||||
return staging / name
|
||||
|
||||
if scan_at_startup and scan_directory.is_dir():
|
||||
update_autoconvert_dir(scan_directory)
|
||||
else:
|
||||
update_autoconvert_dir(None)
|
||||
def _download_hf_model(self, repo_id: str, files: List[str], staging: Path)->Path:
|
||||
_,name = repo_id.split("/")
|
||||
location = staging / name
|
||||
paths = list()
|
||||
for filename in files:
|
||||
p = hf_download_with_resume(repo_id,
|
||||
model_dir=location,
|
||||
model_name=filename,
|
||||
access_token = self.access_token
|
||||
)
|
||||
if p:
|
||||
paths.append(p)
|
||||
else:
|
||||
logger.warning(f'Could not download {filename} from {repo_id}.')
|
||||
|
||||
def update_autoconvert_dir(autodir: Path):
|
||||
'''
|
||||
Update the "autoconvert_dir" option in invokeai.yaml
|
||||
'''
|
||||
invokeai_config_path = config.init_file_path
|
||||
conf = OmegaConf.load(invokeai_config_path)
|
||||
conf.InvokeAI.Paths.autoconvert_dir = str(autodir) if autodir else None
|
||||
yaml = OmegaConf.to_yaml(conf)
|
||||
tmpfile = invokeai_config_path.parent / "new_config.tmp"
|
||||
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
||||
outfile.write(yaml)
|
||||
tmpfile.replace(invokeai_config_path)
|
||||
return location if len(paths)>0 else None
|
||||
|
||||
@classmethod
|
||||
def _reverse_paths(cls,datasets)->dict:
|
||||
'''
|
||||
Reverse mapping from repo_id/path to destination name.
|
||||
'''
|
||||
return {v.get('path') or v.get('repo_id') : k for k, v in datasets.items()}
|
||||
|
||||
# -------------------------------------
|
||||
def yes_or_no(prompt: str, default_yes=True):
|
||||
@ -197,133 +393,19 @@ def yes_or_no(prompt: str, default_yes=True):
|
||||
return response[0] in ("y", "Y")
|
||||
|
||||
# ---------------------------------------------
|
||||
def recommended_datasets() -> List['str']:
|
||||
datasets = set()
|
||||
for ds in initial_models().keys():
|
||||
if initial_models()[ds].get("recommended", False):
|
||||
datasets.add(ds)
|
||||
return list(datasets)
|
||||
|
||||
# ---------------------------------------------
|
||||
def default_dataset() -> dict:
|
||||
datasets = set()
|
||||
for ds in initial_models().keys():
|
||||
if initial_models()[ds].get("default", False):
|
||||
datasets.add(ds)
|
||||
return list(datasets)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def all_datasets() -> dict:
|
||||
datasets = dict()
|
||||
for ds in initial_models().keys():
|
||||
datasets[ds] = True
|
||||
return datasets
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
# look for legacy model.ckpt in models directory and offer to
|
||||
# normalize its name
|
||||
def migrate_models_ckpt():
|
||||
model_path = os.path.join(config.root_dir, Model_dir, Weights_dir)
|
||||
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
|
||||
return
|
||||
new_name = initial_models()["stable-diffusion-1.4"]["file"]
|
||||
logger.warning(
|
||||
'The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.'
|
||||
)
|
||||
logger.warning(f"model.ckpt => {new_name}")
|
||||
os.replace(
|
||||
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
|
||||
)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_weight_datasets(
|
||||
models: List[str], access_token: str, precision: str = "float32"
|
||||
):
|
||||
migrate_models_ckpt()
|
||||
successful = dict()
|
||||
for mod in models:
|
||||
logger.info(f"Downloading {mod}:")
|
||||
successful[mod] = _download_repo_or_file(
|
||||
initial_models()[mod], access_token, precision=precision
|
||||
)
|
||||
return successful
|
||||
|
||||
|
||||
def _download_repo_or_file(
|
||||
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
||||
) -> Path:
|
||||
path = None
|
||||
if mconfig["format"] == "ckpt":
|
||||
path = _download_ckpt_weights(mconfig, access_token)
|
||||
else:
|
||||
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
|
||||
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
|
||||
_download_diffusion_weights(
|
||||
mconfig["vae"], access_token, precision=precision
|
||||
)
|
||||
return path
|
||||
|
||||
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
|
||||
repo_id = mconfig["repo_id"]
|
||||
filename = mconfig["file"]
|
||||
cache_dir = os.path.join(config.root_dir, Model_dir, Weights_dir)
|
||||
return hf_download_with_resume(
|
||||
repo_id=repo_id,
|
||||
model_dir=cache_dir,
|
||||
model_name=filename,
|
||||
access_token=access_token,
|
||||
)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_from_hf(
|
||||
model_class: object, model_name: str, **kwargs
|
||||
def hf_download_from_pretrained(
|
||||
model_class: object, model_name: str, destination: Path, **kwargs
|
||||
):
|
||||
logger = InvokeAILogger.getLogger('InvokeAI')
|
||||
logger.addFilter(lambda x: 'fp16 is not a valid' not in x.getMessage())
|
||||
|
||||
path = config.cache_dir
|
||||
model = model_class.from_pretrained(
|
||||
model_name,
|
||||
cache_dir=path,
|
||||
resume_download=True,
|
||||
**kwargs,
|
||||
)
|
||||
model_name = "--".join(("models", *model_name.split("/")))
|
||||
return path / model_name if model else None
|
||||
|
||||
|
||||
def _download_diffusion_weights(
|
||||
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
||||
):
|
||||
repo_id = mconfig["repo_id"]
|
||||
model_class = (
|
||||
StableDiffusionGeneratorPipeline
|
||||
if mconfig.get("format", None) == "diffusers"
|
||||
else AutoencoderKL
|
||||
)
|
||||
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
|
||||
path = None
|
||||
for extra_args in extra_arg_list:
|
||||
try:
|
||||
path = download_from_hf(
|
||||
model_class,
|
||||
repo_id,
|
||||
safety_checker=None,
|
||||
**extra_args,
|
||||
)
|
||||
except OSError as e:
|
||||
if 'Revision Not Found' in str(e):
|
||||
pass
|
||||
else:
|
||||
logger.error(str(e))
|
||||
if path:
|
||||
break
|
||||
return path
|
||||
|
||||
model.save_pretrained(destination, safe_serialization=True)
|
||||
return destination
|
||||
|
||||
# ---------------------------------------------
|
||||
def hf_download_with_resume(
|
||||
@ -383,128 +465,3 @@ def hf_download_with_resume(
|
||||
return model_dest
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def update_config_file(successfully_downloaded: dict, config_file: Path):
|
||||
config_file = (
|
||||
Path(config_file) if config_file is not None else default_config_file()
|
||||
)
|
||||
|
||||
# In some cases (incomplete setup, etc), the default configs directory might be missing.
|
||||
# Create it if it doesn't exist.
|
||||
# this check is ignored if opt.config_file is specified - user is assumed to know what they
|
||||
# are doing if they are passing a custom config file from elsewhere.
|
||||
if config_file is default_config_file() and not config_file.parent.exists():
|
||||
configs_src = Dataset_path.parent
|
||||
configs_dest = default_config_file().parent
|
||||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||||
|
||||
yaml = new_config_file_contents(successfully_downloaded, config_file)
|
||||
|
||||
try:
|
||||
backup = None
|
||||
if os.path.exists(config_file):
|
||||
logger.warning(
|
||||
f"{config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
|
||||
)
|
||||
backup = config_file.with_suffix(".yaml.orig")
|
||||
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
|
||||
if sys.platform == "win32" and backup.is_file():
|
||||
backup.unlink()
|
||||
config_file.rename(backup)
|
||||
|
||||
with TemporaryFile() as tmp:
|
||||
tmp.write(Config_preamble.encode())
|
||||
tmp.write(yaml.encode())
|
||||
|
||||
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
|
||||
tmp.seek(0)
|
||||
new_config.write(tmp.read())
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error creating config file {config_file}: {str(e)}")
|
||||
if backup is not None:
|
||||
logger.info("restoring previous config file")
|
||||
## workaround, for WinError 183, see above
|
||||
if sys.platform == "win32" and config_file.is_file():
|
||||
config_file.unlink()
|
||||
backup.rename(config_file)
|
||||
return
|
||||
|
||||
logger.info(f"Successfully created new configuration file {config_file}")
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def new_config_file_contents(
|
||||
successfully_downloaded: dict,
|
||||
config_file: Path,
|
||||
) -> str:
|
||||
if config_file.exists():
|
||||
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
|
||||
else:
|
||||
conf = OmegaConf.create()
|
||||
|
||||
default_selected = None
|
||||
for model in successfully_downloaded:
|
||||
# a bit hacky - what we are doing here is seeing whether a checkpoint
|
||||
# version of the model was previously defined, and whether the current
|
||||
# model is a diffusers (indicated with a path)
|
||||
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
|
||||
delete_weights(model, conf[model])
|
||||
|
||||
stanza = {}
|
||||
mod = initial_models()[model]
|
||||
stanza["description"] = mod["description"]
|
||||
stanza["repo_id"] = mod["repo_id"]
|
||||
stanza["format"] = mod["format"]
|
||||
# diffusers don't need width and height (probably .ckpt doesn't either)
|
||||
# so we no longer require these in INITIAL_MODELS.yaml
|
||||
if "width" in mod:
|
||||
stanza["width"] = mod["width"]
|
||||
if "height" in mod:
|
||||
stanza["height"] = mod["height"]
|
||||
if "file" in mod:
|
||||
stanza["weights"] = os.path.relpath(
|
||||
successfully_downloaded[model], start=config.root_dir
|
||||
)
|
||||
stanza["config"] = os.path.normpath(
|
||||
os.path.join(sd_configs(), mod["config"])
|
||||
)
|
||||
if "vae" in mod:
|
||||
if "file" in mod["vae"]:
|
||||
stanza["vae"] = os.path.normpath(
|
||||
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
|
||||
)
|
||||
else:
|
||||
stanza["vae"] = mod["vae"]
|
||||
if mod.get("default", False):
|
||||
stanza["default"] = True
|
||||
default_selected = True
|
||||
|
||||
conf[model] = stanza
|
||||
|
||||
# if no default model was chosen, then we select the first
|
||||
# one in the list
|
||||
if not default_selected:
|
||||
conf[list(successfully_downloaded.keys())[0]]["default"] = True
|
||||
|
||||
return OmegaConf.to_yaml(conf)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def delete_weights(model_name: str, conf_stanza: dict):
|
||||
if not (weights := conf_stanza.get("weights")):
|
||||
return
|
||||
if re.match("/VAE/", conf_stanza.get("config")):
|
||||
return
|
||||
|
||||
logger.warning(
|
||||
f"\nThe checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
|
||||
)
|
||||
|
||||
weights = Path(weights)
|
||||
if not weights.is_absolute():
|
||||
weights = config.root_dir / weights
|
||||
try:
|
||||
weights.unlink()
|
||||
except OSError as e:
|
||||
logger.error(str(e))
|
||||
|
@ -4,3 +4,4 @@ Initialization file for invokeai.backend.model_management
|
||||
from .model_manager import ModelManager, ModelInfo
|
||||
from .model_cache import ModelCache
|
||||
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType
|
||||
|
||||
|
@ -30,7 +30,7 @@ from invokeai.app.services.config import InvokeAIAppConfig
|
||||
|
||||
from .model_manager import ModelManager
|
||||
from .model_cache import ModelCache
|
||||
from .models import SchedulerPredictionType, BaseModelType, ModelVariantType
|
||||
from .models import BaseModelType, ModelVariantType
|
||||
|
||||
try:
|
||||
from omegaconf import OmegaConf
|
||||
@ -73,7 +73,9 @@ from transformers import (
|
||||
|
||||
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
||||
|
||||
MODEL_ROOT = None
|
||||
# TODO: redo in future
|
||||
#CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().models_path / "core" / "convert"
|
||||
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().root_path / "models" / "core" / "convert"
|
||||
|
||||
def shave_segments(path, n_shave_prefix_segments=1):
|
||||
"""
|
||||
@ -605,7 +607,7 @@ def convert_ldm_vae_checkpoint(checkpoint, config):
|
||||
else:
|
||||
vae_state_dict = checkpoint
|
||||
|
||||
new_checkpoint = convert_ldm_vae_state_dict(vae_state_dict,config)
|
||||
new_checkpoint = convert_ldm_vae_state_dict(vae_state_dict, config)
|
||||
return new_checkpoint
|
||||
|
||||
def convert_ldm_vae_state_dict(vae_state_dict, config):
|
||||
@ -828,7 +830,7 @@ def convert_ldm_bert_checkpoint(checkpoint, config):
|
||||
|
||||
|
||||
def convert_ldm_clip_checkpoint(checkpoint):
|
||||
text_model = CLIPTextModel.from_pretrained(MODEL_ROOT / 'clip-vit-large-patch14')
|
||||
text_model = CLIPTextModel.from_pretrained(CONVERT_MODEL_ROOT / 'clip-vit-large-patch14')
|
||||
keys = list(checkpoint.keys())
|
||||
|
||||
text_model_dict = {}
|
||||
@ -882,7 +884,7 @@ textenc_pattern = re.compile("|".join(protected.keys()))
|
||||
|
||||
def convert_open_clip_checkpoint(checkpoint):
|
||||
text_model = CLIPTextModel.from_pretrained(
|
||||
MODEL_ROOT / 'stable-diffusion-2-clip',
|
||||
CONVERT_MODEL_ROOT / 'stable-diffusion-2-clip',
|
||||
subfolder='text_encoder',
|
||||
)
|
||||
|
||||
@ -949,7 +951,7 @@ def convert_open_clip_checkpoint(checkpoint):
|
||||
|
||||
return text_model
|
||||
|
||||
def replace_checkpoint_vae(checkpoint, vae_path:str):
|
||||
def replace_checkpoint_vae(checkpoint, vae_path: str):
|
||||
if vae_path.endswith(".safetensors"):
|
||||
vae_ckpt = load_file(vae_path)
|
||||
else:
|
||||
@ -959,7 +961,7 @@ def replace_checkpoint_vae(checkpoint, vae_path:str):
|
||||
new_key = f'first_stage_model.{vae_key}'
|
||||
checkpoint[new_key] = state_dict[vae_key]
|
||||
|
||||
def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int)->AutoencoderKL:
|
||||
def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL:
|
||||
vae_config = create_vae_diffusers_config(
|
||||
vae_config, image_size=image_size
|
||||
)
|
||||
@ -979,8 +981,6 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
original_config_file: str,
|
||||
extract_ema: bool = True,
|
||||
precision: torch.dtype = torch.float32,
|
||||
upcast_attention: bool = False,
|
||||
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon,
|
||||
scan_needed: bool = True,
|
||||
) -> StableDiffusionPipeline:
|
||||
"""
|
||||
@ -994,8 +994,6 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
:param checkpoint_path: Path to `.ckpt` file.
|
||||
:param original_config_file: Path to `.yaml` config file corresponding to the original architecture.
|
||||
If `None`, will be automatically inferred by looking for a key that only exists in SD2.0 models.
|
||||
:param prediction_type: The prediction type that the model was trained on. Use `'epsilon'` for Stable Diffusion
|
||||
v1.X and Stable Diffusion v2 Base. Use `'v-prediction'` for Stable Diffusion v2.
|
||||
:param scheduler_type: Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler",
|
||||
"euler-ancestral", "dpm", "ddim"]`. :param model_type: The pipeline type. `None` to automatically infer, or one of
|
||||
`["FrozenOpenCLIPEmbedder", "FrozenCLIPEmbedder"]`. :param extract_ema: Only relevant for
|
||||
@ -1003,17 +1001,16 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
or not. Defaults to `False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher
|
||||
quality images for inference. Non-EMA weights are usually better to continue fine-tuning.
|
||||
:param precision: precision to use - torch.float16, torch.float32 or torch.autocast
|
||||
:param upcast_attention: Whether the attention computation should always be upcasted. This is necessary when
|
||||
running stable diffusion 2.1.
|
||||
"""
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
if not isinstance(checkpoint_path, Path):
|
||||
checkpoint_path = Path(checkpoint_path)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
verbosity = dlogging.get_verbosity()
|
||||
dlogging.set_verbosity_error()
|
||||
|
||||
if str(checkpoint_path).endswith(".safetensors"):
|
||||
if checkpoint_path.suffix == ".safetensors":
|
||||
checkpoint = load_file(checkpoint_path)
|
||||
else:
|
||||
if scan_needed:
|
||||
@ -1026,9 +1023,13 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
|
||||
original_config = OmegaConf.load(original_config_file)
|
||||
|
||||
if model_version == BaseModelType.StableDiffusion2 and prediction_type == SchedulerPredictionType.VPrediction:
|
||||
if model_version == BaseModelType.StableDiffusion2 and original_config["model"]["params"]["parameterization"] == "v":
|
||||
prediction_type = "v_prediction"
|
||||
upcast_attention = True
|
||||
image_size = 768
|
||||
else:
|
||||
prediction_type = "epsilon"
|
||||
upcast_attention = False
|
||||
image_size = 512
|
||||
|
||||
#
|
||||
@ -1083,7 +1084,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
if model_type == "FrozenOpenCLIPEmbedder":
|
||||
text_model = convert_open_clip_checkpoint(checkpoint)
|
||||
tokenizer = CLIPTokenizer.from_pretrained(
|
||||
MODEL_ROOT / 'stable-diffusion-2-clip',
|
||||
CONVERT_MODEL_ROOT / 'stable-diffusion-2-clip',
|
||||
subfolder='tokenizer',
|
||||
)
|
||||
pipe = StableDiffusionPipeline(
|
||||
@ -1099,9 +1100,9 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
|
||||
elif model_type in ["FrozenCLIPEmbedder", "WeightedFrozenCLIPEmbedder"]:
|
||||
text_model = convert_ldm_clip_checkpoint(checkpoint)
|
||||
tokenizer = CLIPTokenizer.from_pretrained(MODEL_ROOT / 'clip-vit-large-patch14')
|
||||
safety_checker = StableDiffusionSafetyChecker.from_pretrained(MODEL_ROOT / 'stable-diffusion-safety-checker')
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_ROOT / 'stable-diffusion-safety-checker')
|
||||
tokenizer = CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / 'clip-vit-large-patch14')
|
||||
safety_checker = StableDiffusionSafetyChecker.from_pretrained(CONVERT_MODEL_ROOT / 'stable-diffusion-safety-checker')
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained(CONVERT_MODEL_ROOT / 'stable-diffusion-safety-checker')
|
||||
pipe = StableDiffusionPipeline(
|
||||
vae=vae.to(precision),
|
||||
text_encoder=text_model.to(precision),
|
||||
@ -1115,7 +1116,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
else:
|
||||
text_config = create_ldm_bert_config(original_config)
|
||||
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
|
||||
tokenizer = BertTokenizerFast.from_pretrained(MODEL_ROOT / "bert-base-uncased")
|
||||
tokenizer = BertTokenizerFast.from_pretrained(CONVERT_MODEL_ROOT / "bert-base-uncased")
|
||||
pipe = LDMTextToImagePipeline(
|
||||
vqvae=vae,
|
||||
bert=text_model,
|
||||
@ -1131,7 +1132,6 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
def convert_ckpt_to_diffusers(
|
||||
checkpoint_path: Union[str, Path],
|
||||
dump_path: Union[str, Path],
|
||||
model_root: Union[str, Path],
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
@ -1139,9 +1139,6 @@ def convert_ckpt_to_diffusers(
|
||||
and in addition a path-like object indicating the location of the desired diffusers
|
||||
model to be written.
|
||||
"""
|
||||
# setting global here to avoid massive changes late at night
|
||||
global MODEL_ROOT
|
||||
MODEL_ROOT = Path(model_root) / 'core/convert'
|
||||
pipe = load_pipeline_from_original_stable_diffusion_ckpt(checkpoint_path, **kwargs)
|
||||
|
||||
pipe.save_pretrained(
|
||||
|
@ -1,118 +0,0 @@
|
||||
"""
|
||||
Routines for downloading and installing models.
|
||||
"""
|
||||
import json
|
||||
import safetensors
|
||||
import safetensors.torch
|
||||
import shutil
|
||||
import tempfile
|
||||
import torch
|
||||
import traceback
|
||||
from dataclasses import dataclass
|
||||
from diffusers import ModelMixin
|
||||
from enum import Enum
|
||||
from typing import Callable
|
||||
from pathlib import Path
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from . import ModelManager
|
||||
from .models import BaseModelType, ModelType, VariantType
|
||||
from .model_probe import ModelProbe, ModelVariantInfo
|
||||
from .model_cache import SilenceWarnings
|
||||
|
||||
class ModelInstall(object):
|
||||
'''
|
||||
This class is able to download and install several different kinds of
|
||||
InvokeAI models. The helper function, if provided, is called on to distinguish
|
||||
between v2-base and v2-768 stable diffusion pipelines. This usually involves
|
||||
asking the user to select the proper type, as there is no way of distinguishing
|
||||
the two type of v2 file programmatically (as far as I know).
|
||||
'''
|
||||
def __init__(self,
|
||||
config: InvokeAIAppConfig,
|
||||
model_base_helper: Callable[[Path],BaseModelType]=None,
|
||||
clobber:bool = False
|
||||
):
|
||||
'''
|
||||
:param config: InvokeAI configuration object
|
||||
:param model_base_helper: A function call that accepts the Path to a checkpoint model and returns a ModelType enum
|
||||
:param clobber: If true, models with colliding names will be overwritten
|
||||
'''
|
||||
self.config = config
|
||||
self.clogger = clobber
|
||||
self.helper = model_base_helper
|
||||
self.prober = ModelProbe()
|
||||
|
||||
def install_checkpoint_file(self, checkpoint: Path)->dict:
|
||||
'''
|
||||
Install the checkpoint file at path and return a
|
||||
configuration entry that can be added to `models.yaml`.
|
||||
Model checkpoints and VAEs will be converted into
|
||||
diffusers before installation. Note that the model manager
|
||||
does not hold entries for anything but diffusers pipelines,
|
||||
and the configuration file stanzas returned from such models
|
||||
can be safely ignored.
|
||||
'''
|
||||
model_info = self.prober.probe(checkpoint, self.helper)
|
||||
if not model_info:
|
||||
raise ValueError(f"Unable to determine type of checkpoint file {checkpoint}")
|
||||
|
||||
key = ModelManager.create_key(
|
||||
model_name = checkpoint.stem,
|
||||
base_model = model_info.base_type,
|
||||
model_type = model_info.model_type,
|
||||
)
|
||||
destination_path = self._dest_path(model_info) / checkpoint
|
||||
destination_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
self._check_for_collision(destination_path)
|
||||
stanza = {
|
||||
key: dict(
|
||||
name = checkpoint.stem,
|
||||
description = f'{model_info.model_type} model {checkpoint.stem}',
|
||||
base = model_info.base_model.value,
|
||||
type = model_info.model_type.value,
|
||||
variant = model_info.variant_type.value,
|
||||
path = str(destination_path),
|
||||
)
|
||||
}
|
||||
|
||||
# non-pipeline; no conversion needed, just copy into right place
|
||||
if model_info.model_type != ModelType.Pipeline:
|
||||
shutil.copyfile(checkpoint, destination_path)
|
||||
stanza[key].update({'format': 'checkpoint'})
|
||||
|
||||
# pipeline - conversion needed here
|
||||
else:
|
||||
destination_path = self._dest_path(model_info) / checkpoint.stem
|
||||
config_file = self._pipeline_type_to_config_file(model_info.model_type)
|
||||
|
||||
from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
||||
with SilenceWarnings:
|
||||
convert_ckpt_to_diffusers(
|
||||
checkpoint,
|
||||
destination_path,
|
||||
extract_ema=True,
|
||||
original_config_file=config_file,
|
||||
scan_needed=False,
|
||||
)
|
||||
stanza[key].update({'format': 'folder',
|
||||
'path': destination_path, # no suffix on this
|
||||
})
|
||||
|
||||
return stanza
|
||||
|
||||
|
||||
def _check_for_collision(self, path: Path):
|
||||
if not path.exists():
|
||||
return
|
||||
if self.clobber:
|
||||
shutil.rmtree(path)
|
||||
else:
|
||||
raise ValueError(f"Destination {path} already exists. Won't overwrite unless clobber=True.")
|
||||
|
||||
def _staging_directory(self)->tempfile.TemporaryDirectory:
|
||||
return tempfile.TemporaryDirectory(dir=self.config.root_path)
|
||||
|
||||
|
||||
|
@ -1,53 +1,209 @@
|
||||
"""This module manages the InvokeAI `models.yaml` file, mapping
|
||||
symbolic diffusers model names to the paths and repo_ids used
|
||||
by the underlying `from_pretrained()` call.
|
||||
symbolic diffusers model names to the paths and repo_ids used by the
|
||||
underlying `from_pretrained()` call.
|
||||
|
||||
For fetching models, use manager.get_model('symbolic name'). This will
|
||||
return a ModelInfo object that contains the following attributes:
|
||||
SYNOPSIS:
|
||||
|
||||
* context -- a context manager Generator that loads and locks the
|
||||
model into GPU VRAM and returns the model for use.
|
||||
See below for usage.
|
||||
* name -- symbolic name of the model
|
||||
* type -- SubModelType of the model
|
||||
* hash -- unique hash for the model
|
||||
* location -- path or repo_id of the model
|
||||
* revision -- revision of the model if coming from a repo id,
|
||||
e.g. 'fp16'
|
||||
* precision -- torch precision of the model
|
||||
mgr = ModelManager('/home/phi/invokeai/configs/models.yaml')
|
||||
sd1_5 = mgr.get_model('stable-diffusion-v1-5',
|
||||
model_type=ModelType.Main,
|
||||
base_model=BaseModelType.StableDiffusion1,
|
||||
submodel_type=SubModelType.Unet)
|
||||
with sd1_5 as unet:
|
||||
run_some_inference(unet)
|
||||
|
||||
Typical usage:
|
||||
FETCHING MODELS:
|
||||
|
||||
from invokeai.backend import ModelManager
|
||||
Models are described using four attributes:
|
||||
|
||||
manager = ModelManager(
|
||||
config='./configs/models.yaml',
|
||||
max_cache_size=8
|
||||
) # gigabytes
|
||||
1) model_name -- the symbolic name for the model
|
||||
|
||||
model_info = manager.get_model('stable-diffusion-1.5', SubModelType.Diffusers)
|
||||
with model_info.context as my_model:
|
||||
my_model.latents_from_embeddings(...)
|
||||
2) ModelType -- an enum describing the type of the model. Currently
|
||||
defined types are:
|
||||
ModelType.Main -- a full model capable of generating images
|
||||
ModelType.Vae -- a VAE model
|
||||
ModelType.Lora -- a LoRA or LyCORIS fine-tune
|
||||
ModelType.TextualInversion -- a textual inversion embedding
|
||||
ModelType.ControlNet -- a ControlNet model
|
||||
|
||||
The manager uses the underlying ModelCache class to keep
|
||||
frequently-used models in RAM and move them into GPU as needed for
|
||||
generation operations. The optional `max_cache_size` argument
|
||||
indicates the maximum size the cache can grow to, in gigabytes. The
|
||||
underlying ModelCache object can be accessed using the manager's "cache"
|
||||
attribute.
|
||||
3) BaseModelType -- an enum indicating the stable diffusion base model, one of:
|
||||
BaseModelType.StableDiffusion1
|
||||
BaseModelType.StableDiffusion2
|
||||
|
||||
Because the model manager can return multiple different types of
|
||||
models, you may wish to add additional type checking on the class
|
||||
of model returned. To do this, provide the option `model_type`
|
||||
parameter:
|
||||
4) SubModelType (optional) -- an enum that refers to one of the submodels contained
|
||||
within the main model. Values are:
|
||||
|
||||
model_info = manager.get_model(
|
||||
'clip-tokenizer',
|
||||
model_type=SubModelType.Tokenizer
|
||||
)
|
||||
SubModelType.UNet
|
||||
SubModelType.TextEncoder
|
||||
SubModelType.Tokenizer
|
||||
SubModelType.Scheduler
|
||||
SubModelType.SafetyChecker
|
||||
|
||||
This will raise an InvalidModelError if the format defined in the
|
||||
config file doesn't match the requested model type.
|
||||
To fetch a model, use `manager.get_model()`. This takes the symbolic
|
||||
name of the model, the ModelType, the BaseModelType and the
|
||||
SubModelType. The latter is required for ModelType.Main.
|
||||
|
||||
get_model() will return a ModelInfo object that can then be used in
|
||||
context to retrieve the model and move it into GPU VRAM (on GPU
|
||||
systems).
|
||||
|
||||
A typical example is:
|
||||
|
||||
sd1_5 = mgr.get_model('stable-diffusion-v1-5',
|
||||
model_type=ModelType.Main,
|
||||
base_model=BaseModelType.StableDiffusion1,
|
||||
submodel_type=SubModelType.Unet)
|
||||
with sd1_5 as unet:
|
||||
run_some_inference(unet)
|
||||
|
||||
The ModelInfo object provides a number of useful fields describing the
|
||||
model, including:
|
||||
|
||||
name -- symbolic name of the model
|
||||
base_model -- base model (BaseModelType)
|
||||
type -- model type (ModelType)
|
||||
location -- path to the model file
|
||||
precision -- torch precision of the model
|
||||
hash -- unique sha256 checksum for this model
|
||||
|
||||
SUBMODELS:
|
||||
|
||||
When fetching a main model, you must specify the submodel. Retrieval
|
||||
of full pipelines is not supported.
|
||||
|
||||
vae_info = mgr.get_model('stable-diffusion-1.5',
|
||||
model_type = ModelType.Main,
|
||||
base_model = BaseModelType.StableDiffusion1,
|
||||
submodel_type = SubModelType.Vae
|
||||
)
|
||||
with vae_info as vae:
|
||||
do_something(vae)
|
||||
|
||||
This rule does not apply to controlnets, embeddings, loras and standalone
|
||||
VAEs, which do not have submodels.
|
||||
|
||||
LISTING MODELS
|
||||
|
||||
The model_names() method will return a list of Tuples describing each
|
||||
model it knows about:
|
||||
|
||||
>> mgr.model_names()
|
||||
[
|
||||
('stable-diffusion-1.5', <BaseModelType.StableDiffusion1: 'sd-1'>, <ModelType.Main: 'main'>),
|
||||
('stable-diffusion-2.1', <BaseModelType.StableDiffusion2: 'sd-2'>, <ModelType.Main: 'main'>),
|
||||
('inpaint', <BaseModelType.StableDiffusion1: 'sd-1'>, <ModelType.ControlNet: 'controlnet'>)
|
||||
('Ink scenery', <BaseModelType.StableDiffusion1: 'sd-1'>, <ModelType.Lora: 'lora'>)
|
||||
...
|
||||
]
|
||||
|
||||
The tuple is in the correct order to pass to get_model():
|
||||
|
||||
for m in mgr.model_names():
|
||||
info = get_model(*m)
|
||||
|
||||
In contrast, the list_models() method returns a list of dicts, each
|
||||
providing information about a model defined in models.yaml. For example:
|
||||
|
||||
>>> models = mgr.list_models()
|
||||
>>> json.dumps(models[0])
|
||||
{"path": "/home/lstein/invokeai-main/models/sd-1/controlnet/canny",
|
||||
"model_format": "diffusers",
|
||||
"name": "canny",
|
||||
"base_model": "sd-1",
|
||||
"type": "controlnet"
|
||||
}
|
||||
|
||||
You can filter by model type and base model as shown here:
|
||||
|
||||
|
||||
controlnets = mgr.list_models(model_type=ModelType.ControlNet,
|
||||
base_model=BaseModelType.StableDiffusion1)
|
||||
for c in controlnets:
|
||||
name = c['name']
|
||||
format = c['model_format']
|
||||
path = c['path']
|
||||
type = c['type']
|
||||
# etc
|
||||
|
||||
ADDING AND REMOVING MODELS
|
||||
|
||||
At startup time, the `models` directory will be scanned for
|
||||
checkpoints, diffusers pipelines, controlnets, LoRAs and TI
|
||||
embeddings. New entries will be added to the model manager and defunct
|
||||
ones removed. Anything that is a main model (ModelType.Main) will be
|
||||
added to models.yaml. For scanning to succeed, files need to be in
|
||||
their proper places. For example, a controlnet folder built on the
|
||||
stable diffusion 2 base, will need to be placed in
|
||||
`models/sd-2/controlnet`.
|
||||
|
||||
Layout of the `models` directory:
|
||||
|
||||
models
|
||||
├── sd-1
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ └── embedding
|
||||
├── sd-2
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ └── embedding
|
||||
└── core
|
||||
├── face_reconstruction
|
||||
│ ├── codeformer
|
||||
│ └── gfpgan
|
||||
├── sd-conversion
|
||||
│ ├── clip-vit-large-patch14 - tokenizer, text_encoder subdirs
|
||||
│ ├── stable-diffusion-2 - tokenizer, text_encoder subdirs
|
||||
│ └── stable-diffusion-safety-checker
|
||||
└── upscaling
|
||||
└─── esrgan
|
||||
|
||||
|
||||
|
||||
class ConfigMeta(BaseModel):Loras, textual_inversion and controlnet models are not listed
|
||||
explicitly in models.yaml, but are added to the in-memory data
|
||||
structure at initialization time by scanning the models directory. The
|
||||
in-memory data structure can be resynchronized by calling
|
||||
`manager.scan_models_directory()`.
|
||||
|
||||
Files and folders placed inside the `autoimport` paths (paths
|
||||
defined in `invokeai.yaml`) will also be scanned for new models at
|
||||
initialization time and added to `models.yaml`. Files will not be
|
||||
moved from this location but preserved in-place. These directories
|
||||
are:
|
||||
|
||||
configuration default description
|
||||
------------- ------- -----------
|
||||
autoimport_dir autoimport/main main models
|
||||
lora_dir autoimport/lora LoRA/LyCORIS models
|
||||
embedding_dir autoimport/embedding TI embeddings
|
||||
controlnet_dir autoimport/controlnet ControlNet models
|
||||
|
||||
In actuality, models located in any of these directories are scanned
|
||||
to determine their type, so it isn't strictly necessary to organize
|
||||
the different types in this way. This entry in `invokeai.yaml` will
|
||||
recursively scan all subdirectories within `autoimport`, scan models
|
||||
files it finds, and import them if recognized.
|
||||
|
||||
Paths:
|
||||
autoimport_dir: autoimport
|
||||
|
||||
A model can be manually added using `add_model()` using the model's
|
||||
name, base model, type and a dict of model attributes. See
|
||||
`invokeai/backend/model_management/models` for the attributes required
|
||||
by each model type.
|
||||
|
||||
A model can be deleted using `del_model()`, providing the same
|
||||
identifying information as `get_model()`
|
||||
|
||||
The `heuristic_import()` method will take a set of strings
|
||||
corresponding to local paths, remote URLs, and repo_ids, probe the
|
||||
object to determine what type of model it is (if any), and import new
|
||||
models into the manager. If passed a directory, it will recursively
|
||||
scan it for models to import. The return value is a set of the models
|
||||
successfully added.
|
||||
|
||||
MODELS.YAML
|
||||
|
||||
@ -56,93 +212,18 @@ The general format of a models.yaml section is:
|
||||
type-of-model/name-of-model:
|
||||
path: /path/to/local/file/or/directory
|
||||
description: a description
|
||||
format: folder|ckpt|safetensors|pt
|
||||
base: SD-1|SD-2
|
||||
subfolder: subfolder-name
|
||||
format: diffusers|checkpoint
|
||||
variant: normal|inpaint|depth
|
||||
|
||||
The type of model is given in the stanza key, and is one of
|
||||
{diffusers, ckpt, vae, text_encoder, tokenizer, unet, scheduler,
|
||||
safety_checker, feature_extractor, lora, textual_inversion,
|
||||
controlnet}, and correspond to items in the SubModelType enum defined
|
||||
in model_cache.py
|
||||
{main, vae, lora, controlnet, textual}
|
||||
|
||||
The format indicates whether the model is organized as a folder with
|
||||
model subdirectories, or is contained in a single checkpoint or
|
||||
safetensors file.
|
||||
The format indicates whether the model is organized as a diffusers
|
||||
folder with model subdirectories, or is contained in a single
|
||||
checkpoint or safetensors file.
|
||||
|
||||
One, but not both, of repo_id and path are provided. repo_id is the
|
||||
HuggingFace repository ID of the model, and path points to the file or
|
||||
directory on disk.
|
||||
|
||||
If subfolder is provided, then the model exists in a subdirectory of
|
||||
the main model. These are usually named after the model type, such as
|
||||
"unet".
|
||||
|
||||
This example summarizes the two ways of getting a non-diffuser model:
|
||||
|
||||
text_encoder/clip-test-1:
|
||||
format: folder
|
||||
path: /path/to/folder
|
||||
description: Returns standalone CLIPTextModel
|
||||
|
||||
text_encoder/clip-test-2:
|
||||
format: folder
|
||||
repo_id: /path/to/folder
|
||||
subfolder: text_encoder
|
||||
description: Returns the text_encoder in the subfolder of the diffusers model (just the encoder in RAM)
|
||||
|
||||
SUBMODELS:
|
||||
|
||||
It is also possible to fetch an isolated submodel from a diffusers
|
||||
model. Use the `submodel` parameter to select which part:
|
||||
|
||||
vae = manager.get_model('stable-diffusion-1.5',submodel=SubModelType.Vae)
|
||||
with vae.context as my_vae:
|
||||
print(type(my_vae))
|
||||
# "AutoencoderKL"
|
||||
|
||||
DIRECTORY_SCANNING:
|
||||
|
||||
Loras, textual_inversion and controlnet models are usually not listed
|
||||
explicitly in models.yaml, but are added to the in-memory data
|
||||
structure at initialization time by scanning the models directory. The
|
||||
in-memory data structure can be resynchronized by calling
|
||||
`manager.scan_models_directory`.
|
||||
|
||||
DISAMBIGUATION:
|
||||
|
||||
You may wish to use the same name for a related family of models. To
|
||||
do this, disambiguate the stanza key with the model and and format
|
||||
separated by "/". Example:
|
||||
|
||||
tokenizer/clip-large:
|
||||
format: tokenizer
|
||||
path: /path/to/folder
|
||||
description: Returns standalone tokenizer
|
||||
|
||||
text_encoder/clip-large:
|
||||
format: text_encoder
|
||||
path: /path/to/folder
|
||||
description: Returns standalone text encoder
|
||||
|
||||
You can now use the `model_type` argument to indicate which model you
|
||||
want:
|
||||
|
||||
tokenizer = mgr.get('clip-large',model_type=SubModelType.Tokenizer)
|
||||
encoder = mgr.get('clip-large',model_type=SubModelType.TextEncoder)
|
||||
|
||||
OTHER FUNCTIONS:
|
||||
|
||||
Other methods provided by ModelManager support importing, editing,
|
||||
converting and deleting models.
|
||||
|
||||
IMPORTANT CHANGES AND LIMITATIONS SINCE 2.3:
|
||||
|
||||
1. Only local paths are supported. Repo_ids are no longer accepted. This
|
||||
simplifies the logic.
|
||||
|
||||
2. VAEs can't be swapped in and out at load time. They must be baked
|
||||
into the model when downloaded or converted.
|
||||
The path points to a file or directory on disk. If a relative path,
|
||||
the root is the InvokeAI ROOTDIR.
|
||||
|
||||
"""
|
||||
from __future__ import annotations
|
||||
@ -151,13 +232,11 @@ import os
|
||||
import hashlib
|
||||
import textwrap
|
||||
from dataclasses import dataclass
|
||||
from packaging import version
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, List, Tuple, Union, types
|
||||
from typing import Optional, List, Tuple, Union, Set, Callable, types
|
||||
from shutil import rmtree
|
||||
|
||||
import torch
|
||||
from huggingface_hub import scan_cache_dir
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf.dictconfig import DictConfig
|
||||
|
||||
@ -165,9 +244,13 @@ from pydantic import BaseModel
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.util import CUDA_DEVICE, download_with_resume
|
||||
from invokeai.backend.util import CUDA_DEVICE, Chdir
|
||||
from .model_cache import ModelCache, ModelLocker
|
||||
from .models import BaseModelType, ModelType, SubModelType, ModelError, MODEL_CLASSES
|
||||
from .models import (
|
||||
BaseModelType, ModelType, SubModelType,
|
||||
ModelError, SchedulerPredictionType, MODEL_CLASSES,
|
||||
ModelConfigBase,
|
||||
)
|
||||
|
||||
# We are only starting to number the config file with release 3.
|
||||
# The config file version doesn't have to start at release version, but it will help
|
||||
@ -183,7 +266,6 @@ class ModelInfo():
|
||||
hash: str
|
||||
location: Union[Path, str]
|
||||
precision: torch.dtype
|
||||
revision: str = None
|
||||
_cache: ModelCache = None
|
||||
|
||||
def __enter__(self):
|
||||
@ -199,31 +281,6 @@ class InvalidModelError(Exception):
|
||||
MAX_CACHE_SIZE = 6.0 # GB
|
||||
|
||||
|
||||
# layout of the models directory:
|
||||
# models
|
||||
# ├── sd-1
|
||||
# │ ├── controlnet
|
||||
# │ ├── lora
|
||||
# │ ├── pipeline
|
||||
# │ └── textual_inversion
|
||||
# ├── sd-2
|
||||
# │ ├── controlnet
|
||||
# │ ├── lora
|
||||
# │ ├── pipeline
|
||||
# │ └── textual_inversion
|
||||
# └── core
|
||||
# ├── face_reconstruction
|
||||
# │ ├── codeformer
|
||||
# │ └── gfpgan
|
||||
# ├── sd-conversion
|
||||
# │ ├── clip-vit-large-patch14 - tokenizer, text_encoder subdirs
|
||||
# │ ├── stable-diffusion-2 - tokenizer, text_encoder subdirs
|
||||
# │ └── stable-diffusion-safety-checker
|
||||
# └── upscaling
|
||||
# └─── esrgan
|
||||
|
||||
|
||||
|
||||
class ConfigMeta(BaseModel):
|
||||
version: str
|
||||
|
||||
@ -271,7 +328,7 @@ class ModelManager(object):
|
||||
self.models[model_key] = model_class.create_config(**model_config)
|
||||
|
||||
# check config version number and update on disk/RAM if necessary
|
||||
self.globals = InvokeAIAppConfig.get_config()
|
||||
self.app_config = InvokeAIAppConfig.get_config()
|
||||
self.logger = logger
|
||||
self.cache = ModelCache(
|
||||
max_cache_size=max_cache_size,
|
||||
@ -307,7 +364,8 @@ class ModelManager(object):
|
||||
) -> str:
|
||||
return f"{base_model}/{model_type}/{model_name}"
|
||||
|
||||
def parse_key(self, model_key: str) -> Tuple[str, BaseModelType, ModelType]:
|
||||
@classmethod
|
||||
def parse_key(cls, model_key: str) -> Tuple[str, BaseModelType, ModelType]:
|
||||
base_model_str, model_type_str, model_name = model_key.split('/', 2)
|
||||
try:
|
||||
model_type = ModelType(model_type_str)
|
||||
@ -321,86 +379,44 @@ class ModelManager(object):
|
||||
|
||||
return (model_name, base_model, model_type)
|
||||
|
||||
def _get_model_cache_path(self, model_path):
|
||||
return self.app_config.models_path / ".cache" / hashlib.md5(str(model_path).encode()).hexdigest()
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
submodel_type: Optional[SubModelType] = None
|
||||
):
|
||||
)->ModelInfo:
|
||||
"""Given a model named identified in models.yaml, return
|
||||
an ModelInfo object describing it.
|
||||
:param model_name: symbolic name of the model in models.yaml
|
||||
:param model_type: ModelType enum indicating the type of model to return
|
||||
:param base_model: BaseModelType enum indicating the base model used by this model
|
||||
:param submode_typel: an ModelType enum indicating the portion of
|
||||
the model to retrieve (e.g. ModelType.Vae)
|
||||
|
||||
If not provided, the model_type will be read from the `format` field
|
||||
of the corresponding stanza. If provided, the model_type will be used
|
||||
to disambiguate stanzas in the configuration file. The default is to
|
||||
assume a diffusers pipeline. The behavior is illustrated here:
|
||||
|
||||
[models.yaml]
|
||||
diffusers/test1:
|
||||
repo_id: foo/bar
|
||||
description: Typical diffusers pipeline
|
||||
|
||||
lora/test1:
|
||||
repo_id: /tmp/loras/test1.safetensors
|
||||
description: Typical lora file
|
||||
|
||||
test1_pipeline = mgr.get_model('test1')
|
||||
# returns a StableDiffusionGeneratorPipeline
|
||||
|
||||
test1_vae1 = mgr.get_model('test1', submodel=ModelType.Vae)
|
||||
# returns the VAE part of a diffusers model as an AutoencoderKL
|
||||
|
||||
test1_vae2 = mgr.get_model('test1', model_type=ModelType.Diffusers, submodel=ModelType.Vae)
|
||||
# does the same thing as the previous statement. Note that model_type
|
||||
# is for the parent model, and submodel is for the part
|
||||
|
||||
test1_lora = mgr.get_model('test1', model_type=ModelType.Lora)
|
||||
# returns a LoRA embed (as a 'dict' of tensors)
|
||||
|
||||
test1_encoder = mgr.get_modelI('test1', model_type=ModelType.TextEncoder)
|
||||
# raises an InvalidModelError
|
||||
|
||||
"""
|
||||
model_class = MODEL_CLASSES[base_model][model_type]
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
|
||||
# if model not found try to find it (maybe file just pasted)
|
||||
if model_key not in self.models:
|
||||
# TODO: find by mask or try rescan?
|
||||
path_mask = f"/models/{base_model}/{model_type}/{model_name}*"
|
||||
if False: # model_path = next(find_by_mask(path_mask)):
|
||||
model_path = None # TODO:
|
||||
model_config = model_class.probe_config(model_path)
|
||||
self.models[model_key] = model_config
|
||||
else:
|
||||
self.scan_models_directory(base_model=base_model, model_type=model_type)
|
||||
if model_key not in self.models:
|
||||
raise Exception(f"Model not found - {model_key}")
|
||||
|
||||
# if it known model check that target path exists (if manualy deleted)
|
||||
else:
|
||||
# logic repeated twice(in rescan too) any way to optimize?
|
||||
if not os.path.exists(self.models[model_key].path):
|
||||
if model_class.save_to_config:
|
||||
self.models[model_key].error = ModelError.NotFound
|
||||
raise Exception(f"Files for model \"{model_key}\" not found")
|
||||
|
||||
else:
|
||||
self.models.pop(model_key, None)
|
||||
raise Exception(f"Model not found - {model_key}")
|
||||
|
||||
# reset model errors?
|
||||
|
||||
|
||||
|
||||
model_config = self.models[model_key]
|
||||
model_path = self.app_config.root_path / model_config.path
|
||||
|
||||
# /models/{base_model}/{model_type}/{name}.ckpt or .safentesors
|
||||
# /models/{base_model}/{model_type}/{name}/
|
||||
model_path = model_config.path
|
||||
if not model_path.exists():
|
||||
if model_class.save_to_config:
|
||||
self.models[model_key].error = ModelError.NotFound
|
||||
raise Exception(f"Files for model \"{model_key}\" not found")
|
||||
|
||||
else:
|
||||
self.models.pop(model_key, None)
|
||||
raise Exception(f"Model not found - {model_key}")
|
||||
|
||||
# vae/movq override
|
||||
# TODO:
|
||||
@ -414,10 +430,10 @@ class ModelManager(object):
|
||||
|
||||
# TODO: path
|
||||
# TODO: is it accurate to use path as id
|
||||
dst_convert_path = self.globals.models_dir / ".cache" / hashlib.md5(model_path.encode()).hexdigest()
|
||||
dst_convert_path = self._get_model_cache_path(model_path)
|
||||
model_path = model_class.convert_if_required(
|
||||
base_model=base_model,
|
||||
model_path=model_path,
|
||||
model_path=str(model_path), # TODO: refactor str/Path types logic
|
||||
output_path=dst_convert_path,
|
||||
config=model_config,
|
||||
)
|
||||
@ -476,11 +492,6 @@ class ModelManager(object):
|
||||
) -> list[dict]:
|
||||
"""
|
||||
Return a list of models.
|
||||
|
||||
Please use model_manager.models() to get all the model names,
|
||||
model_manager.model_info('model-name') to get the stanza for the model
|
||||
named 'model-name', and model_manager.config to get the full OmegaConf
|
||||
object derived from models.yaml
|
||||
"""
|
||||
|
||||
models = []
|
||||
@ -507,7 +518,7 @@ class ModelManager(object):
|
||||
|
||||
def print_models(self) -> None:
|
||||
"""
|
||||
Print a table of models, their descriptions
|
||||
Print a table of models and their descriptions. This needs to be redone
|
||||
"""
|
||||
# TODO: redo
|
||||
for model_type, model_dict in self.list_models().items():
|
||||
@ -515,7 +526,7 @@ class ModelManager(object):
|
||||
line = f'{model_info["name"]:25s} {model_info["type"]:10s} {model_info["description"]}'
|
||||
print(line)
|
||||
|
||||
# TODO: test when ui implemented
|
||||
# Tested - LS
|
||||
def del_model(
|
||||
self,
|
||||
model_name: str,
|
||||
@ -525,7 +536,6 @@ class ModelManager(object):
|
||||
"""
|
||||
Delete the named model.
|
||||
"""
|
||||
raise Exception("TODO: del_model") # TODO: redo
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
model_cfg = self.models.pop(model_key, None)
|
||||
|
||||
@ -541,14 +551,18 @@ class ModelManager(object):
|
||||
self.cache.uncache_model(cache_id)
|
||||
|
||||
# if model inside invoke models folder - delete files
|
||||
if model_cfg.path.startswith("models/") or model_cfg.path.startswith("models\\"):
|
||||
model_path = self.globals.root_dir / model_cfg.path
|
||||
if model_path.isdir():
|
||||
shutil.rmtree(str(model_path))
|
||||
model_path = self.app_config.root_path / model_cfg.path
|
||||
cache_path = self._get_model_cache_path(model_path)
|
||||
if cache_path.exists():
|
||||
rmtree(str(cache_path))
|
||||
|
||||
if model_path.is_relative_to(self.app_config.models_path):
|
||||
if model_path.is_dir():
|
||||
rmtree(str(model_path))
|
||||
else:
|
||||
model_path.unlink()
|
||||
|
||||
# TODO: test when ui implemented
|
||||
# LS: tested
|
||||
def add_model(
|
||||
self,
|
||||
model_name: str,
|
||||
@ -569,18 +583,30 @@ class ModelManager(object):
|
||||
model_config = model_class.create_config(**model_attributes)
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
|
||||
assert (
|
||||
clobber or model_key not in self.models
|
||||
), f'attempt to overwrite existing model definition "{model_key}"'
|
||||
if model_key in self.models and not clobber:
|
||||
raise Exception(f'Attempt to overwrite existing model definition "{model_key}"')
|
||||
|
||||
self.models[model_key] = model_config
|
||||
old_model = self.models.pop(model_key, None)
|
||||
if old_model is not None:
|
||||
# TODO: if path changed and old_model.path inside models folder should we delete this too?
|
||||
|
||||
if clobber and model_key in self.cache_keys:
|
||||
# remove conversion cache as config changed
|
||||
old_model_path = self.app_config.root_path / old_model.path
|
||||
old_model_cache = self._get_model_cache_path(old_model_path)
|
||||
if old_model_cache.exists():
|
||||
if old_model_cache.is_dir():
|
||||
rmtree(str(old_model_cache))
|
||||
else:
|
||||
old_model_cache.unlink()
|
||||
|
||||
# remove in-memory cache
|
||||
# note: it not garantie to release memory(model can has other references)
|
||||
cache_ids = self.cache_keys.pop(model_key, [])
|
||||
for cache_id in cache_ids:
|
||||
self.cache.uncache_model(cache_id)
|
||||
|
||||
self.models[model_key] = model_config
|
||||
|
||||
def search_models(self, search_folder):
|
||||
self.logger.info(f"Finding Models In: {search_folder}")
|
||||
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
||||
@ -621,7 +647,7 @@ class ModelManager(object):
|
||||
yaml_str = OmegaConf.to_yaml(data_to_save)
|
||||
config_file_path = conf_file or self.config_path
|
||||
assert config_file_path is not None,'no config file path to write to'
|
||||
config_file_path = self.globals.root_dir / config_file_path
|
||||
config_file_path = self.app_config.root_path / config_file_path
|
||||
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
|
||||
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
||||
outfile.write(self.preamble())
|
||||
@ -644,42 +670,150 @@ class ModelManager(object):
|
||||
"""
|
||||
)
|
||||
|
||||
def scan_models_directory(self):
|
||||
def scan_models_directory(
|
||||
self,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
model_type: Optional[ModelType] = None,
|
||||
):
|
||||
loaded_files = set()
|
||||
new_models_found = False
|
||||
|
||||
for model_key, model_config in list(self.models.items()):
|
||||
model_name, base_model, model_type = self.parse_key(model_key)
|
||||
model_path = str(self.globals.root / model_config.path)
|
||||
if not os.path.exists(model_path):
|
||||
model_class = MODEL_CLASSES[base_model][model_type]
|
||||
if model_class.save_to_config:
|
||||
model_config.error = ModelError.NotFound
|
||||
with Chdir(self.app_config.root_path):
|
||||
for model_key, model_config in list(self.models.items()):
|
||||
model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
|
||||
model_path = self.app_config.root_path / model_config.path
|
||||
if not model_path.exists():
|
||||
model_class = MODEL_CLASSES[cur_base_model][cur_model_type]
|
||||
if model_class.save_to_config:
|
||||
model_config.error = ModelError.NotFound
|
||||
else:
|
||||
self.models.pop(model_key, None)
|
||||
else:
|
||||
self.models.pop(model_key, None)
|
||||
else:
|
||||
loaded_files.add(model_path)
|
||||
loaded_files.add(model_path)
|
||||
|
||||
for base_model in BaseModelType:
|
||||
for model_type in ModelType:
|
||||
model_class = MODEL_CLASSES[base_model][model_type]
|
||||
models_dir = os.path.join(self.globals.models_path, base_model, model_type)
|
||||
for cur_base_model in BaseModelType:
|
||||
if base_model is not None and cur_base_model != base_model:
|
||||
continue
|
||||
|
||||
if not os.path.exists(models_dir):
|
||||
continue # TODO: or create all folders?
|
||||
for cur_model_type in ModelType:
|
||||
if model_type is not None and cur_model_type != model_type:
|
||||
continue
|
||||
model_class = MODEL_CLASSES[cur_base_model][cur_model_type]
|
||||
models_dir = self.app_config.models_path / cur_base_model.value / cur_model_type.value
|
||||
|
||||
for entry_name in os.listdir(models_dir):
|
||||
model_path = os.path.join(models_dir, entry_name)
|
||||
if model_path not in loaded_files: # TODO: check
|
||||
model_name = Path(model_path).stem
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
if not models_dir.exists():
|
||||
continue # TODO: or create all folders?
|
||||
|
||||
if model_key in self.models:
|
||||
raise Exception(f"Model with key {model_key} added twice")
|
||||
for model_path in models_dir.iterdir():
|
||||
if model_path not in loaded_files: # TODO: check
|
||||
model_name = model_path.name if model_path.is_dir() else model_path.stem
|
||||
model_key = self.create_key(model_name, cur_base_model, cur_model_type)
|
||||
|
||||
model_config: ModelConfigBase = model_class.probe_config(model_path)
|
||||
self.models[model_key] = model_config
|
||||
new_models_found = True
|
||||
if model_key in self.models:
|
||||
raise Exception(f"Model with key {model_key} added twice")
|
||||
|
||||
if new_models_found:
|
||||
if model_path.is_relative_to(self.app_config.root_path):
|
||||
model_path = model_path.relative_to(self.app_config.root_path)
|
||||
try:
|
||||
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
|
||||
self.models[model_key] = model_config
|
||||
new_models_found = True
|
||||
except NotImplementedError as e:
|
||||
self.logger.warning(e)
|
||||
|
||||
imported_models = self.autoimport()
|
||||
|
||||
if (new_models_found or imported_models) and self.config_path:
|
||||
self.commit()
|
||||
|
||||
def autoimport(self)->set[Path]:
|
||||
'''
|
||||
Scan the autoimport directory (if defined) and import new models, delete defunct models.
|
||||
'''
|
||||
# avoid circular import
|
||||
from invokeai.backend.install.model_install_backend import ModelInstall
|
||||
from invokeai.frontend.install.model_install import ask_user_for_prediction_type
|
||||
|
||||
installer = ModelInstall(config = self.app_config,
|
||||
model_manager = self,
|
||||
prediction_type_helper = ask_user_for_prediction_type,
|
||||
)
|
||||
|
||||
installed = set()
|
||||
scanned_dirs = set()
|
||||
|
||||
config = self.app_config
|
||||
known_paths = {(self.app_config.root_path / x['path']) for x in self.list_models()}
|
||||
|
||||
for autodir in [config.autoimport_dir,
|
||||
config.lora_dir,
|
||||
config.embedding_dir,
|
||||
config.controlnet_dir]:
|
||||
if autodir is None:
|
||||
continue
|
||||
|
||||
self.logger.info(f'Scanning {autodir} for models to import')
|
||||
|
||||
autodir = self.app_config.root_path / autodir
|
||||
if not autodir.exists():
|
||||
continue
|
||||
|
||||
items_scanned = 0
|
||||
new_models_found = set()
|
||||
|
||||
for root, dirs, files in os.walk(autodir):
|
||||
items_scanned += len(dirs) + len(files)
|
||||
for d in dirs:
|
||||
path = Path(root) / d
|
||||
if path in known_paths or path.parent in scanned_dirs:
|
||||
scanned_dirs.add(path)
|
||||
continue
|
||||
if any([(path/x).exists() for x in {'config.json','model_index.json','learned_embeds.bin'}]):
|
||||
new_models_found.update(installer.heuristic_install(path))
|
||||
scanned_dirs.add(path)
|
||||
|
||||
for f in files:
|
||||
path = Path(root) / f
|
||||
if path in known_paths or path.parent in scanned_dirs:
|
||||
continue
|
||||
if path.suffix in {'.ckpt','.bin','.pth','.safetensors','.pt'}:
|
||||
new_models_found.update(installer.heuristic_install(path))
|
||||
|
||||
self.logger.info(f'Scanned {items_scanned} files and directories, imported {len(new_models_found)} models')
|
||||
installed.update(new_models_found)
|
||||
|
||||
return installed
|
||||
|
||||
def heuristic_import(self,
|
||||
items_to_import: Set[str],
|
||||
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
|
||||
)->Set[str]:
|
||||
'''Import a list of paths, repo_ids or URLs. Returns the set of
|
||||
successfully imported items.
|
||||
:param items_to_import: Set of strings corresponding to models to be imported.
|
||||
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
|
||||
|
||||
The prediction type helper is necessary to distinguish between
|
||||
models based on Stable Diffusion 2 Base (requiring
|
||||
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
|
||||
(requiring SchedulerPredictionType.VPrediction). It is
|
||||
generally impossible to do this programmatically, so the
|
||||
prediction_type_helper usually asks the user to choose.
|
||||
|
||||
'''
|
||||
# avoid circular import here
|
||||
from invokeai.backend.install.model_install_backend import ModelInstall
|
||||
successfully_installed = set()
|
||||
|
||||
installer = ModelInstall(config = self.app_config,
|
||||
prediction_type_helper = prediction_type_helper,
|
||||
model_manager = self)
|
||||
for thing in items_to_import:
|
||||
try:
|
||||
installed = installer.heuristic_install(thing)
|
||||
successfully_installed.update(installed)
|
||||
except Exception as e:
|
||||
self.logger.warning(f'{thing} could not be imported: {str(e)}')
|
||||
|
||||
self.commit()
|
||||
return successfully_installed
|
||||
|
@ -1,27 +1,28 @@
|
||||
import json
|
||||
import traceback
|
||||
import torch
|
||||
import safetensors.torch
|
||||
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
|
||||
from diffusers import ModelMixin, ConfigMixin, StableDiffusionPipeline, AutoencoderKL, ControlNetModel
|
||||
from diffusers import ModelMixin, ConfigMixin
|
||||
from pathlib import Path
|
||||
from typing import Callable, Literal, Union, Dict
|
||||
from picklescan.scanner import scan_file_path
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .models import BaseModelType, ModelType, ModelVariantType, SchedulerPredictionType, SilenceWarnings
|
||||
from .models import (
|
||||
BaseModelType, ModelType, ModelVariantType,
|
||||
SchedulerPredictionType, SilenceWarnings,
|
||||
)
|
||||
from .models.base import read_checkpoint_meta
|
||||
|
||||
@dataclass
|
||||
class ModelVariantInfo(object):
|
||||
class ModelProbeInfo(object):
|
||||
model_type: ModelType
|
||||
base_type: BaseModelType
|
||||
variant_type: ModelVariantType
|
||||
prediction_type: SchedulerPredictionType
|
||||
upcast_attention: bool
|
||||
format: Literal['folder','checkpoint']
|
||||
format: Literal['diffusers','checkpoint', 'lycoris']
|
||||
image_size: int
|
||||
|
||||
class ProbeBase(object):
|
||||
@ -31,19 +32,19 @@ class ProbeBase(object):
|
||||
class ModelProbe(object):
|
||||
|
||||
PROBES = {
|
||||
'folder': { },
|
||||
'diffusers': { },
|
||||
'checkpoint': { },
|
||||
}
|
||||
|
||||
CLASS2TYPE = {
|
||||
'StableDiffusionPipeline' : ModelType.Pipeline,
|
||||
'StableDiffusionPipeline' : ModelType.Main,
|
||||
'AutoencoderKL' : ModelType.Vae,
|
||||
'ControlNetModel' : ModelType.ControlNet,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def register_probe(cls,
|
||||
format: Literal['folder','file'],
|
||||
format: Literal['diffusers','checkpoint'],
|
||||
model_type: ModelType,
|
||||
probe_class: ProbeBase):
|
||||
cls.PROBES[format][model_type] = probe_class
|
||||
@ -51,8 +52,8 @@ class ModelProbe(object):
|
||||
@classmethod
|
||||
def heuristic_probe(cls,
|
||||
model: Union[Dict, ModelMixin, Path],
|
||||
prediction_type_helper: Callable[[Path],BaseModelType]=None,
|
||||
)->ModelVariantInfo:
|
||||
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
|
||||
)->ModelProbeInfo:
|
||||
if isinstance(model,Path):
|
||||
return cls.probe(model_path=model,prediction_type_helper=prediction_type_helper)
|
||||
elif isinstance(model,(dict,ModelMixin,ConfigMixin)):
|
||||
@ -64,7 +65,7 @@ class ModelProbe(object):
|
||||
def probe(cls,
|
||||
model_path: Path,
|
||||
model: Union[Dict, ModelMixin] = None,
|
||||
prediction_type_helper: Callable[[Path],BaseModelType] = None)->ModelVariantInfo:
|
||||
prediction_type_helper: Callable[[Path],SchedulerPredictionType] = None)->ModelProbeInfo:
|
||||
'''
|
||||
Probe the model at model_path and return sufficient information about it
|
||||
to place it somewhere in the models directory hierarchy. If the model is
|
||||
@ -74,23 +75,24 @@ class ModelProbe(object):
|
||||
between V2-Base and V2-768 SD models.
|
||||
'''
|
||||
if model_path:
|
||||
format = 'folder' if model_path.is_dir() else 'checkpoint'
|
||||
format_type = 'diffusers' if model_path.is_dir() else 'checkpoint'
|
||||
else:
|
||||
format = 'folder' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint'
|
||||
format_type = 'diffusers' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint'
|
||||
|
||||
model_info = None
|
||||
try:
|
||||
model_type = cls.get_model_type_from_folder(model_path, model) \
|
||||
if format == 'folder' \
|
||||
if format_type == 'diffusers' \
|
||||
else cls.get_model_type_from_checkpoint(model_path, model)
|
||||
probe_class = cls.PROBES[format].get(model_type)
|
||||
probe_class = cls.PROBES[format_type].get(model_type)
|
||||
if not probe_class:
|
||||
return None
|
||||
probe = probe_class(model_path, model, prediction_type_helper)
|
||||
base_type = probe.get_base_type()
|
||||
variant_type = probe.get_variant_type()
|
||||
prediction_type = probe.get_scheduler_prediction_type()
|
||||
model_info = ModelVariantInfo(
|
||||
format = probe.get_format()
|
||||
model_info = ModelProbeInfo(
|
||||
model_type = model_type,
|
||||
base_type = base_type,
|
||||
variant_type = variant_type,
|
||||
@ -102,32 +104,40 @@ class ModelProbe(object):
|
||||
and prediction_type==SchedulerPredictionType.VPrediction \
|
||||
) else 512,
|
||||
)
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
return model_info
|
||||
|
||||
@classmethod
|
||||
def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: dict)->ModelType:
|
||||
if model_path.suffix not in ('.bin','.pt','.ckpt','.safetensors'):
|
||||
def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: dict) -> ModelType:
|
||||
if model_path.suffix not in ('.bin','.pt','.ckpt','.safetensors','.pth'):
|
||||
return None
|
||||
if model_path.name=='learned_embeds.bin':
|
||||
|
||||
if model_path.name == "learned_embeds.bin":
|
||||
return ModelType.TextualInversion
|
||||
checkpoint = checkpoint or cls._scan_and_load_checkpoint(model_path)
|
||||
state_dict = checkpoint.get("state_dict") or checkpoint
|
||||
if any([x.startswith("model.diffusion_model") for x in state_dict.keys()]):
|
||||
return ModelType.Pipeline
|
||||
if any([x.startswith("encoder.conv_in") for x in state_dict.keys()]):
|
||||
return ModelType.Vae
|
||||
if "string_to_token" in state_dict or "emb_params" in state_dict:
|
||||
return ModelType.TextualInversion
|
||||
if any([x.startswith("lora") for x in state_dict.keys()]):
|
||||
return ModelType.Lora
|
||||
if any([x.startswith("control_model") for x in state_dict.keys()]):
|
||||
return ModelType.ControlNet
|
||||
if any([x.startswith("input_blocks") for x in state_dict.keys()]):
|
||||
return ModelType.ControlNet
|
||||
return None # give up
|
||||
|
||||
ckpt = checkpoint if checkpoint else read_checkpoint_meta(model_path, scan=True)
|
||||
ckpt = ckpt.get("state_dict", ckpt)
|
||||
|
||||
for key in ckpt.keys():
|
||||
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
|
||||
return ModelType.Main
|
||||
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
|
||||
return ModelType.Vae
|
||||
elif any(key.startswith(v) for v in {"lora_te_", "lora_unet_"}):
|
||||
return ModelType.Lora
|
||||
elif any(key.startswith(v) for v in {"control_model", "input_blocks"}):
|
||||
return ModelType.ControlNet
|
||||
elif key in {"emb_params", "string_to_param"}:
|
||||
return ModelType.TextualInversion
|
||||
|
||||
else:
|
||||
# diffusers-ti
|
||||
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
|
||||
return ModelType.TextualInversion
|
||||
|
||||
raise ValueError("Unable to determine model type")
|
||||
|
||||
@classmethod
|
||||
def get_model_type_from_folder(cls, folder_path: Path, model: ModelMixin)->ModelType:
|
||||
@ -192,11 +202,14 @@ class ProbeBase(object):
|
||||
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
||||
pass
|
||||
|
||||
def get_format(self)->str:
|
||||
pass
|
||||
|
||||
class CheckpointProbeBase(ProbeBase):
|
||||
def __init__(self,
|
||||
checkpoint_path: Path,
|
||||
checkpoint: dict,
|
||||
helper: Callable[[Path],BaseModelType] = None
|
||||
helper: Callable[[Path],SchedulerPredictionType] = None
|
||||
)->BaseModelType:
|
||||
self.checkpoint = checkpoint or ModelProbe._scan_and_load_checkpoint(checkpoint_path)
|
||||
self.checkpoint_path = checkpoint_path
|
||||
@ -205,9 +218,12 @@ class CheckpointProbeBase(ProbeBase):
|
||||
def get_base_type(self)->BaseModelType:
|
||||
pass
|
||||
|
||||
def get_format(self)->str:
|
||||
return 'checkpoint'
|
||||
|
||||
def get_variant_type(self)-> ModelVariantType:
|
||||
model_type = ModelProbe.get_model_type_from_checkpoint(self.checkpoint_path,self.checkpoint)
|
||||
if model_type != ModelType.Pipeline:
|
||||
if model_type != ModelType.Main:
|
||||
return ModelVariantType.Normal
|
||||
state_dict = self.checkpoint.get('state_dict') or self.checkpoint
|
||||
in_channels = state_dict[
|
||||
@ -246,7 +262,8 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
return SchedulerPredictionType.Epsilon
|
||||
elif checkpoint["global_step"] == 110000:
|
||||
return SchedulerPredictionType.VPrediction
|
||||
if self.checkpoint_path and self.helper:
|
||||
if self.checkpoint_path and self.helper \
|
||||
and not self.checkpoint_path.with_suffix('.yaml').exists(): # if a .yaml config file exists, then this step not needed
|
||||
return self.helper(self.checkpoint_path)
|
||||
else:
|
||||
return None
|
||||
@ -257,6 +274,9 @@ class VaeCheckpointProbe(CheckpointProbeBase):
|
||||
return BaseModelType.StableDiffusion1
|
||||
|
||||
class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
def get_format(self)->str:
|
||||
return 'lycoris'
|
||||
|
||||
def get_base_type(self)->BaseModelType:
|
||||
checkpoint = self.checkpoint
|
||||
key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
|
||||
@ -276,6 +296,9 @@ class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
return None
|
||||
|
||||
class TextualInversionCheckpointProbe(CheckpointProbeBase):
|
||||
def get_format(self)->str:
|
||||
return None
|
||||
|
||||
def get_base_type(self)->BaseModelType:
|
||||
checkpoint = self.checkpoint
|
||||
if 'string_to_token' in checkpoint:
|
||||
@ -322,17 +345,16 @@ class FolderProbeBase(ProbeBase):
|
||||
def get_variant_type(self)->ModelVariantType:
|
||||
return ModelVariantType.Normal
|
||||
|
||||
def get_format(self)->str:
|
||||
return 'diffusers'
|
||||
|
||||
class PipelineFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self)->BaseModelType:
|
||||
if self.model:
|
||||
unet_conf = self.model.unet.config
|
||||
scheduler_conf = self.model.scheduler.config
|
||||
else:
|
||||
with open(self.folder_path / 'unet' / 'config.json','r') as file:
|
||||
unet_conf = json.load(file)
|
||||
with open(self.folder_path / 'scheduler' / 'scheduler_config.json','r') as file:
|
||||
scheduler_conf = json.load(file)
|
||||
|
||||
if unet_conf['cross_attention_dim'] == 768:
|
||||
return BaseModelType.StableDiffusion1
|
||||
elif unet_conf['cross_attention_dim'] == 1024:
|
||||
@ -381,6 +403,9 @@ class VaeFolderProbe(FolderProbeBase):
|
||||
return BaseModelType.StableDiffusion1
|
||||
|
||||
class TextualInversionFolderProbe(FolderProbeBase):
|
||||
def get_format(self)->str:
|
||||
return None
|
||||
|
||||
def get_base_type(self)->BaseModelType:
|
||||
path = self.folder_path / 'learned_embeds.bin'
|
||||
if not path.exists():
|
||||
@ -401,16 +426,24 @@ class ControlNetFolderProbe(FolderProbeBase):
|
||||
else BaseModelType.StableDiffusion2
|
||||
|
||||
class LoRAFolderProbe(FolderProbeBase):
|
||||
# I've never seen one of these in the wild, so this is a noop
|
||||
pass
|
||||
def get_base_type(self)->BaseModelType:
|
||||
model_file = None
|
||||
for suffix in ['safetensors','bin']:
|
||||
base_file = self.folder_path / f'pytorch_lora_weights.{suffix}'
|
||||
if base_file.exists():
|
||||
model_file = base_file
|
||||
break
|
||||
if not model_file:
|
||||
raise Exception('Unknown LoRA format encountered')
|
||||
return LoRACheckpointProbe(model_file,None).get_base_type()
|
||||
|
||||
############## register probe classes ######
|
||||
ModelProbe.register_probe('folder', ModelType.Pipeline, PipelineFolderProbe)
|
||||
ModelProbe.register_probe('folder', ModelType.Vae, VaeFolderProbe)
|
||||
ModelProbe.register_probe('folder', ModelType.Lora, LoRAFolderProbe)
|
||||
ModelProbe.register_probe('folder', ModelType.TextualInversion, TextualInversionFolderProbe)
|
||||
ModelProbe.register_probe('folder', ModelType.ControlNet, ControlNetFolderProbe)
|
||||
ModelProbe.register_probe('checkpoint', ModelType.Pipeline, PipelineCheckpointProbe)
|
||||
ModelProbe.register_probe('diffusers', ModelType.Main, PipelineFolderProbe)
|
||||
ModelProbe.register_probe('diffusers', ModelType.Vae, VaeFolderProbe)
|
||||
ModelProbe.register_probe('diffusers', ModelType.Lora, LoRAFolderProbe)
|
||||
ModelProbe.register_probe('diffusers', ModelType.TextualInversion, TextualInversionFolderProbe)
|
||||
ModelProbe.register_probe('diffusers', ModelType.ControlNet, ControlNetFolderProbe)
|
||||
ModelProbe.register_probe('checkpoint', ModelType.Main, PipelineCheckpointProbe)
|
||||
ModelProbe.register_probe('checkpoint', ModelType.Vae, VaeCheckpointProbe)
|
||||
ModelProbe.register_probe('checkpoint', ModelType.Lora, LoRACheckpointProbe)
|
||||
ModelProbe.register_probe('checkpoint', ModelType.TextualInversion, TextualInversionCheckpointProbe)
|
||||
|
@ -11,21 +11,21 @@ from .textual_inversion import TextualInversionModel
|
||||
|
||||
MODEL_CLASSES = {
|
||||
BaseModelType.StableDiffusion1: {
|
||||
ModelType.Pipeline: StableDiffusion1Model,
|
||||
ModelType.Main: StableDiffusion1Model,
|
||||
ModelType.Vae: VaeModel,
|
||||
ModelType.Lora: LoRAModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
},
|
||||
BaseModelType.StableDiffusion2: {
|
||||
ModelType.Pipeline: StableDiffusion2Model,
|
||||
ModelType.Main: StableDiffusion2Model,
|
||||
ModelType.Vae: VaeModel,
|
||||
ModelType.Lora: LoRAModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
},
|
||||
#BaseModelType.Kandinsky2_1: {
|
||||
# ModelType.Pipeline: Kandinsky2_1Model,
|
||||
# ModelType.Main: Kandinsky2_1Model,
|
||||
# ModelType.MoVQ: MoVQModel,
|
||||
# ModelType.Lora: LoRAModel,
|
||||
# ModelType.ControlNet: ControlNetModel,
|
||||
|
@ -1,9 +1,12 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import typing
|
||||
import inspect
|
||||
from enum import Enum
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from pathlib import Path
|
||||
from picklescan.scanner import scan_file_path
|
||||
import torch
|
||||
import safetensors.torch
|
||||
from diffusers import DiffusionPipeline, ConfigMixin
|
||||
@ -18,7 +21,7 @@ class BaseModelType(str, Enum):
|
||||
#Kandinsky2_1 = "kandinsky-2.1"
|
||||
|
||||
class ModelType(str, Enum):
|
||||
Pipeline = "pipeline"
|
||||
Main = "main"
|
||||
Vae = "vae"
|
||||
Lora = "lora"
|
||||
ControlNet = "controlnet" # used by model_probe
|
||||
@ -56,7 +59,6 @@ class ModelConfigBase(BaseModel):
|
||||
class Config:
|
||||
use_enum_values = True
|
||||
|
||||
|
||||
class EmptyConfigLoader(ConfigMixin):
|
||||
@classmethod
|
||||
def load_config(cls, *args, **kwargs):
|
||||
@ -124,7 +126,10 @@ class ModelBase(metaclass=ABCMeta):
|
||||
if not isinstance(value, type) or not issubclass(value, ModelConfigBase):
|
||||
continue
|
||||
|
||||
fields = inspect.get_annotations(value)
|
||||
if hasattr(inspect,'get_annotations'):
|
||||
fields = inspect.get_annotations(value)
|
||||
else:
|
||||
fields = value.__annotations__
|
||||
try:
|
||||
field = fields["model_format"]
|
||||
except:
|
||||
@ -383,15 +388,18 @@ def _fast_safetensors_reader(path: str):
|
||||
|
||||
return checkpoint
|
||||
|
||||
|
||||
def read_checkpoint_meta(path: str):
|
||||
if path.endswith(".safetensors"):
|
||||
def read_checkpoint_meta(path: Union[str, Path], scan: bool = False):
|
||||
if str(path).endswith(".safetensors"):
|
||||
try:
|
||||
checkpoint = _fast_safetensors_reader(path)
|
||||
except:
|
||||
# TODO: create issue for support "meta"?
|
||||
checkpoint = safetensors.torch.load_file(path, device="cpu")
|
||||
else:
|
||||
if scan:
|
||||
scan_result = scan_file_path(path)
|
||||
if scan_result.infected_files != 0:
|
||||
raise Exception(f"The model file \"{path}\" is potentially infected by malware. Aborting import.")
|
||||
checkpoint = torch.load(path, map_location=torch.device("meta"))
|
||||
return checkpoint
|
||||
|
||||
|
@ -34,17 +34,17 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
class CheckpointConfig(ModelConfigBase):
|
||||
model_format: Literal[StableDiffusion1ModelFormat.Checkpoint]
|
||||
vae: Optional[str] = Field(None)
|
||||
config: Optional[str] = Field(None)
|
||||
config: str
|
||||
variant: ModelVariantType
|
||||
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert base_model == BaseModelType.StableDiffusion1
|
||||
assert model_type == ModelType.Pipeline
|
||||
assert model_type == ModelType.Main
|
||||
super().__init__(
|
||||
model_path=model_path,
|
||||
base_model=BaseModelType.StableDiffusion1,
|
||||
model_type=ModelType.Pipeline,
|
||||
model_type=ModelType.Main,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -69,7 +69,7 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
in_channels = unet_config['in_channels']
|
||||
|
||||
else:
|
||||
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
|
||||
raise NotImplementedError(f"{path} is not a supported stable diffusion diffusers format")
|
||||
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown stable diffusion 1.* format: {model_format}")
|
||||
@ -81,6 +81,8 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
else:
|
||||
raise Exception("Unkown stable diffusion 1.* model format")
|
||||
|
||||
if ckpt_config_path is None:
|
||||
ckpt_config_path = _select_ckpt_config(BaseModelType.StableDiffusion1, variant)
|
||||
|
||||
return cls.create_config(
|
||||
path=path,
|
||||
@ -109,14 +111,12 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
config: ModelConfigBase,
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
assert model_path == config.path
|
||||
|
||||
if isinstance(config, cls.CheckpointConfig):
|
||||
return _convert_ckpt_and_cache(
|
||||
version=BaseModelType.StableDiffusion1,
|
||||
model_config=config,
|
||||
output_path=output_path,
|
||||
) # TODO: args
|
||||
)
|
||||
else:
|
||||
return model_path
|
||||
|
||||
@ -131,25 +131,20 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
model_format: Literal[StableDiffusion2ModelFormat.Diffusers]
|
||||
vae: Optional[str] = Field(None)
|
||||
variant: ModelVariantType
|
||||
prediction_type: SchedulerPredictionType
|
||||
upcast_attention: bool
|
||||
|
||||
class CheckpointConfig(ModelConfigBase):
|
||||
model_format: Literal[StableDiffusion2ModelFormat.Checkpoint]
|
||||
vae: Optional[str] = Field(None)
|
||||
config: Optional[str] = Field(None)
|
||||
config: str
|
||||
variant: ModelVariantType
|
||||
prediction_type: SchedulerPredictionType
|
||||
upcast_attention: bool
|
||||
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert base_model == BaseModelType.StableDiffusion2
|
||||
assert model_type == ModelType.Pipeline
|
||||
assert model_type == ModelType.Main
|
||||
super().__init__(
|
||||
model_path=model_path,
|
||||
base_model=BaseModelType.StableDiffusion2,
|
||||
model_type=ModelType.Pipeline,
|
||||
model_type=ModelType.Main,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -188,13 +183,8 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
else:
|
||||
raise Exception("Unkown stable diffusion 2.* model format")
|
||||
|
||||
if variant == ModelVariantType.Normal:
|
||||
prediction_type = SchedulerPredictionType.VPrediction
|
||||
upcast_attention = True
|
||||
|
||||
else:
|
||||
prediction_type = SchedulerPredictionType.Epsilon
|
||||
upcast_attention = False
|
||||
if ckpt_config_path is None:
|
||||
ckpt_config_path = _select_ckpt_config(BaseModelType.StableDiffusion2, variant)
|
||||
|
||||
return cls.create_config(
|
||||
path=path,
|
||||
@ -202,8 +192,6 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
|
||||
config=ckpt_config_path,
|
||||
variant=variant,
|
||||
prediction_type=prediction_type,
|
||||
upcast_attention=upcast_attention,
|
||||
)
|
||||
|
||||
@classproperty
|
||||
@ -225,14 +213,12 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
config: ModelConfigBase,
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
assert model_path == config.path
|
||||
|
||||
if isinstance(config, cls.CheckpointConfig):
|
||||
return _convert_ckpt_and_cache(
|
||||
version=BaseModelType.StableDiffusion2,
|
||||
model_config=config,
|
||||
output_path=output_path,
|
||||
) # TODO: args
|
||||
)
|
||||
else:
|
||||
return model_path
|
||||
|
||||
@ -243,18 +229,18 @@ def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
|
||||
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
|
||||
},
|
||||
BaseModelType.StableDiffusion2: {
|
||||
# code further will manually set upcast_attention and v_prediction
|
||||
ModelVariantType.Normal: "v2-inference.yaml",
|
||||
ModelVariantType.Normal: "v2-inference-v.yaml", # best guess, as we can't differentiate with base(512)
|
||||
ModelVariantType.Inpaint: "v2-inpainting-inference.yaml",
|
||||
ModelVariantType.Depth: "v2-midas-inference.yaml",
|
||||
}
|
||||
}
|
||||
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
try:
|
||||
# TODO: path
|
||||
#model_config.config = app_config.config_dir / "stable-diffusion" / ckpt_configs[version][model_config.variant]
|
||||
#return InvokeAIAppConfig.get_config().legacy_conf_dir / ckpt_configs[version][variant]
|
||||
return InvokeAIAppConfig.get_config().root_dir / "configs" / "stable-diffusion" / ckpt_configs[version][variant]
|
||||
config_path = app_config.legacy_conf_path / ckpt_configs[version][variant]
|
||||
if config_path.is_relative_to(app_config.root_path):
|
||||
config_path = config_path.relative_to(app_config.root_path)
|
||||
return str(config_path)
|
||||
|
||||
except:
|
||||
return None
|
||||
@ -273,36 +259,14 @@ def _convert_ckpt_and_cache(
|
||||
"""
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
|
||||
if model_config.config is None:
|
||||
model_config.config = _select_ckpt_config(version, model_config.variant)
|
||||
if model_config.config is None:
|
||||
raise Exception(f"Model variant {model_config.variant} not supported for {version}")
|
||||
|
||||
|
||||
weights = app_config.root_path / model_config.path
|
||||
config_file = app_config.root_path / model_config.config
|
||||
output_path = Path(output_path)
|
||||
|
||||
if version == BaseModelType.StableDiffusion1:
|
||||
upcast_attention = False
|
||||
prediction_type = SchedulerPredictionType.Epsilon
|
||||
|
||||
elif version == BaseModelType.StableDiffusion2:
|
||||
upcast_attention = model_config.upcast_attention
|
||||
prediction_type = model_config.prediction_type
|
||||
|
||||
else:
|
||||
raise Exception(f"Unknown model provided: {version}")
|
||||
|
||||
|
||||
# return cached version if it exists
|
||||
if output_path.exists():
|
||||
return output_path
|
||||
|
||||
# TODO: I think that it more correctly to convert with embedded vae
|
||||
# as if user will delete custom vae he will got not embedded but also custom vae
|
||||
#vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig)
|
||||
|
||||
# to avoid circular import errors
|
||||
from ..convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
||||
with SilenceWarnings():
|
||||
@ -313,9 +277,6 @@ def _convert_ckpt_and_cache(
|
||||
model_variant=model_config.variant,
|
||||
original_config_file=config_file,
|
||||
extract_ema=True,
|
||||
upcast_attention=upcast_attention,
|
||||
prediction_type=prediction_type,
|
||||
scan_needed=True,
|
||||
model_root=app_config.models_path,
|
||||
)
|
||||
return output_path
|
||||
|
@ -16,6 +16,7 @@ from .util import (
|
||||
download_with_resume,
|
||||
instantiate_from_config,
|
||||
url_attachment_name,
|
||||
Chdir
|
||||
)
|
||||
|
||||
|
||||
|
@ -381,3 +381,18 @@ def image_to_dataURL(image: Image.Image, image_format: str = "PNG") -> str:
|
||||
buffered.getvalue()
|
||||
).decode("UTF-8")
|
||||
return image_base64
|
||||
|
||||
class Chdir(object):
|
||||
'''Context manager to chdir to desired directory and change back after context exits:
|
||||
Args:
|
||||
path (Path): The path to the cwd
|
||||
'''
|
||||
def __init__(self, path: Path):
|
||||
self.path = path
|
||||
self.original = Path().absolute()
|
||||
|
||||
def __enter__(self):
|
||||
os.chdir(self.path)
|
||||
|
||||
def __exit__(self,*args):
|
||||
os.chdir(self.original)
|
||||
|
@ -1,107 +1,92 @@
|
||||
# This file predefines a few models that the user may want to install.
|
||||
diffusers:
|
||||
stable-diffusion-1.5:
|
||||
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
|
||||
repo_id: runwayml/stable-diffusion-v1-5
|
||||
format: diffusers
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: True
|
||||
default: True
|
||||
sd-inpainting-1.5:
|
||||
description: RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
|
||||
repo_id: runwayml/stable-diffusion-inpainting
|
||||
format: diffusers
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: True
|
||||
stable-diffusion-2.1:
|
||||
description: Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-1
|
||||
format: diffusers
|
||||
recommended: True
|
||||
sd-inpainting-2.0:
|
||||
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-inpainting
|
||||
format: diffusers
|
||||
recommended: False
|
||||
analog-diffusion-1.0:
|
||||
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
|
||||
repo_id: wavymulder/Analog-Diffusion
|
||||
format: diffusers
|
||||
recommended: false
|
||||
deliberate-1.0:
|
||||
description: Versatile model that produces detailed images up to 768px (4.27 GB)
|
||||
format: diffusers
|
||||
repo_id: XpucT/Deliberate
|
||||
recommended: False
|
||||
d&d-diffusion-1.0:
|
||||
description: Dungeons & Dragons characters (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: 0xJustin/Dungeons-and-Diffusion
|
||||
recommended: False
|
||||
dreamlike-photoreal-2.0:
|
||||
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: dreamlike-art/dreamlike-photoreal-2.0
|
||||
recommended: False
|
||||
inkpunk-1.0:
|
||||
description: Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)
|
||||
format: diffusers
|
||||
repo_id: Envvi/Inkpunk-Diffusion
|
||||
recommended: False
|
||||
openjourney-4.0:
|
||||
description: An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: prompthero/openjourney
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: False
|
||||
portrait-plus-1.0:
|
||||
description: An SD-1.5 model trained on close range portraits of people; prompt with "portrait+" (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: wavymulder/portraitplus
|
||||
recommended: False
|
||||
seek-art-mega-1.0:
|
||||
description: A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)
|
||||
repo_id: coreco/seek.art_MEGA
|
||||
format: diffusers
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: False
|
||||
trinart-2.0:
|
||||
description: An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)
|
||||
repo_id: naclbit/trinart_stable_diffusion_v2
|
||||
format: diffusers
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: False
|
||||
waifu-diffusion-1.4:
|
||||
description: An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)
|
||||
repo_id: hakurei/waifu-diffusion
|
||||
format: diffusers
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: False
|
||||
controlnet:
|
||||
canny: lllyasviel/control_v11p_sd15_canny
|
||||
inpaint: lllyasviel/control_v11p_sd15_inpaint
|
||||
mlsd: lllyasviel/control_v11p_sd15_mlsd
|
||||
depth: lllyasviel/control_v11f1p_sd15_depth
|
||||
normal_bae: lllyasviel/control_v11p_sd15_normalbae
|
||||
seg: lllyasviel/control_v11p_sd15_seg
|
||||
lineart: lllyasviel/control_v11p_sd15_lineart
|
||||
lineart_anime: lllyasviel/control_v11p_sd15s2_lineart_anime
|
||||
scribble: lllyasviel/control_v11p_sd15_scribble
|
||||
softedge: lllyasviel/control_v11p_sd15_softedge
|
||||
shuffle: lllyasviel/control_v11e_sd15_shuffle
|
||||
tile: lllyasviel/control_v11f1e_sd15_tile
|
||||
ip2p: lllyasviel/control_v11e_sd15_ip2p
|
||||
textual_inversion:
|
||||
'EasyNegative': https://huggingface.co/embed/EasyNegative/resolve/main/EasyNegative.safetensors
|
||||
'ahx-beta-453407d': sd-concepts-library/ahx-beta-453407d
|
||||
lora:
|
||||
'LowRA': https://civitai.com/api/download/models/63006
|
||||
'Ink scenery': https://civitai.com/api/download/models/83390
|
||||
'sd-model-finetuned-lora-t4': sayakpaul/sd-model-finetuned-lora-t4
|
||||
|
||||
sd-1/main/stable-diffusion-v1-5:
|
||||
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
|
||||
repo_id: runwayml/stable-diffusion-v1-5
|
||||
recommended: True
|
||||
default: True
|
||||
sd-1/main/stable-diffusion-inpainting:
|
||||
description: RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
|
||||
repo_id: runwayml/stable-diffusion-inpainting
|
||||
recommended: True
|
||||
sd-2/main/stable-diffusion-2-1:
|
||||
description: Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-1
|
||||
recommended: True
|
||||
sd-2/main/stable-diffusion-2-inpainting:
|
||||
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-inpainting
|
||||
recommended: False
|
||||
sd-1/main/Analog-Diffusion:
|
||||
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
|
||||
repo_id: wavymulder/Analog-Diffusion
|
||||
recommended: false
|
||||
sd-1/main/Deliberate:
|
||||
description: Versatile model that produces detailed images up to 768px (4.27 GB)
|
||||
repo_id: XpucT/Deliberate
|
||||
recommended: False
|
||||
sd-1/main/Dungeons-and-Diffusion:
|
||||
description: Dungeons & Dragons characters (2.13 GB)
|
||||
repo_id: 0xJustin/Dungeons-and-Diffusion
|
||||
recommended: False
|
||||
sd-1/main/dreamlike-photoreal-2:
|
||||
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
|
||||
repo_id: dreamlike-art/dreamlike-photoreal-2.0
|
||||
recommended: False
|
||||
sd-1/main/Inkpunk-Diffusion:
|
||||
description: Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)
|
||||
repo_id: Envvi/Inkpunk-Diffusion
|
||||
recommended: False
|
||||
sd-1/main/openjourney:
|
||||
description: An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)
|
||||
repo_id: prompthero/openjourney
|
||||
recommended: False
|
||||
sd-1/main/portraitplus:
|
||||
description: An SD-1.5 model trained on close range portraits of people; prompt with "portrait+" (2.13 GB)
|
||||
repo_id: wavymulder/portraitplus
|
||||
recommended: False
|
||||
sd-1/main/seek.art_MEGA:
|
||||
repo_id: coreco/seek.art_MEGA
|
||||
description: A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)
|
||||
recommended: False
|
||||
sd-1/main/trinart_stable_diffusion_v2:
|
||||
description: An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)
|
||||
repo_id: naclbit/trinart_stable_diffusion_v2
|
||||
recommended: False
|
||||
sd-1/main/waifu-diffusion:
|
||||
description: An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)
|
||||
repo_id: hakurei/waifu-diffusion
|
||||
recommended: False
|
||||
sd-1/controlnet/canny:
|
||||
repo_id: lllyasviel/control_v11p_sd15_canny
|
||||
sd-1/controlnet/inpaint:
|
||||
repo_id: lllyasviel/control_v11p_sd15_inpaint
|
||||
sd-1/controlnet/mlsd:
|
||||
repo_id: lllyasviel/control_v11p_sd15_mlsd
|
||||
sd-1/controlnet/depth:
|
||||
repo_id: lllyasviel/control_v11f1p_sd15_depth
|
||||
sd-1/controlnet/normal_bae:
|
||||
repo_id: lllyasviel/control_v11p_sd15_normalbae
|
||||
sd-1/controlnet/seg:
|
||||
repo_id: lllyasviel/control_v11p_sd15_seg
|
||||
sd-1/controlnet/lineart:
|
||||
repo_id: lllyasviel/control_v11p_sd15_lineart
|
||||
sd-1/controlnet/lineart_anime:
|
||||
repo_id: lllyasviel/control_v11p_sd15s2_lineart_anime
|
||||
sd-1/controlnet/scribble:
|
||||
repo_id: lllyasviel/control_v11p_sd15_scribble
|
||||
sd-1/controlnet/softedge:
|
||||
repo_id: lllyasviel/control_v11p_sd15_softedge
|
||||
sd-1/controlnet/shuffle:
|
||||
repo_id: lllyasviel/control_v11e_sd15_shuffle
|
||||
sd-1/controlnet/tile:
|
||||
repo_id: lllyasviel/control_v11f1e_sd15_tile
|
||||
sd-1/controlnet/ip2p:
|
||||
repo_id: lllyasviel/control_v11e_sd15_ip2p
|
||||
sd-1/embedding/EasyNegative:
|
||||
path: https://huggingface.co/embed/EasyNegative/resolve/main/EasyNegative.safetensors
|
||||
sd-1/embedding/ahx-beta-453407d:
|
||||
repo_id: sd-concepts-library/ahx-beta-453407d
|
||||
sd-1/lora/LowRA:
|
||||
path: https://civitai.com/api/download/models/63006
|
||||
sd-1/lora/Ink scenery:
|
||||
path: https://civitai.com/api/download/models/83390
|
||||
|
159
invokeai/configs/stable-diffusion/v2-inpainting-inference-v.yaml
Normal file
159
invokeai/configs/stable-diffusion/v2-inpainting-inference-v.yaml
Normal file
@ -0,0 +1,159 @@
|
||||
model:
|
||||
base_learning_rate: 5.0e-05
|
||||
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
parameterization: "v"
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: hybrid
|
||||
scale_factor: 0.18215
|
||||
monitor: val/loss_simple_ema
|
||||
finetune_keys: null
|
||||
use_ema: False
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
image_size: 32 # unused
|
||||
in_channels: 9
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_head_channels: 64 # need to fix for flash-attn
|
||||
use_spatial_transformer: True
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
#attn_type: "vanilla-xformers"
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
layer: "penultimate"
|
||||
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: null # for concat as in LAION-A
|
||||
p_unsafe_threshold: 0.1
|
||||
filter_word_list: "data/filters.yaml"
|
||||
max_pwatermark: 0.45
|
||||
batch_size: 8
|
||||
num_workers: 6
|
||||
multinode: True
|
||||
min_size: 512
|
||||
train:
|
||||
shards:
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
|
||||
shuffle: 10000
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddMask
|
||||
params:
|
||||
mode: "512train-large"
|
||||
p_drop: 0.25
|
||||
# NOTE use enough shards to avoid empty validation loops in workers
|
||||
validation:
|
||||
shards:
|
||||
- "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
|
||||
shuffle: 0
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddMask
|
||||
params:
|
||||
mode: "512train-large"
|
||||
p_drop: 0.25
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: True
|
||||
modelcheckpoint:
|
||||
params:
|
||||
every_n_train_steps: 5000
|
||||
|
||||
callbacks:
|
||||
metrics_over_trainsteps_checkpoint:
|
||||
params:
|
||||
every_n_train_steps: 10000
|
||||
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
enable_autocast: False
|
||||
disabled: False
|
||||
batch_frequency: 1000
|
||||
max_images: 4
|
||||
increase_log_steps: False
|
||||
log_first_step: False
|
||||
log_images_kwargs:
|
||||
use_ema_scope: False
|
||||
inpaint: False
|
||||
plot_progressive_rows: False
|
||||
plot_diffusion_rows: False
|
||||
N: 4
|
||||
unconditional_guidance_scale: 5.0
|
||||
unconditional_guidance_label: [""]
|
||||
ddim_steps: 50 # todo check these out for depth2img,
|
||||
ddim_eta: 0.0 # todo check these out for depth2img,
|
||||
|
||||
trainer:
|
||||
benchmark: True
|
||||
val_check_interval: 5000000
|
||||
num_sanity_val_steps: 0
|
||||
accumulate_grad_batches: 1
|
158
invokeai/configs/stable-diffusion/v2-inpainting-inference.yaml
Normal file
158
invokeai/configs/stable-diffusion/v2-inpainting-inference.yaml
Normal file
@ -0,0 +1,158 @@
|
||||
model:
|
||||
base_learning_rate: 5.0e-05
|
||||
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: hybrid
|
||||
scale_factor: 0.18215
|
||||
monitor: val/loss_simple_ema
|
||||
finetune_keys: null
|
||||
use_ema: False
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
image_size: 32 # unused
|
||||
in_channels: 9
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_head_channels: 64 # need to fix for flash-attn
|
||||
use_spatial_transformer: True
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
#attn_type: "vanilla-xformers"
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
layer: "penultimate"
|
||||
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: null # for concat as in LAION-A
|
||||
p_unsafe_threshold: 0.1
|
||||
filter_word_list: "data/filters.yaml"
|
||||
max_pwatermark: 0.45
|
||||
batch_size: 8
|
||||
num_workers: 6
|
||||
multinode: True
|
||||
min_size: 512
|
||||
train:
|
||||
shards:
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
|
||||
shuffle: 10000
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddMask
|
||||
params:
|
||||
mode: "512train-large"
|
||||
p_drop: 0.25
|
||||
# NOTE use enough shards to avoid empty validation loops in workers
|
||||
validation:
|
||||
shards:
|
||||
- "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
|
||||
shuffle: 0
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddMask
|
||||
params:
|
||||
mode: "512train-large"
|
||||
p_drop: 0.25
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: True
|
||||
modelcheckpoint:
|
||||
params:
|
||||
every_n_train_steps: 5000
|
||||
|
||||
callbacks:
|
||||
metrics_over_trainsteps_checkpoint:
|
||||
params:
|
||||
every_n_train_steps: 10000
|
||||
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
enable_autocast: False
|
||||
disabled: False
|
||||
batch_frequency: 1000
|
||||
max_images: 4
|
||||
increase_log_steps: False
|
||||
log_first_step: False
|
||||
log_images_kwargs:
|
||||
use_ema_scope: False
|
||||
inpaint: False
|
||||
plot_progressive_rows: False
|
||||
plot_diffusion_rows: False
|
||||
N: 4
|
||||
unconditional_guidance_scale: 5.0
|
||||
unconditional_guidance_label: [""]
|
||||
ddim_steps: 50 # todo check these out for depth2img,
|
||||
ddim_eta: 0.0 # todo check these out for depth2img,
|
||||
|
||||
trainer:
|
||||
benchmark: True
|
||||
val_check_interval: 5000000
|
||||
num_sanity_val_steps: 0
|
||||
accumulate_grad_batches: 1
|
@ -11,7 +11,6 @@ The work is actually done in backend code in model_install_backend.py.
|
||||
|
||||
import argparse
|
||||
import curses
|
||||
import os
|
||||
import sys
|
||||
import textwrap
|
||||
import traceback
|
||||
@ -20,28 +19,22 @@ from multiprocessing import Process
|
||||
from multiprocessing.connection import Connection, Pipe
|
||||
from pathlib import Path
|
||||
from shutil import get_terminal_size
|
||||
from typing import List
|
||||
|
||||
import logging
|
||||
import npyscreen
|
||||
import torch
|
||||
from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from invokeai.backend.install.model_install_backend import (
|
||||
Dataset_path,
|
||||
default_config_file,
|
||||
default_dataset,
|
||||
install_requested_models,
|
||||
recommended_datasets,
|
||||
ModelInstallList,
|
||||
UserSelections,
|
||||
InstallSelections,
|
||||
ModelInstall,
|
||||
SchedulerPredictionType,
|
||||
)
|
||||
from invokeai.backend import ModelManager
|
||||
from invokeai.backend.model_management import ModelManager, ModelType
|
||||
from invokeai.backend.util import choose_precision, choose_torch_device
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.frontend.install.widgets import (
|
||||
CenteredTitleText,
|
||||
MultiSelectColumns,
|
||||
@ -58,6 +51,7 @@ from invokeai.frontend.install.widgets import (
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
logger = InvokeAILogger.getLogger()
|
||||
|
||||
# build a table mapping all non-printable characters to None
|
||||
# for stripping control characters
|
||||
@ -71,8 +65,8 @@ def make_printable(s:str)->str:
|
||||
return s.translate(NOPRINT_TRANS_TABLE)
|
||||
|
||||
class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
# for responsive resizing - disabled
|
||||
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
|
||||
# for responsive resizing set to False, but this seems to cause a crash!
|
||||
FIX_MINIMUM_SIZE_WHEN_CREATED = True
|
||||
|
||||
# for persistence
|
||||
current_tab = 0
|
||||
@ -90,25 +84,10 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
if not config.model_conf_path.exists():
|
||||
with open(config.model_conf_path,'w') as file:
|
||||
print('# InvokeAI model configuration file',file=file)
|
||||
model_manager = ModelManager(config.model_conf_path)
|
||||
|
||||
self.starter_models = OmegaConf.load(Dataset_path)['diffusers']
|
||||
self.installed_diffusers_models = self.list_additional_diffusers_models(
|
||||
model_manager,
|
||||
self.starter_models,
|
||||
)
|
||||
self.installed_cn_models = model_manager.list_controlnet_models()
|
||||
self.installed_lora_models = model_manager.list_lora_models()
|
||||
self.installed_ti_models = model_manager.list_ti_models()
|
||||
|
||||
try:
|
||||
self.existing_models = OmegaConf.load(default_config_file())
|
||||
except:
|
||||
self.existing_models = dict()
|
||||
|
||||
self.starter_model_list = list(self.starter_models.keys())
|
||||
self.installed_models = dict()
|
||||
|
||||
self.installer = ModelInstall(config)
|
||||
self.all_models = self.installer.all_models()
|
||||
self.starter_models = self.installer.starter_models()
|
||||
self.model_labels = self._get_model_labels()
|
||||
window_width, window_height = get_terminal_size()
|
||||
|
||||
self.nextrely -= 1
|
||||
@ -143,37 +122,35 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
self.tabs.on_changed = self._toggle_tables
|
||||
|
||||
top_of_table = self.nextrely
|
||||
self.starter_diffusers_models = self.add_starter_diffusers()
|
||||
self.starter_pipelines = self.add_starter_pipelines()
|
||||
bottom_of_table = self.nextrely
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.diffusers_models = self.add_diffusers_widgets(
|
||||
predefined_models=self.installed_diffusers_models,
|
||||
model_type='Diffusers',
|
||||
self.pipeline_models = self.add_pipeline_widgets(
|
||||
model_type=ModelType.Main,
|
||||
window_width=window_width,
|
||||
exclude = self.starter_models
|
||||
)
|
||||
# self.pipeline_models['autoload_pending'] = True
|
||||
bottom_of_table = max(bottom_of_table,self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.controlnet_models = self.add_model_widgets(
|
||||
predefined_models=self.installed_cn_models,
|
||||
model_type='ControlNet',
|
||||
model_type=ModelType.ControlNet,
|
||||
window_width=window_width,
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table,self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.lora_models = self.add_model_widgets(
|
||||
predefined_models=self.installed_lora_models,
|
||||
model_type="LoRA/LyCORIS",
|
||||
model_type=ModelType.Lora,
|
||||
window_width=window_width,
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table,self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.ti_models = self.add_model_widgets(
|
||||
predefined_models=self.installed_ti_models,
|
||||
model_type="Textual Inversion Embeddings",
|
||||
model_type=ModelType.TextualInversion,
|
||||
window_width=window_width,
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table,self.nextrely)
|
||||
@ -184,7 +161,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
BufferBox,
|
||||
name='Log Messages',
|
||||
editable=False,
|
||||
max_height = 16,
|
||||
max_height = 10,
|
||||
)
|
||||
|
||||
self.nextrely += 1
|
||||
@ -197,13 +174,14 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
rely=-3,
|
||||
when_pressed_function=self.on_back,
|
||||
)
|
||||
self.ok_button = self.add_widget_intelligent(
|
||||
npyscreen.ButtonPress,
|
||||
name=done_label,
|
||||
relx=(window_width - len(done_label)) // 2,
|
||||
rely=-3,
|
||||
when_pressed_function=self.on_execute
|
||||
)
|
||||
else:
|
||||
self.ok_button = self.add_widget_intelligent(
|
||||
npyscreen.ButtonPress,
|
||||
name=done_label,
|
||||
relx=(window_width - len(done_label)) // 2,
|
||||
rely=-3,
|
||||
when_pressed_function=self.on_execute
|
||||
)
|
||||
|
||||
label = "APPLY CHANGES & EXIT"
|
||||
self.done = self.add_widget_intelligent(
|
||||
@ -220,18 +198,15 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
self._toggle_tables([self.current_tab])
|
||||
|
||||
############# diffusers tab ##########
|
||||
def add_starter_diffusers(self)->dict[str, npyscreen.widget]:
|
||||
def add_starter_pipelines(self)->dict[str, npyscreen.widget]:
|
||||
'''Add widgets responsible for selecting diffusers models'''
|
||||
widgets = dict()
|
||||
models = self.all_models
|
||||
starters = self.starter_models
|
||||
starter_model_labels = self.model_labels
|
||||
|
||||
starter_model_labels = self._get_starter_model_labels()
|
||||
recommended_models = [
|
||||
x
|
||||
for x in self.starter_model_list
|
||||
if self.starter_models[x].get("recommended", False)
|
||||
]
|
||||
self.installed_models = sorted(
|
||||
[x for x in list(self.starter_models.keys()) if x in self.existing_models]
|
||||
[x for x in starters if models[x].installed]
|
||||
)
|
||||
|
||||
widgets.update(
|
||||
@ -246,55 +221,46 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
self.nextrely -= 1
|
||||
# if user has already installed some initial models, then don't patronize them
|
||||
# by showing more recommendations
|
||||
show_recommended = not self.existing_models
|
||||
show_recommended = len(self.installed_models)==0
|
||||
keys = [x for x in models.keys() if x in starters]
|
||||
widgets.update(
|
||||
models_selected = self.add_widget_intelligent(
|
||||
MultiSelectColumns,
|
||||
columns=1,
|
||||
name="Install Starter Models",
|
||||
values=starter_model_labels,
|
||||
values=[starter_model_labels[x] for x in keys],
|
||||
value=[
|
||||
self.starter_model_list.index(x)
|
||||
for x in self.starter_model_list
|
||||
if (show_recommended and x in recommended_models)\
|
||||
or (x in self.existing_models)
|
||||
keys.index(x)
|
||||
for x in keys
|
||||
if (show_recommended and models[x].recommended) \
|
||||
or (x in self.installed_models)
|
||||
],
|
||||
max_height=len(starter_model_labels) + 1,
|
||||
max_height=len(starters) + 1,
|
||||
relx=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
),
|
||||
models = keys,
|
||||
)
|
||||
|
||||
widgets.update(
|
||||
purge_deleted = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Purge unchecked diffusers models from disk",
|
||||
value=False,
|
||||
scroll_exit=True,
|
||||
relx=4,
|
||||
)
|
||||
)
|
||||
widgets['purge_deleted'].when_value_edited = lambda: self.sync_purge_buttons(widgets['purge_deleted'])
|
||||
|
||||
self.nextrely += 1
|
||||
return widgets
|
||||
|
||||
############# Add a set of model install widgets ########
|
||||
def add_model_widgets(self,
|
||||
predefined_models: dict[str,bool],
|
||||
model_type: str,
|
||||
model_type: ModelType,
|
||||
window_width: int=120,
|
||||
install_prompt: str=None,
|
||||
add_purge_deleted: bool=False,
|
||||
exclude: set=set(),
|
||||
)->dict[str,npyscreen.widget]:
|
||||
'''Generic code to create model selection widgets'''
|
||||
widgets = dict()
|
||||
model_list = sorted(predefined_models.keys())
|
||||
model_list = [x for x in self.all_models if self.all_models[x].model_type==model_type and not x in exclude]
|
||||
model_labels = [self.model_labels[x] for x in model_list]
|
||||
if len(model_list) > 0:
|
||||
max_width = max([len(x) for x in model_list])
|
||||
max_width = max([len(x) for x in model_labels])
|
||||
columns = window_width // (max_width+8) # 8 characters for "[x] " and padding
|
||||
columns = min(len(model_list),columns) or 1
|
||||
prompt = install_prompt or f"Select the desired {model_type} models to install. Unchecked models will be purged from disk."
|
||||
prompt = install_prompt or f"Select the desired {model_type.value.title()} models to install. Unchecked models will be purged from disk."
|
||||
|
||||
widgets.update(
|
||||
label1 = self.add_widget_intelligent(
|
||||
@ -310,31 +276,19 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
MultiSelectColumns,
|
||||
columns=columns,
|
||||
name=f"Install {model_type} Models",
|
||||
values=model_list,
|
||||
values=model_labels,
|
||||
value=[
|
||||
model_list.index(x)
|
||||
for x in model_list
|
||||
if predefined_models[x]
|
||||
if self.all_models[x].installed
|
||||
],
|
||||
max_height=len(model_list)//columns + 1,
|
||||
relx=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
),
|
||||
models = model_list,
|
||||
)
|
||||
|
||||
if add_purge_deleted:
|
||||
self.nextrely += 1
|
||||
widgets.update(
|
||||
purge_deleted = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Purge unchecked diffusers models from disk",
|
||||
value=False,
|
||||
scroll_exit=True,
|
||||
relx=4,
|
||||
)
|
||||
)
|
||||
widgets['purge_deleted'].when_value_edited = lambda: self.sync_purge_buttons(widgets['purge_deleted'])
|
||||
|
||||
self.nextrely += 1
|
||||
widgets.update(
|
||||
download_ids = self.add_widget_intelligent(
|
||||
@ -348,63 +302,33 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
return widgets
|
||||
|
||||
### Tab for arbitrary diffusers widgets ###
|
||||
def add_diffusers_widgets(self,
|
||||
predefined_models: dict[str,bool],
|
||||
model_type: str='Diffusers',
|
||||
window_width: int=120,
|
||||
)->dict[str,npyscreen.widget]:
|
||||
def add_pipeline_widgets(self,
|
||||
model_type: ModelType=ModelType.Main,
|
||||
window_width: int=120,
|
||||
**kwargs,
|
||||
)->dict[str,npyscreen.widget]:
|
||||
'''Similar to add_model_widgets() but adds some additional widgets at the bottom
|
||||
to support the autoload directory'''
|
||||
widgets = self.add_model_widgets(
|
||||
predefined_models,
|
||||
'Diffusers',
|
||||
window_width,
|
||||
install_prompt="Additional diffusers models already installed.",
|
||||
add_purge_deleted=True
|
||||
model_type = model_type,
|
||||
window_width = window_width,
|
||||
install_prompt=f"Additional {model_type.value.title()} models already installed.",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
label = "Directory to scan for models to automatically import (<tab> autocompletes):"
|
||||
self.nextrely += 1
|
||||
widgets.update(
|
||||
autoload_directory = self.add_widget_intelligent(
|
||||
FileBox,
|
||||
max_height=3,
|
||||
name=label,
|
||||
value=str(config.autoconvert_dir) if config.autoconvert_dir else None,
|
||||
select_dir=True,
|
||||
must_exist=True,
|
||||
use_two_lines=False,
|
||||
labelColor="DANGER",
|
||||
begin_entry_at=len(label)+1,
|
||||
scroll_exit=True,
|
||||
)
|
||||
)
|
||||
widgets.update(
|
||||
autoscan_on_startup = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Scan and import from this directory each time InvokeAI starts",
|
||||
value=config.autoconvert_dir is not None,
|
||||
relx=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
)
|
||||
return widgets
|
||||
|
||||
def sync_purge_buttons(self,checkbox):
|
||||
value = checkbox.value
|
||||
self.starter_diffusers_models['purge_deleted'].value = value
|
||||
self.diffusers_models['purge_deleted'].value = value
|
||||
|
||||
def resize(self):
|
||||
super().resize()
|
||||
if (s := self.starter_diffusers_models.get("models_selected")):
|
||||
s.values = self._get_starter_model_labels()
|
||||
if (s := self.starter_pipelines.get("models_selected")):
|
||||
keys = [x for x in self.all_models.keys() if x in self.starter_models]
|
||||
s.values = [self.model_labels[x] for x in keys]
|
||||
|
||||
def _toggle_tables(self, value=None):
|
||||
selected_tab = value[0]
|
||||
widgets = [
|
||||
self.starter_diffusers_models,
|
||||
self.diffusers_models,
|
||||
self.starter_pipelines,
|
||||
self.pipeline_models,
|
||||
self.controlnet_models,
|
||||
self.lora_models,
|
||||
self.ti_models,
|
||||
@ -412,34 +336,38 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
|
||||
for group in widgets:
|
||||
for k,v in group.items():
|
||||
v.hidden = True
|
||||
v.editable = False
|
||||
try:
|
||||
v.hidden = True
|
||||
v.editable = False
|
||||
except:
|
||||
pass
|
||||
for k,v in widgets[selected_tab].items():
|
||||
v.hidden = False
|
||||
if not isinstance(v,(npyscreen.FixedText, npyscreen.TitleFixedText, CenteredTitleText)):
|
||||
v.editable = True
|
||||
try:
|
||||
v.hidden = False
|
||||
if not isinstance(v,(npyscreen.FixedText, npyscreen.TitleFixedText, CenteredTitleText)):
|
||||
v.editable = True
|
||||
except:
|
||||
pass
|
||||
self.__class__.current_tab = selected_tab # for persistence
|
||||
self.display()
|
||||
|
||||
def _get_starter_model_labels(self) -> List[str]:
|
||||
def _get_model_labels(self) -> dict[str,str]:
|
||||
window_width, window_height = get_terminal_size()
|
||||
label_width = 25
|
||||
checkbox_width = 4
|
||||
spacing_width = 2
|
||||
description_width = window_width - label_width - checkbox_width - spacing_width
|
||||
im = self.starter_models
|
||||
names = self.starter_model_list
|
||||
descriptions = [
|
||||
im[x].description[0 : description_width - 3] + "..."
|
||||
if len(im[x].description) > description_width
|
||||
else im[x].description
|
||||
for x in names
|
||||
]
|
||||
return [
|
||||
f"%-{label_width}s %s" % (names[x], descriptions[x])
|
||||
for x in range(0, len(names))
|
||||
]
|
||||
|
||||
models = self.all_models
|
||||
label_width = max([len(models[x].name) for x in models])
|
||||
description_width = window_width - label_width - checkbox_width - spacing_width
|
||||
|
||||
result = dict()
|
||||
for x in models.keys():
|
||||
description = models[x].description
|
||||
description = description[0 : description_width - 3] + "..." \
|
||||
if description and len(description) > description_width \
|
||||
else description if description else ''
|
||||
result[x] = f"%-{label_width}s %s" % (models[x].name, description)
|
||||
return result
|
||||
|
||||
def _get_columns(self) -> int:
|
||||
window_width, window_height = get_terminal_size()
|
||||
@ -467,7 +395,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
target = process_and_execute,
|
||||
kwargs=dict(
|
||||
opt = app.program_opts,
|
||||
selections = app.user_selections,
|
||||
selections = app.install_selections,
|
||||
conn_out = child_conn,
|
||||
)
|
||||
)
|
||||
@ -475,8 +403,8 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
child_conn.close()
|
||||
self.subprocess_connection = parent_conn
|
||||
self.subprocess = p
|
||||
app.user_selections = UserSelections()
|
||||
# process_and_execute(app.opt, app.user_selections)
|
||||
app.install_selections = InstallSelections()
|
||||
# process_and_execute(app.opt, app.install_selections)
|
||||
|
||||
def on_back(self):
|
||||
self.parentApp.switchFormPrevious()
|
||||
@ -548,8 +476,8 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
|
||||
# rebuild the form, saving and restoring some of the fields that need to be preserved.
|
||||
saved_messages = self.monitor.entry_widget.values
|
||||
autoload_dir = self.diffusers_models['autoload_directory'].value
|
||||
autoscan = self.diffusers_models['autoscan_on_startup'].value
|
||||
# autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
||||
# autoscan = self.pipeline_models['autoscan_on_startup'].value
|
||||
|
||||
app.main_form = app.addForm(
|
||||
"MAIN", addModelsForm, name="Install Stable Diffusion Models", multipage=self.multipage,
|
||||
@ -558,23 +486,8 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
|
||||
app.main_form.monitor.entry_widget.values = saved_messages
|
||||
app.main_form.monitor.entry_widget.buffer([''],scroll_end=True)
|
||||
app.main_form.diffusers_models['autoload_directory'].value = autoload_dir
|
||||
app.main_form.diffusers_models['autoscan_on_startup'].value = autoscan
|
||||
|
||||
###############################################################
|
||||
|
||||
def list_additional_diffusers_models(self,
|
||||
manager: ModelManager,
|
||||
starters:dict
|
||||
)->dict[str,bool]:
|
||||
'''Return a dict of all the currently installed models that are not on the starter list'''
|
||||
model_info = manager.list_models()
|
||||
additional_models = {
|
||||
x:True for x in model_info \
|
||||
if model_info[x]['format']=='diffusers' \
|
||||
and x not in starters
|
||||
}
|
||||
return additional_models
|
||||
# app.main_form.pipeline_models['autoload_directory'].value = autoload_dir
|
||||
# app.main_form.pipeline_models['autoscan_on_startup'].value = autoscan
|
||||
|
||||
def marshall_arguments(self):
|
||||
"""
|
||||
@ -586,89 +499,40 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
.autoscan_on_startup: True if invokeai should scan and import at startup time
|
||||
.import_model_paths: list of URLs, repo_ids and file paths to import
|
||||
"""
|
||||
# we're using a global here rather than storing the result in the parentapp
|
||||
# due to some bug in npyscreen that is causing attributes to be lost
|
||||
selections = self.parentApp.user_selections
|
||||
selections = self.parentApp.install_selections
|
||||
all_models = self.all_models
|
||||
|
||||
# Starter models to install/remove
|
||||
starter_models = dict(
|
||||
map(
|
||||
lambda x: (self.starter_model_list[x], True),
|
||||
self.starter_diffusers_models['models_selected'].value,
|
||||
)
|
||||
)
|
||||
selections.purge_deleted_models = self.starter_diffusers_models['purge_deleted'].value or \
|
||||
self.diffusers_models['purge_deleted'].value
|
||||
# Defined models (in INITIAL_CONFIG.yaml or models.yaml) to add/remove
|
||||
ui_sections = [self.starter_pipelines, self.pipeline_models,
|
||||
self.controlnet_models, self.lora_models, self.ti_models]
|
||||
for section in ui_sections:
|
||||
if not 'models_selected' in section:
|
||||
continue
|
||||
selected = set([section['models'][x] for x in section['models_selected'].value])
|
||||
models_to_install = [x for x in selected if not self.all_models[x].installed]
|
||||
models_to_remove = [x for x in section['models'] if x not in selected and self.all_models[x].installed]
|
||||
selections.remove_models.extend(models_to_remove)
|
||||
selections.install_models.extend(all_models[x].path or all_models[x].repo_id \
|
||||
for x in models_to_install if all_models[x].path or all_models[x].repo_id)
|
||||
|
||||
selections.install_models = [x for x in starter_models if x not in self.existing_models]
|
||||
selections.remove_models = [x for x in self.starter_model_list if x in self.existing_models and x not in starter_models]
|
||||
|
||||
# "More" models
|
||||
selections.import_model_paths = self.diffusers_models['download_ids'].value.split()
|
||||
if diffusers_selected := self.diffusers_models.get('models_selected'):
|
||||
selections.remove_models.extend([x
|
||||
for x in diffusers_selected.values
|
||||
if self.installed_diffusers_models[x]
|
||||
and diffusers_selected.values.index(x) not in diffusers_selected.value
|
||||
]
|
||||
)
|
||||
|
||||
# TODO: REFACTOR THIS REPETITIVE CODE
|
||||
if cn_models_selected := self.controlnet_models.get('models_selected'):
|
||||
selections.install_cn_models = [cn_models_selected.values[x]
|
||||
for x in cn_models_selected.value
|
||||
if not self.installed_cn_models[cn_models_selected.values[x]]
|
||||
]
|
||||
selections.remove_cn_models = [x
|
||||
for x in cn_models_selected.values
|
||||
if self.installed_cn_models[x]
|
||||
and cn_models_selected.values.index(x) not in cn_models_selected.value
|
||||
]
|
||||
if (additional_cns := self.controlnet_models['download_ids'].value.split()):
|
||||
valid_cns = [x for x in additional_cns if '/' in x]
|
||||
selections.install_cn_models.extend(valid_cns)
|
||||
|
||||
# same thing, for LoRAs
|
||||
if loras_selected := self.lora_models.get('models_selected'):
|
||||
selections.install_lora_models = [loras_selected.values[x]
|
||||
for x in loras_selected.value
|
||||
if not self.installed_lora_models[loras_selected.values[x]]
|
||||
]
|
||||
selections.remove_lora_models = [x
|
||||
for x in loras_selected.values
|
||||
if self.installed_lora_models[x]
|
||||
and loras_selected.values.index(x) not in loras_selected.value
|
||||
]
|
||||
if (additional_loras := self.lora_models['download_ids'].value.split()):
|
||||
selections.install_lora_models.extend(additional_loras)
|
||||
|
||||
# same thing, for TIs
|
||||
# TODO: refactor
|
||||
if tis_selected := self.ti_models.get('models_selected'):
|
||||
selections.install_ti_models = [tis_selected.values[x]
|
||||
for x in tis_selected.value
|
||||
if not self.installed_ti_models[tis_selected.values[x]]
|
||||
]
|
||||
selections.remove_ti_models = [x
|
||||
for x in tis_selected.values
|
||||
if self.installed_ti_models[x]
|
||||
and tis_selected.values.index(x) not in tis_selected.value
|
||||
]
|
||||
|
||||
if (additional_tis := self.ti_models['download_ids'].value.split()):
|
||||
selections.install_ti_models.extend(additional_tis)
|
||||
# models located in the 'download_ids" section
|
||||
for section in ui_sections:
|
||||
if downloads := section.get('download_ids'):
|
||||
selections.install_models.extend(downloads.value.split())
|
||||
|
||||
# load directory and whether to scan on startup
|
||||
selections.scan_directory = self.diffusers_models['autoload_directory'].value
|
||||
selections.autoscan_on_startup = self.diffusers_models['autoscan_on_startup'].value
|
||||
|
||||
# if self.parentApp.autoload_pending:
|
||||
# selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
||||
# self.parentApp.autoload_pending = False
|
||||
# selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value
|
||||
|
||||
class AddModelApplication(npyscreen.NPSAppManaged):
|
||||
def __init__(self,opt):
|
||||
super().__init__()
|
||||
self.program_opts = opt
|
||||
self.user_cancelled = False
|
||||
self.user_selections = UserSelections()
|
||||
# self.autoload_pending = True
|
||||
self.install_selections = InstallSelections()
|
||||
|
||||
def onStart(self):
|
||||
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
||||
@ -687,26 +551,22 @@ class StderrToMessage():
|
||||
pass
|
||||
|
||||
# --------------------------------------------------------
|
||||
def ask_user_for_config_file(model_path: Path,
|
||||
tui_conn: Connection=None
|
||||
)->Path:
|
||||
def ask_user_for_prediction_type(model_path: Path,
|
||||
tui_conn: Connection=None
|
||||
)->SchedulerPredictionType:
|
||||
if tui_conn:
|
||||
logger.debug('Waiting for user response...')
|
||||
return _ask_user_for_cf_tui(model_path, tui_conn)
|
||||
return _ask_user_for_pt_tui(model_path, tui_conn)
|
||||
else:
|
||||
return _ask_user_for_cf_cmdline(model_path)
|
||||
return _ask_user_for_pt_cmdline(model_path)
|
||||
|
||||
def _ask_user_for_cf_cmdline(model_path):
|
||||
choices = [
|
||||
config.legacy_conf_path / x
|
||||
for x in ['v2-inference.yaml','v2-inference-v.yaml']
|
||||
]
|
||||
choices.extend([None])
|
||||
def _ask_user_for_pt_cmdline(model_path: Path)->SchedulerPredictionType:
|
||||
choices = [SchedulerPredictionType.Epsilon, SchedulerPredictionType.VPrediction, None]
|
||||
print(
|
||||
f"""
|
||||
Please select the type of the V2 checkpoint named {model_path.name}:
|
||||
[1] A Stable Diffusion v2.x base model (512 pixels; there should be no 'parameterization:' line in its yaml file)
|
||||
[2] A Stable Diffusion v2.x v-predictive model (768 pixels; look for a 'parameterization: "v"' line in its yaml file)
|
||||
[1] A model based on Stable Diffusion v2 trained on 512 pixel images (SD-2-base)
|
||||
[2] A model based on Stable Diffusion v2 trained on 768 pixel images (SD-2-768)
|
||||
[3] Skip this model and come back later.
|
||||
"""
|
||||
)
|
||||
@ -723,7 +583,7 @@ Please select the type of the V2 checkpoint named {model_path.name}:
|
||||
return
|
||||
return choice
|
||||
|
||||
def _ask_user_for_cf_tui(model_path: Path, tui_conn: Connection)->Path:
|
||||
def _ask_user_for_pt_tui(model_path: Path, tui_conn: Connection)->SchedulerPredictionType:
|
||||
try:
|
||||
tui_conn.send_bytes(f'*need v2 config for:{model_path}'.encode('utf-8'))
|
||||
# note that we don't do any status checking here
|
||||
@ -731,20 +591,20 @@ def _ask_user_for_cf_tui(model_path: Path, tui_conn: Connection)->Path:
|
||||
if response is None:
|
||||
return None
|
||||
elif response == 'epsilon':
|
||||
return config.legacy_conf_path / 'v2-inference.yaml'
|
||||
return SchedulerPredictionType.epsilon
|
||||
elif response == 'v':
|
||||
return config.legacy_conf_path / 'v2-inference-v.yaml'
|
||||
return SchedulerPredictionType.VPrediction
|
||||
elif response == 'abort':
|
||||
logger.info('Conversion aborted')
|
||||
return None
|
||||
else:
|
||||
return Path(response)
|
||||
return response
|
||||
except:
|
||||
return None
|
||||
|
||||
# --------------------------------------------------------
|
||||
def process_and_execute(opt: Namespace,
|
||||
selections: UserSelections,
|
||||
selections: InstallSelections,
|
||||
conn_out: Connection=None,
|
||||
):
|
||||
# set up so that stderr is sent to conn_out
|
||||
@ -756,33 +616,13 @@ def process_and_execute(opt: Namespace,
|
||||
logger.handlers.clear()
|
||||
logger.addHandler(logging.StreamHandler(translator))
|
||||
|
||||
models_to_install = selections.install_models
|
||||
models_to_remove = selections.remove_models
|
||||
directory_to_scan = selections.scan_directory
|
||||
scan_at_startup = selections.autoscan_on_startup
|
||||
potential_models_to_install = selections.import_model_paths
|
||||
|
||||
install_requested_models(
|
||||
diffusers = ModelInstallList(models_to_install, models_to_remove),
|
||||
controlnet = ModelInstallList(selections.install_cn_models, selections.remove_cn_models),
|
||||
lora = ModelInstallList(selections.install_lora_models, selections.remove_lora_models),
|
||||
ti = ModelInstallList(selections.install_ti_models, selections.remove_ti_models),
|
||||
scan_directory=Path(directory_to_scan) if directory_to_scan else None,
|
||||
external_models=potential_models_to_install,
|
||||
scan_at_startup=scan_at_startup,
|
||||
precision="float32"
|
||||
if opt.full_precision
|
||||
else choose_precision(torch.device(choose_torch_device())),
|
||||
purge_deleted=selections.purge_deleted_models,
|
||||
config_file_path=Path(opt.config_file) if opt.config_file else config.model_conf_path,
|
||||
model_config_file_callback = lambda x: ask_user_for_config_file(x,conn_out)
|
||||
)
|
||||
installer = ModelInstall(config, prediction_type_helper=lambda x: ask_user_for_prediction_type(x,conn_out))
|
||||
installer.install(selections)
|
||||
|
||||
if conn_out:
|
||||
conn_out.send_bytes('*done*'.encode('utf-8'))
|
||||
conn_out.close()
|
||||
|
||||
|
||||
def do_listings(opt)->bool:
|
||||
"""List installed models of various sorts, and return
|
||||
True if any were requested."""
|
||||
@ -813,39 +653,34 @@ def select_and_download_models(opt: Namespace):
|
||||
if opt.full_precision
|
||||
else choose_precision(torch.device(choose_torch_device()))
|
||||
)
|
||||
config.precision = precision
|
||||
helper = lambda x: ask_user_for_prediction_type(x)
|
||||
# if do_listings(opt):
|
||||
# pass
|
||||
|
||||
if do_listings(opt):
|
||||
pass
|
||||
# this processes command line additions/removals
|
||||
elif opt.diffusers or opt.controlnets or opt.textual_inversions or opt.loras:
|
||||
action = 'remove_models' if opt.delete else 'install_models'
|
||||
diffusers_args = {'diffusers':ModelInstallList(remove_models=opt.diffusers or [])} \
|
||||
if opt.delete \
|
||||
else {'external_models':opt.diffusers or []}
|
||||
install_requested_models(
|
||||
**diffusers_args,
|
||||
controlnet=ModelInstallList(**{action:opt.controlnets or []}),
|
||||
ti=ModelInstallList(**{action:opt.textual_inversions or []}),
|
||||
lora=ModelInstallList(**{action:opt.loras or []}),
|
||||
precision=precision,
|
||||
purge_deleted=True,
|
||||
model_config_file_callback=lambda x: ask_user_for_config_file(x),
|
||||
installer = ModelInstall(config, prediction_type_helper=helper)
|
||||
if opt.add or opt.delete:
|
||||
selections = InstallSelections(
|
||||
install_models = opt.add or [],
|
||||
remove_models = opt.delete or []
|
||||
)
|
||||
installer.install(selections)
|
||||
elif opt.default_only:
|
||||
install_requested_models(
|
||||
diffusers=ModelInstallList(install_models=default_dataset()),
|
||||
precision=precision,
|
||||
selections = InstallSelections(
|
||||
install_models = installer.default_model()
|
||||
)
|
||||
installer.install(selections)
|
||||
elif opt.yes_to_all:
|
||||
install_requested_models(
|
||||
diffusers=ModelInstallList(install_models=recommended_datasets()),
|
||||
precision=precision,
|
||||
selections = InstallSelections(
|
||||
install_models = installer.recommended_models()
|
||||
)
|
||||
installer.install(selections)
|
||||
|
||||
# this is where the TUI is called
|
||||
else:
|
||||
# needed because the torch library is loaded, even though we don't use it
|
||||
torch.multiprocessing.set_start_method("spawn")
|
||||
# currently commented out because it has started generating errors (?)
|
||||
# torch.multiprocessing.set_start_method("spawn")
|
||||
|
||||
# the third argument is needed in the Windows 11 environment in
|
||||
# order to launch and resize a console window running this program
|
||||
@ -861,35 +696,20 @@ def select_and_download_models(opt: Namespace):
|
||||
installApp.main_form.subprocess.terminate()
|
||||
installApp.main_form.subprocess = None
|
||||
raise e
|
||||
process_and_execute(opt, installApp.user_selections)
|
||||
process_and_execute(opt, installApp.install_selections)
|
||||
|
||||
# -------------------------------------
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
|
||||
parser.add_argument(
|
||||
"--diffusers",
|
||||
"--add",
|
||||
nargs="*",
|
||||
help="List of URLs or repo_ids of diffusers to install/delete",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--loras",
|
||||
nargs="*",
|
||||
help="List of URLs or repo_ids of LoRA/LyCORIS models to install/delete",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--controlnets",
|
||||
nargs="*",
|
||||
help="List of URLs or repo_ids of controlnet models to install/delete",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--textual-inversions",
|
||||
nargs="*",
|
||||
help="List of URLs or repo_ids of textual inversion embeddings to install/delete",
|
||||
help="List of URLs, local paths or repo_ids of models to install",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--delete",
|
||||
action="store_true",
|
||||
help="Delete models listed on command line rather than installing them",
|
||||
nargs="*",
|
||||
help="List of names of models to idelete",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--full-precision",
|
||||
@ -909,7 +729,7 @@ def main():
|
||||
parser.add_argument(
|
||||
"--default_only",
|
||||
action="store_true",
|
||||
help="only install the default model",
|
||||
help="Only install the default model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--list-models",
|
||||
|
@ -17,8 +17,8 @@ from shutil import get_terminal_size
|
||||
from curses import BUTTON2_CLICKED,BUTTON3_CLICKED
|
||||
|
||||
# minimum size for UIs
|
||||
MIN_COLS = 120
|
||||
MIN_LINES = 50
|
||||
MIN_COLS = 130
|
||||
MIN_LINES = 40
|
||||
|
||||
# -------------------------------------
|
||||
def set_terminal_size(columns: int, lines: int, launch_command: str=None):
|
||||
@ -73,6 +73,12 @@ def _set_terminal_size_unix(width: int, height: int):
|
||||
import fcntl
|
||||
import termios
|
||||
|
||||
# These terminals accept the size command and report that the
|
||||
# size changed, but they lie!!!
|
||||
for bad_terminal in ['TERMINATOR_UUID', 'ALACRITTY_WINDOW_ID']:
|
||||
if os.environ.get(bad_terminal):
|
||||
return
|
||||
|
||||
winsize = struct.pack("HHHH", height, width, 0, 0)
|
||||
fcntl.ioctl(sys.stdout.fileno(), termios.TIOCSWINSZ, winsize)
|
||||
sys.stdout.write("\x1b[8;{height};{width}t".format(height=height, width=width))
|
||||
@ -87,6 +93,12 @@ def set_min_terminal_size(min_cols: int, min_lines: int, launch_command: str=Non
|
||||
lines = max(term_lines, min_lines)
|
||||
set_terminal_size(cols, lines, launch_command)
|
||||
|
||||
# did it work?
|
||||
term_cols, term_lines = get_terminal_size()
|
||||
if term_cols < cols or term_lines < lines:
|
||||
print(f'This window is too small for optimal display. For best results please enlarge it.')
|
||||
input('After resizing, press any key to continue...')
|
||||
|
||||
class IntSlider(npyscreen.Slider):
|
||||
def translate_value(self):
|
||||
stri = "%2d / %2d" % (self.value, self.out_of)
|
||||
@ -390,13 +402,12 @@ def select_stable_diffusion_config_file(
|
||||
wrap:bool =True,
|
||||
model_name:str='Unknown',
|
||||
):
|
||||
message = "Please select the correct base model for the V2 checkpoint named {model_name}. Press <CANCEL> to skip installation."
|
||||
message = f"Please select the correct base model for the V2 checkpoint named '{model_name}'. Press <CANCEL> to skip installation."
|
||||
title = "CONFIG FILE SELECTION"
|
||||
options=[
|
||||
"An SD v2.x base model (512 pixels; no 'parameterization:' line in its yaml file)",
|
||||
"An SD v2.x v-predictive model (768 pixels; 'parameterization: \"v\"' line in its yaml file)",
|
||||
"Skip installation for now and come back later",
|
||||
"Enter config file path manually",
|
||||
]
|
||||
|
||||
F = ConfirmCancelPopup(
|
||||
@ -418,35 +429,17 @@ def select_stable_diffusion_config_file(
|
||||
mlw.values = message
|
||||
|
||||
choice = F.add(
|
||||
SingleSelectWithChanged,
|
||||
npyscreen.SelectOne,
|
||||
values = options,
|
||||
value = [0],
|
||||
max_height = len(options)+1,
|
||||
scroll_exit=True,
|
||||
)
|
||||
file = F.add(
|
||||
FileBox,
|
||||
name='Path to config file',
|
||||
max_height=3,
|
||||
hidden=True,
|
||||
must_exist=True,
|
||||
scroll_exit=True
|
||||
)
|
||||
|
||||
def toggle_visible(value):
|
||||
value = value[0]
|
||||
if value==3:
|
||||
file.hidden=False
|
||||
else:
|
||||
file.hidden=True
|
||||
F.display()
|
||||
|
||||
choice.on_changed = toggle_visible
|
||||
|
||||
F.editw = 1
|
||||
F.edit()
|
||||
if not F.value:
|
||||
return None
|
||||
assert choice.value[0] in range(0,4),'invalid choice'
|
||||
choices = ['epsilon','v','abort',file.value]
|
||||
assert choice.value[0] in range(0,3),'invalid choice'
|
||||
choices = ['epsilon','v','abort']
|
||||
return choices[choice.value[0]]
|
||||
|
@ -48,7 +48,7 @@ const App = ({
|
||||
const isApplicationReady = useIsApplicationReady();
|
||||
|
||||
const { data: pipelineModels } = useListModelsQuery({
|
||||
model_type: 'pipeline',
|
||||
model_type: 'main',
|
||||
});
|
||||
const { data: controlnetModels } = useListModelsQuery({
|
||||
model_type: 'controlnet',
|
||||
|
@ -35,8 +35,8 @@ const ParamDynamicPromptsCollapse = () => {
|
||||
withSwitch
|
||||
>
|
||||
<Flex sx={{ gap: 2, flexDir: 'column' }}>
|
||||
<ParamDynamicPromptsMaxPrompts />
|
||||
<ParamDynamicPromptsCombinatorial />
|
||||
<ParamDynamicPromptsMaxPrompts />
|
||||
</Flex>
|
||||
</IAICollapse>
|
||||
);
|
||||
|
@ -9,17 +9,18 @@ import { stateSelector } from 'app/store/store';
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
(state) => {
|
||||
const { maxPrompts } = state.dynamicPrompts;
|
||||
const { maxPrompts, combinatorial } = state.dynamicPrompts;
|
||||
const { min, sliderMax, inputMax } =
|
||||
state.config.sd.dynamicPrompts.maxPrompts;
|
||||
|
||||
return { maxPrompts, min, sliderMax, inputMax };
|
||||
return { maxPrompts, min, sliderMax, inputMax, combinatorial };
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamDynamicPromptsMaxPrompts = () => {
|
||||
const { maxPrompts, min, sliderMax, inputMax } = useAppSelector(selector);
|
||||
const { maxPrompts, min, sliderMax, inputMax, combinatorial } =
|
||||
useAppSelector(selector);
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleChange = useCallback(
|
||||
@ -36,6 +37,7 @@ const ParamDynamicPromptsMaxPrompts = () => {
|
||||
return (
|
||||
<IAISlider
|
||||
label="Max Prompts"
|
||||
isDisabled={!combinatorial}
|
||||
min={min}
|
||||
max={sliderMax}
|
||||
value={maxPrompts}
|
||||
|
@ -23,7 +23,7 @@ const ModelInputFieldComponent = (
|
||||
const { t } = useTranslation();
|
||||
|
||||
const { data: pipelineModels } = useListModelsQuery({
|
||||
model_type: 'pipeline',
|
||||
model_type: 'main',
|
||||
});
|
||||
|
||||
const data = useMemo(() => {
|
||||
|
@ -37,7 +37,7 @@ export const addDynamicPromptsToGraph = (
|
||||
const dynamicPromptNode: DynamicPromptInvocation = {
|
||||
id: DYNAMIC_PROMPT,
|
||||
type: 'dynamic_prompt',
|
||||
max_prompts: maxPrompts,
|
||||
max_prompts: combinatorial ? maxPrompts : iterations,
|
||||
combinatorial,
|
||||
prompt: positivePrompt,
|
||||
};
|
||||
|
@ -16,7 +16,8 @@ const selector = createSelector([stateSelector], (state) => {
|
||||
state.config.sd.iterations;
|
||||
const { iterations } = state.generation;
|
||||
const { shouldUseSliders } = state.ui;
|
||||
const isDisabled = state.dynamicPrompts.isEnabled;
|
||||
const isDisabled =
|
||||
state.dynamicPrompts.isEnabled && state.dynamicPrompts.combinatorial;
|
||||
|
||||
const step = state.hotkeys.shift ? fineStep : coarseStep;
|
||||
|
||||
|
@ -24,7 +24,7 @@ const ModelSelect = () => {
|
||||
);
|
||||
|
||||
const { data: pipelineModels } = useListModelsQuery({
|
||||
model_type: 'pipeline',
|
||||
model_type: 'main',
|
||||
});
|
||||
|
||||
const data = useMemo(() => {
|
||||
|
@ -1030,7 +1030,7 @@ export type components = {
|
||||
* @description The nodes in this graph
|
||||
*/
|
||||
nodes?: {
|
||||
[key: string]: (components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["PipelineModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["UpscaleInvocation"] | components["schemas"]["RestoreFaceInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
|
||||
[key: string]: (components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["PipelineModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["UpscaleInvocation"] | components["schemas"]["RestoreFaceInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
|
||||
};
|
||||
/**
|
||||
* Edges
|
||||
@ -1073,7 +1073,7 @@ export type components = {
|
||||
* @description The results of node executions
|
||||
*/
|
||||
results: {
|
||||
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
|
||||
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
|
||||
};
|
||||
/**
|
||||
* Errors
|
||||
@ -2917,7 +2917,7 @@ export type components = {
|
||||
/** ModelsList */
|
||||
ModelsList: {
|
||||
/** Models */
|
||||
models: (components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"])[];
|
||||
models: (components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"])[];
|
||||
};
|
||||
/**
|
||||
* MultiplyInvocation
|
||||
@ -2993,6 +2993,18 @@ export type components = {
|
||||
* @default 512
|
||||
*/
|
||||
height?: number;
|
||||
/**
|
||||
* Perlin
|
||||
* @description The amount of perlin noise to add to the noise
|
||||
* @default 0
|
||||
*/
|
||||
perlin?: number;
|
||||
/**
|
||||
* Use Cpu
|
||||
* @description Use CPU for noise generation (for reproducible results across platforms)
|
||||
* @default true
|
||||
*/
|
||||
use_cpu?: boolean;
|
||||
};
|
||||
/**
|
||||
* NoiseOutput
|
||||
@ -4177,18 +4189,18 @@ export type components = {
|
||||
*/
|
||||
image?: components["schemas"]["ImageField"];
|
||||
};
|
||||
/**
|
||||
* StableDiffusion1ModelFormat
|
||||
* @description An enumeration.
|
||||
* @enum {string}
|
||||
*/
|
||||
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
|
||||
/**
|
||||
* StableDiffusion2ModelFormat
|
||||
* @description An enumeration.
|
||||
* @enum {string}
|
||||
*/
|
||||
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
|
||||
/**
|
||||
* StableDiffusion1ModelFormat
|
||||
* @description An enumeration.
|
||||
* @enum {string}
|
||||
*/
|
||||
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
|
||||
};
|
||||
responses: never;
|
||||
parameters: never;
|
||||
@ -4299,7 +4311,7 @@ export type operations = {
|
||||
};
|
||||
requestBody: {
|
||||
content: {
|
||||
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["PipelineModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["UpscaleInvocation"] | components["schemas"]["RestoreFaceInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
||||
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["PipelineModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["UpscaleInvocation"] | components["schemas"]["RestoreFaceInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
||||
};
|
||||
};
|
||||
responses: {
|
||||
@ -4336,7 +4348,7 @@ export type operations = {
|
||||
};
|
||||
requestBody: {
|
||||
content: {
|
||||
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["PipelineModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["UpscaleInvocation"] | components["schemas"]["RestoreFaceInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
||||
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["PipelineModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["UpscaleInvocation"] | components["schemas"]["RestoreFaceInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
||||
};
|
||||
};
|
||||
responses: {
|
||||
|
122
invokeai/frontend/web/src/services/api/types.d.ts
vendored
122
invokeai/frontend/web/src/services/api/types.d.ts
vendored
@ -4,91 +4,89 @@ import { components } from './schema';
|
||||
type schemas = components['schemas'];
|
||||
|
||||
/**
|
||||
* Helper type to extract the invocation type from the schema.
|
||||
* Also flags the `type` property as required.
|
||||
* Extracts the schema type from the schema.
|
||||
*/
|
||||
type Invocation<T extends keyof schemas> = O.Required<schemas[T], 'type'>;
|
||||
type S<T extends keyof components['schemas']> = components['schemas'][T];
|
||||
|
||||
/**
|
||||
* Types from the API, re-exported from the types generated by `openapi-typescript`.
|
||||
* Extracts the node type from the schema.
|
||||
* Also flags the `type` property as required.
|
||||
*/
|
||||
type N<T extends keyof components['schemas']> = O.Required<
|
||||
components['schemas'][T],
|
||||
'type'
|
||||
>;
|
||||
|
||||
// Images
|
||||
export type ImageDTO = schemas['ImageDTO'];
|
||||
export type BoardDTO = schemas['BoardDTO'];
|
||||
export type BoardChanges = schemas['BoardChanges'];
|
||||
export type ImageChanges = schemas['ImageRecordChanges'];
|
||||
export type ImageCategory = schemas['ImageCategory'];
|
||||
export type ResourceOrigin = schemas['ResourceOrigin'];
|
||||
export type ImageField = schemas['ImageField'];
|
||||
export type ImageDTO = S<'ImageDTO'>;
|
||||
export type BoardDTO = S<'BoardDTO'>;
|
||||
export type BoardChanges = S<'BoardChanges'>;
|
||||
export type ImageChanges = S<'ImageRecordChanges'>;
|
||||
export type ImageCategory = S<'ImageCategory'>;
|
||||
export type ResourceOrigin = S<'ResourceOrigin'>;
|
||||
export type ImageField = S<'ImageField'>;
|
||||
export type OffsetPaginatedResults_BoardDTO_ =
|
||||
schemas['OffsetPaginatedResults_BoardDTO_'];
|
||||
S<'OffsetPaginatedResults_BoardDTO_'>;
|
||||
export type OffsetPaginatedResults_ImageDTO_ =
|
||||
schemas['OffsetPaginatedResults_ImageDTO_'];
|
||||
S<'OffsetPaginatedResults_ImageDTO_'>;
|
||||
|
||||
// Models
|
||||
export type ModelType = schemas['ModelType'];
|
||||
export type BaseModelType = schemas['BaseModelType'];
|
||||
export type PipelineModelField = schemas['PipelineModelField'];
|
||||
export type ModelsList = schemas['ModelsList'];
|
||||
export type ModelType = S<'ModelType'>;
|
||||
export type BaseModelType = S<'BaseModelType'>;
|
||||
export type PipelineModelField = S<'PipelineModelField'>;
|
||||
export type ModelsList = S<'ModelsList'>;
|
||||
|
||||
// Graphs
|
||||
export type Graph = schemas['Graph'];
|
||||
export type Edge = schemas['Edge'];
|
||||
export type GraphExecutionState = schemas['GraphExecutionState'];
|
||||
export type Graph = S<'Graph'>;
|
||||
export type Edge = S<'Edge'>;
|
||||
export type GraphExecutionState = S<'GraphExecutionState'>;
|
||||
|
||||
// General nodes
|
||||
export type CollectInvocation = Invocation<'CollectInvocation'>;
|
||||
export type IterateInvocation = Invocation<'IterateInvocation'>;
|
||||
export type RangeInvocation = Invocation<'RangeInvocation'>;
|
||||
export type RandomRangeInvocation = Invocation<'RandomRangeInvocation'>;
|
||||
export type RangeOfSizeInvocation = Invocation<'RangeOfSizeInvocation'>;
|
||||
export type InpaintInvocation = Invocation<'InpaintInvocation'>;
|
||||
export type ImageResizeInvocation = Invocation<'ImageResizeInvocation'>;
|
||||
export type RandomIntInvocation = Invocation<'RandomIntInvocation'>;
|
||||
export type CompelInvocation = Invocation<'CompelInvocation'>;
|
||||
export type DynamicPromptInvocation = Invocation<'DynamicPromptInvocation'>;
|
||||
export type NoiseInvocation = Invocation<'NoiseInvocation'>;
|
||||
export type TextToLatentsInvocation = Invocation<'TextToLatentsInvocation'>;
|
||||
export type LatentsToLatentsInvocation =
|
||||
Invocation<'LatentsToLatentsInvocation'>;
|
||||
export type ImageToLatentsInvocation = Invocation<'ImageToLatentsInvocation'>;
|
||||
export type LatentsToImageInvocation = Invocation<'LatentsToImageInvocation'>;
|
||||
export type PipelineModelLoaderInvocation =
|
||||
Invocation<'PipelineModelLoaderInvocation'>;
|
||||
export type CollectInvocation = N<'CollectInvocation'>;
|
||||
export type IterateInvocation = N<'IterateInvocation'>;
|
||||
export type RangeInvocation = N<'RangeInvocation'>;
|
||||
export type RandomRangeInvocation = N<'RandomRangeInvocation'>;
|
||||
export type RangeOfSizeInvocation = N<'RangeOfSizeInvocation'>;
|
||||
export type InpaintInvocation = N<'InpaintInvocation'>;
|
||||
export type ImageResizeInvocation = N<'ImageResizeInvocation'>;
|
||||
export type RandomIntInvocation = N<'RandomIntInvocation'>;
|
||||
export type CompelInvocation = N<'CompelInvocation'>;
|
||||
export type DynamicPromptInvocation = N<'DynamicPromptInvocation'>;
|
||||
export type NoiseInvocation = N<'NoiseInvocation'>;
|
||||
export type TextToLatentsInvocation = N<'TextToLatentsInvocation'>;
|
||||
export type LatentsToLatentsInvocation = N<'LatentsToLatentsInvocation'>;
|
||||
export type ImageToLatentsInvocation = N<'ImageToLatentsInvocation'>;
|
||||
export type LatentsToImageInvocation = N<'LatentsToImageInvocation'>;
|
||||
export type PipelineModelLoaderInvocation = N<'PipelineModelLoaderInvocation'>;
|
||||
|
||||
// ControlNet Nodes
|
||||
export type ControlNetInvocation = Invocation<'ControlNetInvocation'>;
|
||||
export type CannyImageProcessorInvocation =
|
||||
Invocation<'CannyImageProcessorInvocation'>;
|
||||
export type ControlNetInvocation = N<'ControlNetInvocation'>;
|
||||
export type CannyImageProcessorInvocation = N<'CannyImageProcessorInvocation'>;
|
||||
export type ContentShuffleImageProcessorInvocation =
|
||||
Invocation<'ContentShuffleImageProcessorInvocation'>;
|
||||
export type HedImageProcessorInvocation =
|
||||
Invocation<'HedImageProcessorInvocation'>;
|
||||
N<'ContentShuffleImageProcessorInvocation'>;
|
||||
export type HedImageProcessorInvocation = N<'HedImageProcessorInvocation'>;
|
||||
export type LineartAnimeImageProcessorInvocation =
|
||||
Invocation<'LineartAnimeImageProcessorInvocation'>;
|
||||
N<'LineartAnimeImageProcessorInvocation'>;
|
||||
export type LineartImageProcessorInvocation =
|
||||
Invocation<'LineartImageProcessorInvocation'>;
|
||||
N<'LineartImageProcessorInvocation'>;
|
||||
export type MediapipeFaceProcessorInvocation =
|
||||
Invocation<'MediapipeFaceProcessorInvocation'>;
|
||||
N<'MediapipeFaceProcessorInvocation'>;
|
||||
export type MidasDepthImageProcessorInvocation =
|
||||
Invocation<'MidasDepthImageProcessorInvocation'>;
|
||||
export type MlsdImageProcessorInvocation =
|
||||
Invocation<'MlsdImageProcessorInvocation'>;
|
||||
N<'MidasDepthImageProcessorInvocation'>;
|
||||
export type MlsdImageProcessorInvocation = N<'MlsdImageProcessorInvocation'>;
|
||||
export type NormalbaeImageProcessorInvocation =
|
||||
Invocation<'NormalbaeImageProcessorInvocation'>;
|
||||
N<'NormalbaeImageProcessorInvocation'>;
|
||||
export type OpenposeImageProcessorInvocation =
|
||||
Invocation<'OpenposeImageProcessorInvocation'>;
|
||||
export type PidiImageProcessorInvocation =
|
||||
Invocation<'PidiImageProcessorInvocation'>;
|
||||
N<'OpenposeImageProcessorInvocation'>;
|
||||
export type PidiImageProcessorInvocation = N<'PidiImageProcessorInvocation'>;
|
||||
export type ZoeDepthImageProcessorInvocation =
|
||||
Invocation<'ZoeDepthImageProcessorInvocation'>;
|
||||
N<'ZoeDepthImageProcessorInvocation'>;
|
||||
|
||||
// Node Outputs
|
||||
export type ImageOutput = schemas['ImageOutput'];
|
||||
export type MaskOutput = schemas['MaskOutput'];
|
||||
export type PromptOutput = schemas['PromptOutput'];
|
||||
export type IterateInvocationOutput = schemas['IterateInvocationOutput'];
|
||||
export type CollectInvocationOutput = schemas['CollectInvocationOutput'];
|
||||
export type LatentsOutput = schemas['LatentsOutput'];
|
||||
export type GraphInvocationOutput = schemas['GraphInvocationOutput'];
|
||||
export type ImageOutput = S<'ImageOutput'>;
|
||||
export type MaskOutput = S<'MaskOutput'>;
|
||||
export type PromptOutput = S<'PromptOutput'>;
|
||||
export type IterateInvocationOutput = S<'IterateInvocationOutput'>;
|
||||
export type CollectInvocationOutput = S<'CollectInvocationOutput'>;
|
||||
export type LatentsOutput = S<'LatentsOutput'>;
|
||||
export type GraphInvocationOutput = S<'GraphInvocationOutput'>;
|
||||
|
@ -39,7 +39,7 @@ dependencies = [
|
||||
"click",
|
||||
"clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
|
||||
"compel>=1.2.1",
|
||||
"controlnet-aux>=0.0.4",
|
||||
"controlnet-aux>=0.0.6",
|
||||
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
|
||||
"datasets",
|
||||
"diffusers[torch]~=0.17.1",
|
||||
@ -120,6 +120,7 @@ dependencies = [
|
||||
"invokeai-merge" = "invokeai.frontend.merge:invokeai_merge_diffusers"
|
||||
"invokeai-ti" = "invokeai.frontend.training:invokeai_textual_inversion"
|
||||
"invokeai-model-install" = "invokeai.frontend.install:invokeai_model_install"
|
||||
"invokeai-migrate3" = "invokeai.backend.install.migrate_to_3:main"
|
||||
"invokeai-update" = "invokeai.frontend.install:invokeai_update"
|
||||
"invokeai-metadata" = "invokeai.frontend.CLI.sd_metadata:print_metadata"
|
||||
"invokeai-node-cli" = "invokeai.app.cli_app:invoke_cli"
|
||||
|
4
scripts/invokeai-migrate3
Normal file
4
scripts/invokeai-migrate3
Normal file
@ -0,0 +1,4 @@
|
||||
from invokeai.backend.install.migrate_to_3 import main
|
||||
|
||||
if __name__=='__main__':
|
||||
main()
|
3
scripts/invokeai-model-install.py
Normal file
3
scripts/invokeai-model-install.py
Normal file
@ -0,0 +1,3 @@
|
||||
from invokeai.frontend.install.model_install import main
|
||||
main()
|
||||
|
@ -1,278 +0,0 @@
|
||||
'''
|
||||
Migrate the models directory and models.yaml file from an existing
|
||||
InvokeAI 2.3 installation to 3.0.0.
|
||||
'''
|
||||
|
||||
import io
|
||||
import os
|
||||
import argparse
|
||||
import shutil
|
||||
import yaml
|
||||
|
||||
import transformers
|
||||
import diffusers
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from omegaconf import OmegaConf
|
||||
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
from transformers import (
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
AutoFeatureExtractor,
|
||||
BertTokenizerFast,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.model_management.model_probe import (
|
||||
ModelProbe, ModelType, BaseModelType
|
||||
)
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
transformers.logging.set_verbosity_error()
|
||||
diffusers.logging.set_verbosity_error()
|
||||
|
||||
def create_directory_structure(dest: Path):
|
||||
for model_base in [BaseModelType.StableDiffusion1,BaseModelType.StableDiffusion2]:
|
||||
for model_type in [ModelType.Pipeline, ModelType.Vae, ModelType.Lora,
|
||||
ModelType.ControlNet,ModelType.TextualInversion]:
|
||||
path = dest / model_base.value / model_type.value
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
path = dest / 'core'
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def copy_file(src:Path,dest:Path):
|
||||
logger.info(f'Copying {str(src)} to {str(dest)}')
|
||||
try:
|
||||
shutil.copy(src, dest)
|
||||
except Exception as e:
|
||||
logger.error(f'COPY FAILED: {str(e)}')
|
||||
|
||||
def copy_dir(src:Path,dest:Path):
|
||||
logger.info(f'Copying {str(src)} to {str(dest)}')
|
||||
try:
|
||||
shutil.copytree(src, dest)
|
||||
except Exception as e:
|
||||
logger.error(f'COPY FAILED: {str(e)}')
|
||||
|
||||
def migrate_models(src_dir: Path, dest_dir: Path):
|
||||
for root, dirs, files in os.walk(src_dir):
|
||||
for f in files:
|
||||
# hack - don't copy raw learned_embeds.bin, let them
|
||||
# be copied as part of a tree copy operation
|
||||
if f == 'learned_embeds.bin':
|
||||
continue
|
||||
try:
|
||||
model = Path(root,f)
|
||||
info = ModelProbe().heuristic_probe(model)
|
||||
if not info:
|
||||
continue
|
||||
dest = Path(dest_dir, info.base_type.value, info.model_type.value, f)
|
||||
copy_file(model, dest)
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
for d in dirs:
|
||||
try:
|
||||
model = Path(root,d)
|
||||
info = ModelProbe().heuristic_probe(model)
|
||||
if not info:
|
||||
continue
|
||||
dest = Path(dest_dir, info.base_type.value, info.model_type.value, model.name)
|
||||
copy_dir(model, dest)
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
|
||||
def migrate_support_models(dest_directory: Path):
|
||||
if Path('./models/clipseg').exists():
|
||||
copy_dir(Path('./models/clipseg'),dest_directory / 'core/misc/clipseg')
|
||||
if Path('./models/realesrgan').exists():
|
||||
copy_dir(Path('./models/realesrgan'),dest_directory / 'core/upscaling/realesrgan')
|
||||
for d in ['codeformer','gfpgan']:
|
||||
path = Path('./models',d)
|
||||
if path.exists():
|
||||
copy_dir(path,dest_directory / f'core/face_restoration/{d}')
|
||||
|
||||
def migrate_conversion_models(dest_directory: Path):
|
||||
# These are needed for the conversion script
|
||||
kwargs = dict(
|
||||
cache_dir = Path('./models/hub'),
|
||||
#local_files_only = True
|
||||
)
|
||||
try:
|
||||
logger.info('Migrating core tokenizers and text encoders')
|
||||
target_dir = dest_directory / 'core' / 'convert'
|
||||
|
||||
# bert
|
||||
bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs)
|
||||
bert.save_pretrained(target_dir / 'bert-base-uncased', safe_serialization=True)
|
||||
|
||||
# sd-1
|
||||
repo_id = 'openai/clip-vit-large-patch14'
|
||||
pipeline = CLIPTokenizer.from_pretrained(repo_id, **kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'clip-vit-large-patch14', safe_serialization=True)
|
||||
|
||||
pipeline = CLIPTextModel.from_pretrained(repo_id, **kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'clip-vit-large-patch14', safe_serialization=True)
|
||||
|
||||
# sd-2
|
||||
repo_id = "stabilityai/stable-diffusion-2"
|
||||
pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'tokenizer', safe_serialization=True)
|
||||
|
||||
pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'text_encoder', safe_serialization=True)
|
||||
|
||||
# VAE
|
||||
logger.info('Migrating stable diffusion VAE')
|
||||
vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse', **kwargs)
|
||||
vae.save_pretrained(target_dir / 'sd-vae-ft-mse', safe_serialization=True)
|
||||
|
||||
# safety checking
|
||||
logger.info('Migrating safety checker')
|
||||
repo_id = "CompVis/stable-diffusion-safety-checker"
|
||||
pipeline = AutoFeatureExtractor.from_pretrained(repo_id,**kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True)
|
||||
|
||||
pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id,**kwargs)
|
||||
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True)
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
|
||||
def migrate_tuning_models(dest: Path):
|
||||
for subdir in ['embeddings','loras','controlnets']:
|
||||
src = Path('.',subdir)
|
||||
if not src.is_dir():
|
||||
logger.info(f'{subdir} directory not found; skipping')
|
||||
continue
|
||||
logger.info(f'Scanning {subdir}')
|
||||
migrate_models(src, dest)
|
||||
|
||||
def migrate_pipelines(dest_dir: Path, dest_yaml: io.TextIOBase):
|
||||
cache = Path('./models/hub')
|
||||
kwargs = dict(
|
||||
cache_dir = cache,
|
||||
local_files_only = True,
|
||||
safety_checker = None,
|
||||
)
|
||||
for model in cache.glob('models--*'):
|
||||
if len(list(model.glob('snapshots/**/model_index.json')))==0:
|
||||
continue
|
||||
_,owner,repo_name=model.name.split('--')
|
||||
repo_id = f'{owner}/{repo_name}'
|
||||
revisions = [x.name for x in model.glob('refs/*')]
|
||||
for revision in revisions:
|
||||
logger.info(f'Migrating {repo_id}, revision {revision}')
|
||||
try:
|
||||
pipeline = StableDiffusionPipeline.from_pretrained(
|
||||
repo_id,
|
||||
revision=revision,
|
||||
**kwargs)
|
||||
info = ModelProbe().heuristic_probe(pipeline)
|
||||
if not info:
|
||||
continue
|
||||
dest = Path(dest_dir, info.base_type.value, info.model_type.value, f'{repo_name}-{revision}')
|
||||
pipeline.save_pretrained(dest, safe_serialization=True)
|
||||
rel_path = Path('models',dest.relative_to(dest_dir))
|
||||
stanza = {
|
||||
f'{info.base_type.value}/{info.model_type.value}/{repo_name}-{revision}':
|
||||
{
|
||||
'name': repo_name,
|
||||
'path': str(rel_path),
|
||||
'description': f'diffusers model {repo_id}',
|
||||
'format': 'diffusers',
|
||||
'image_size': info.image_size,
|
||||
'base': info.base_type.value,
|
||||
'variant': info.variant_type.value,
|
||||
'prediction_type': info.prediction_type.value,
|
||||
}
|
||||
}
|
||||
print(yaml.dump(stanza),file=dest_yaml,end="")
|
||||
dest_yaml.flush()
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.warning(f'Could not load the "{revision}" version of {repo_id}. Skipping.')
|
||||
|
||||
def migrate_checkpoints(dest_dir: Path, dest_yaml: io.TextIOBase):
|
||||
# find any checkpoints referred to in old models.yaml
|
||||
conf = OmegaConf.load('./configs/models.yaml')
|
||||
orig_models_dir = Path.cwd() / 'models'
|
||||
for model_name, stanza in conf.items():
|
||||
if stanza.get('format') and stanza['format'] == 'ckpt':
|
||||
try:
|
||||
logger.info(f'Migrating checkpoint model {model_name}')
|
||||
weights = orig_models_dir.parent / stanza['weights']
|
||||
config = stanza['config']
|
||||
info = ModelProbe().heuristic_probe(weights)
|
||||
if not info:
|
||||
continue
|
||||
|
||||
# uh oh, weights is in the old models directory - move it into the new one
|
||||
if Path(weights).is_relative_to(orig_models_dir):
|
||||
dest = Path(dest_dir, info.base_type.value, info.model_type.value,weights.name)
|
||||
copy_file(weights,dest)
|
||||
weights = Path('models', info.base_type.value, info.model_type.value,weights.name)
|
||||
stanza = {
|
||||
f'{info.base_type.value}/{info.model_type.value}/{model_name}':
|
||||
{
|
||||
'name': model_name,
|
||||
'path': str(weights),
|
||||
'description': f'checkpoint model {model_name}',
|
||||
'format': 'checkpoint',
|
||||
'image_size': info.image_size,
|
||||
'base': info.base_type.value,
|
||||
'variant': info.variant_type.value,
|
||||
'config': config
|
||||
}
|
||||
}
|
||||
print(yaml.dump(stanza),file=dest_yaml,end="")
|
||||
dest_yaml.flush()
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Model directory migrator")
|
||||
parser.add_argument('root_directory',
|
||||
help='Root directory (containing "models", "embeddings", "controlnets" and "loras")'
|
||||
)
|
||||
parser.add_argument('--dest-directory',
|
||||
default='./models-3.0',
|
||||
help='Destination for new models directory',
|
||||
)
|
||||
parser.add_argument('--dest-yaml',
|
||||
default='./models.yaml-3.0',
|
||||
help='Destination for new models.yaml file',
|
||||
)
|
||||
args = parser.parse_args()
|
||||
root_directory = Path(args.root_directory)
|
||||
assert root_directory.is_dir(), f"{root_directory} is not a valid directory"
|
||||
assert (root_directory / 'models').is_dir(), f"{root_directory} does not contain a 'models' subdirectory"
|
||||
|
||||
dest_directory = Path(args.dest_directory).resolve()
|
||||
dest_yaml = Path(args.dest_yaml).resolve()
|
||||
|
||||
os.chdir(root_directory)
|
||||
with open(dest_yaml,'w') as yaml_file:
|
||||
print(yaml.dump({'__metadata__':
|
||||
{'version':'3.0.0'}
|
||||
}
|
||||
),file=yaml_file,end=""
|
||||
)
|
||||
create_directory_structure(dest_directory)
|
||||
migrate_support_models(dest_directory)
|
||||
migrate_conversion_models(dest_directory)
|
||||
migrate_tuning_models(dest_directory)
|
||||
migrate_pipelines(dest_directory,yaml_file)
|
||||
migrate_checkpoints(dest_directory,yaml_file)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user