be more aggressive at clearing out saved_attn_slice

This commit is contained in:
damian0815 2022-11-01 19:57:55 +01:00 committed by Lincoln Stein
parent c7de2b2801
commit 214d276379
2 changed files with 22 additions and 13 deletions

View File

@ -116,6 +116,7 @@ class CrossAttentionControl:
for m in self_attention_modules+tokens_attention_modules: for m in self_attention_modules+tokens_attention_modules:
m.save_last_attn_slice = False m.save_last_attn_slice = False
m.use_last_attn_slice = False m.use_last_attn_slice = False
m.last_attn_slice = None
@classmethod @classmethod
def request_save_attention_maps(cls, model, cross_attention_type: CrossAttentionType): def request_save_attention_maps(cls, model, cross_attention_type: CrossAttentionType):

View File

@ -134,23 +134,31 @@ class InvokeAIDiffuserComponent:
# representing batched uncond + cond, but then when it comes to applying the saved attention, the # representing batched uncond + cond, but then when it comes to applying the saved attention, the
# wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.) # wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.)
# todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well. # todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well.
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
# process x using the original prompt, saving the attention maps try:
for type in cross_attention_control_types_to_do: unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
CrossAttentionControl.request_save_attention_maps(self.model, type)
_ = self.model_forward_callback(x, sigma, conditioning)
CrossAttentionControl.clear_requests(self.model)
# process x again, using the saved attention maps to control where self.edited_conditioning will be applied # process x using the original prompt, saving the attention maps
for type in cross_attention_control_types_to_do: for type in cross_attention_control_types_to_do:
CrossAttentionControl.request_apply_saved_attention_maps(self.model, type) CrossAttentionControl.request_save_attention_maps(self.model, type)
edited_conditioning = self.conditioning.cross_attention_control_args.edited_conditioning _ = self.model_forward_callback(x, sigma, conditioning)
conditioned_next_x = self.model_forward_callback(x, sigma, edited_conditioning) CrossAttentionControl.clear_requests(self.model)
CrossAttentionControl.clear_requests(self.model) # process x again, using the saved attention maps to control where self.edited_conditioning will be applied
for type in cross_attention_control_types_to_do:
CrossAttentionControl.request_apply_saved_attention_maps(self.model, type)
edited_conditioning = self.conditioning.cross_attention_control_args.edited_conditioning
conditioned_next_x = self.model_forward_callback(x, sigma, edited_conditioning)
return unconditioned_next_x, conditioned_next_x CrossAttentionControl.clear_requests(self.model)
return unconditioned_next_x, conditioned_next_x
except RuntimeError:
# make sure we clean out the attention slices we're storing on the model
# TODO don't store things on the model
CrossAttentionControl.clear_requests(self.model)
raise
def estimate_percent_through(self, step_index, sigma): def estimate_percent_through(self, step_index, sigma):
if step_index is not None and self.cross_attention_control_context is not None: if step_index is not None and self.cross_attention_control_context is not None: