mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
resolve doc conflicts during merge
This commit is contained in:
commit
230de023ff
@ -319,7 +319,7 @@ class InvokeAIWebServer:
|
||||
elif postprocessing_parameters['type'] == 'gfpgan':
|
||||
image = self.gfpgan.process(
|
||||
image=image,
|
||||
strength=postprocessing_parameters['gfpgan_strength'],
|
||||
strength=postprocessing_parameters['facetool_strength'],
|
||||
seed=seed,
|
||||
)
|
||||
else:
|
||||
@ -625,7 +625,7 @@ class InvokeAIWebServer:
|
||||
seed=seed,
|
||||
)
|
||||
postprocessing = True
|
||||
all_parameters['gfpgan_strength'] = gfpgan_parameters[
|
||||
all_parameters['facetool_strength'] = gfpgan_parameters[
|
||||
'strength'
|
||||
]
|
||||
|
||||
@ -723,6 +723,7 @@ class InvokeAIWebServer:
|
||||
'height',
|
||||
'extra',
|
||||
'seamless',
|
||||
'hires_fix',
|
||||
]
|
||||
|
||||
rfc_dict = {}
|
||||
@ -735,12 +736,12 @@ class InvokeAIWebServer:
|
||||
postprocessing = []
|
||||
|
||||
# 'postprocessing' is either null or an
|
||||
if 'gfpgan_strength' in parameters:
|
||||
if 'facetool_strength' in parameters:
|
||||
|
||||
postprocessing.append(
|
||||
{
|
||||
'type': 'gfpgan',
|
||||
'strength': float(parameters['gfpgan_strength']),
|
||||
'strength': float(parameters['facetool_strength']),
|
||||
}
|
||||
)
|
||||
|
||||
@ -837,7 +838,7 @@ class InvokeAIWebServer:
|
||||
elif parameters['type'] == 'gfpgan':
|
||||
postprocessing_metadata['type'] = 'gfpgan'
|
||||
postprocessing_metadata['strength'] = parameters[
|
||||
'gfpgan_strength'
|
||||
'facetool_strength'
|
||||
]
|
||||
else:
|
||||
raise TypeError(f"Invalid type: {parameters['type']}")
|
||||
|
@ -36,6 +36,8 @@ def parameters_to_command(params):
|
||||
switches.append(f'-A {params["sampler_name"]}')
|
||||
if "seamless" in params and params["seamless"] == True:
|
||||
switches.append(f"--seamless")
|
||||
if "hires_fix" in params and params["hires_fix"] == True:
|
||||
switches.append(f"--hires")
|
||||
if "init_img" in params and len(params["init_img"]) > 0:
|
||||
switches.append(f'-I {params["init_img"]}')
|
||||
if "init_mask" in params and len(params["init_mask"]) > 0:
|
||||
@ -46,8 +48,14 @@ def parameters_to_command(params):
|
||||
switches.append(f'-f {params["strength"]}')
|
||||
if "fit" in params and params["fit"] == True:
|
||||
switches.append(f"--fit")
|
||||
if "gfpgan_strength" in params and params["gfpgan_strength"]:
|
||||
if "facetool" in params:
|
||||
switches.append(f'-ft {params["facetool"]}')
|
||||
if "facetool_strength" in params and params["facetool_strength"]:
|
||||
switches.append(f'-G {params["facetool_strength"]}')
|
||||
elif "gfpgan_strength" in params and params["gfpgan_strength"]:
|
||||
switches.append(f'-G {params["gfpgan_strength"]}')
|
||||
if "codeformer_fidelity" in params:
|
||||
switches.append(f'-cf {params["codeformer_fidelity"]}')
|
||||
if "upscale" in params and params["upscale"]:
|
||||
switches.append(f'-U {params["upscale"][0]} {params["upscale"][1]}')
|
||||
if "variation_amount" in params and params["variation_amount"] > 0:
|
||||
|
@ -349,7 +349,7 @@ def handle_run_gfpgan_event(original_image, gfpgan_parameters):
|
||||
eventlet.sleep(0)
|
||||
|
||||
image = gfpgan.process(
|
||||
image=image, strength=gfpgan_parameters["gfpgan_strength"], seed=seed
|
||||
image=image, strength=gfpgan_parameters["facetool_strength"], seed=seed
|
||||
)
|
||||
|
||||
progress["currentStatus"] = "Saving image"
|
||||
@ -464,7 +464,7 @@ def parameters_to_post_processed_image_metadata(parameters, original_image_path,
|
||||
image["strength"] = parameters["upscale"][1]
|
||||
elif type == "gfpgan":
|
||||
image["type"] = "gfpgan"
|
||||
image["strength"] = parameters["gfpgan_strength"]
|
||||
image["strength"] = parameters["facetool_strength"]
|
||||
else:
|
||||
raise TypeError(f"Invalid type: {type}")
|
||||
|
||||
@ -493,6 +493,7 @@ def parameters_to_generated_image_metadata(parameters):
|
||||
"height",
|
||||
"extra",
|
||||
"seamless",
|
||||
"hires_fix",
|
||||
]
|
||||
|
||||
rfc_dict = {}
|
||||
@ -505,10 +506,10 @@ def parameters_to_generated_image_metadata(parameters):
|
||||
postprocessing = []
|
||||
|
||||
# 'postprocessing' is either null or an
|
||||
if "gfpgan_strength" in parameters:
|
||||
if "facetool_strength" in parameters:
|
||||
|
||||
postprocessing.append(
|
||||
{"type": "gfpgan", "strength": float(parameters["gfpgan_strength"])}
|
||||
{"type": "gfpgan", "strength": float(parameters["facetool_strength"])}
|
||||
)
|
||||
|
||||
if "upscale" in parameters:
|
||||
@ -751,7 +752,7 @@ def generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters)
|
||||
image=image, strength=gfpgan_parameters["strength"], seed=seed
|
||||
)
|
||||
postprocessing = True
|
||||
all_parameters["gfpgan_strength"] = gfpgan_parameters["strength"]
|
||||
all_parameters["facetool_strength"] = gfpgan_parameters["strength"]
|
||||
|
||||
progress["currentStatus"] = "Saving image"
|
||||
socketio.emit("progressUpdate", progress)
|
||||
|
@ -9,10 +9,12 @@
|
||||
laion400m:
|
||||
config: configs/latent-diffusion/txt2img-1p4B-eval.yaml
|
||||
weights: models/ldm/text2img-large/model.ckpt
|
||||
description: Latent Diffusion LAION400M model
|
||||
width: 256
|
||||
height: 256
|
||||
stable-diffusion-1.4:
|
||||
config: configs/stable-diffusion/v1-inference.yaml
|
||||
weights: models/ldm/stable-diffusion-v1/model.ckpt
|
||||
description: Stable Diffusion inference model version 1.4
|
||||
width: 512
|
||||
height: 512
|
||||
|
@ -85,6 +85,7 @@ overridden on a per-prompt basis (see [List of prompt arguments](#list-of-prompt
|
||||
| `--from_file <path>` | | `None` | Read list of prompts from a file. Use `-` to read from standard input |
|
||||
| `--model <modelname>` | | `stable-diffusion-1.4` | Loads model specified in configs/models.yaml. Currently one of "stable-diffusion-1.4" or "laion400m" |
|
||||
| `--full_precision` | `-F` | `False` | Run in slower full-precision mode. Needed for Macintosh M1/M2 hardware and some older video cards. |
|
||||
| `--png_compression <0-9>` | `-z<0-9>` | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
|
||||
| `--web` | | `False` | Start in web server mode |
|
||||
| `--host <ip addr>` | | `localhost` | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
|
||||
| `--port <port>` | | `9090` | Which port web server should listen for requests on. |
|
||||
@ -142,46 +143,47 @@ Here are the invoke> command that apply to txt2img:
|
||||
|
||||
| Argument <img width="680" align="right"/> | Shortcut <img width="420" align="right"/> | Default <img width="480" align="right"/> | Description |
|
||||
|--------------------|------------|---------------------|--------------|
|
||||
| `"my prompt"` | | | Text prompt to use. The quotation marks are optional. |
|
||||
| `--width <int>` | `-W<int>` | `512` | Width of generated image |
|
||||
| `--height <int>` | `-H<int>` | `512` | Height of generated image |
|
||||
| `--iterations <int>` | `-n<int>` | `1` | How many images to generate from this prompt |
|
||||
| `--steps <int>` | `-s<int>` | `50` | How many steps of refinement to apply |
|
||||
| `--cfg_scale <float>`| `-C<float>` | `7.5` | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
|
||||
| `--seed <int>` | `-S<int>` | `None` | Set the random seed for the next series of images. This can be used to recreate an image generated previously.|
|
||||
| `--sampler <sampler>`| `-A<sampler>`| `k_lms` | Sampler to use. Use -h to get list of available samplers. |
|
||||
| `--hires_fix` | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
|
||||
| `--grid` | `-g` | `False` | Turn on grid mode to return a single image combining all the images generated by this prompt |
|
||||
| `--individual` | `-i` | `True` | Turn off grid mode (deprecated; leave off `--grid` instead) |
|
||||
| `--outdir <path>` | `-o<path>` | `outputs/img_samples` | Temporarily change the location of these images |
|
||||
| `--seamless` | | `False` | Activate seamless tiling for interesting effects |
|
||||
| `--log_tokenization` | `-t` | `False` | Display a color-coded list of the parsed tokens derived from the prompt |
|
||||
| `--skip_normalization`| `-x` | `False` | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
|
||||
| `--upscale <int> <float>` | `-U <int> <float>` | `-U 1 0.75`| Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
|
||||
| `--gfpgan_strength <float>` | `-G <float>` | `-G0` | Fix faces using the GFPGAN algorithm; argument indicates how hard the algorithm should try (0.0-1.0) |
|
||||
| `--save_original` | `-save_orig`| `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
|
||||
| `--variation <float>` |`-v<float>`| `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
|
||||
| `--with_variations <pattern>` | `-V<pattern>`| `None` | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
|
||||
| "my prompt" | | | Text prompt to use. The quotation marks are optional. |
|
||||
| --width <int> | -W<int> | 512 | Width of generated image |
|
||||
| --height <int> | -H<int> | 512 | Height of generated image |
|
||||
| --iterations <int> | -n<int> | 1 | How many images to generate from this prompt |
|
||||
| --steps <int> | -s<int> | 50 | How many steps of refinement to apply |
|
||||
| --cfg_scale <float>| -C<float> | 7.5 | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
|
||||
| --seed <int> | -S<int> | None | Set the random seed for the next series of images. This can be used to recreate an image generated previously.|
|
||||
| --sampler <sampler>| -A<sampler>| k_lms | Sampler to use. Use -h to get list of available samplers. |
|
||||
| --hires_fix | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
|
||||
| `--png_compression <0-9>` | `-z<0-9>` | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
|
||||
| --grid | -g | False | Turn on grid mode to return a single image combining all the images generated by this prompt |
|
||||
| --individual | -i | True | Turn off grid mode (deprecated; leave off --grid instead) |
|
||||
| --outdir <path> | -o<path> | outputs/img_samples | Temporarily change the location of these images |
|
||||
| --seamless | | False | Activate seamless tiling for interesting effects |
|
||||
| --log_tokenization | -t | False | Display a color-coded list of the parsed tokens derived from the prompt |
|
||||
| --skip_normalization| -x | False | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
|
||||
| --upscale <int> <float> | -U <int> <float> | -U 1 0.75| Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
|
||||
| --facetool_strength <float> | -G <float> | -G0 | Fix faces (defaults to using the GFPGAN algorithm); argument indicates how hard the algorithm should try (0.0-1.0) |
|
||||
| --facetool <name> | -ft <name> | -ft gfpgan | Select face restoration algorithm to use: gfpgan, codeformer |
|
||||
| --codeformer_fidelity | -cf <float> | 0.75 | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
|
||||
| --save_original | -save_orig| False | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
|
||||
| --variation <float> |-v<float>| 0.0 | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with -S<seed> and -n<int> to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
|
||||
| --with_variations <pattern> | | None | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
|
||||
| --save_intermediates <n> | | None | Save the image from every nth step into an "intermediates" folder inside the output directory |
|
||||
|
||||
!!! note
|
||||
Note that the width and height of the image must be multiples of
|
||||
64. You can provide different values, but they will be rounded down to
|
||||
the nearest multiple of 64.
|
||||
|
||||
The width and height of the image must be multiples of
|
||||
64. You can provide different values, but they will be rounded down to
|
||||
the nearest multiple of 64.
|
||||
|
||||
### img2img
|
||||
### This is an example of img2img:
|
||||
|
||||
!!! example ""
|
||||
~~~~
|
||||
invoke> waterfall and rainbow -I./vacation-photo.png -W640 -H480 --fit
|
||||
~~~~
|
||||
|
||||
```bash
|
||||
invoke> waterfall and rainbow -I./vacation-photo.png -W640 -H480 --fit
|
||||
```
|
||||
|
||||
This will modify the indicated vacation photograph by making it more
|
||||
like the prompt. Results will vary greatly depending on what is in the
|
||||
image. We also ask to `--fit` the image into a box no bigger than
|
||||
640x480. Otherwise the image size will be identical to the provided
|
||||
photo and you may run out of memory if it is large.
|
||||
This will modify the indicated vacation photograph by making it more
|
||||
like the prompt. Results will vary greatly depending on what is in the
|
||||
image. We also ask to --fit the image into a box no bigger than
|
||||
640x480. Otherwise the image size will be identical to the provided
|
||||
photo and you may run out of memory if it is large.
|
||||
|
||||
In addition to the command-line options recognized by txt2img, img2img
|
||||
accepts additional options:
|
||||
@ -214,10 +216,14 @@ well as the --mask (-M) argument:
|
||||
|--------------------|------------|---------------------|--------------|
|
||||
| `--init_mask <path>` | `-M<path>` | `None` |Path to an image the same size as the initial_image, with areas for inpainting made transparent.|
|
||||
|
||||
## Convenience commands
|
||||
# Other Commands
|
||||
|
||||
In addition to the standard image generation arguments, there are a
|
||||
series of convenience commands that begin with !:
|
||||
The CLI offers a number of commands that begin with "!".
|
||||
|
||||
## Postprocessing images
|
||||
|
||||
To postprocess a file using face restoration or upscaling, use the
|
||||
`!fix` command.
|
||||
|
||||
### `!fix`
|
||||
|
||||
@ -250,19 +256,161 @@ Some examples:
|
||||
Outputs:
|
||||
[1] outputs/img-samples/000017.4829112.gfpgan-00.png: !fix "outputs/img-samples/0000045.4829112.png" -s 50 -S -W 512 -H 512 -C 7.5 -A k_lms -G 0.8
|
||||
|
||||
# Model selection and importation
|
||||
|
||||
The CLI allows you to add new models on the fly, as well as to switch
|
||||
among them rapidly without leaving the script.
|
||||
|
||||
## !models
|
||||
|
||||
This prints out a list of the models defined in `config/models.yaml'.
|
||||
The active model is bold-faced
|
||||
|
||||
Example:
|
||||
<pre>
|
||||
laion400m not loaded <no description>
|
||||
<b>stable-diffusion-1.4 active Stable Diffusion v1.4</b>
|
||||
waifu-diffusion not loaded Waifu Diffusion v1.3
|
||||
</pre>
|
||||
|
||||
## !switch <model>
|
||||
|
||||
This quickly switches from one model to another without leaving the
|
||||
CLI script. `invoke.py` uses a memory caching system; once a model
|
||||
has been loaded, switching back and forth is quick. The following
|
||||
example shows this in action. Note how the second column of the
|
||||
`!models` table changes to `cached` after a model is first loaded,
|
||||
and that the long initialization step is not needed when loading
|
||||
a cached model.
|
||||
|
||||
<pre>
|
||||
invoke> !models
|
||||
laion400m not loaded <no description>
|
||||
<b>stable-diffusion-1.4 cached Stable Diffusion v1.4</b>
|
||||
waifu-diffusion active Waifu Diffusion v1.3
|
||||
|
||||
invoke> !switch waifu-diffusion
|
||||
>> Caching model stable-diffusion-1.4 in system RAM
|
||||
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
|
||||
| LatentDiffusion: Running in eps-prediction mode
|
||||
| DiffusionWrapper has 859.52 M params.
|
||||
| Making attention of type 'vanilla' with 512 in_channels
|
||||
| Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
|
||||
| Making attention of type 'vanilla' with 512 in_channels
|
||||
| Using faster float16 precision
|
||||
>> Model loaded in 18.24s
|
||||
>> Max VRAM used to load the model: 2.17G
|
||||
>> Current VRAM usage:2.17G
|
||||
>> Setting Sampler to k_lms
|
||||
|
||||
invoke> !models
|
||||
laion400m not loaded <no description>
|
||||
stable-diffusion-1.4 cached Stable Diffusion v1.4
|
||||
<b>waifu-diffusion active Waifu Diffusion v1.3</b>
|
||||
|
||||
invoke> !switch stable-diffusion-1.4
|
||||
>> Caching model waifu-diffusion in system RAM
|
||||
>> Retrieving model stable-diffusion-1.4 from system RAM cache
|
||||
>> Setting Sampler to k_lms
|
||||
|
||||
invoke> !models
|
||||
laion400m not loaded <no description>
|
||||
<b>stable-diffusion-1.4 active Stable Diffusion v1.4</b>
|
||||
waifu-diffusion cached Waifu Diffusion v1.3
|
||||
</pre>
|
||||
|
||||
## !import_model <path/to/model/weights>
|
||||
|
||||
This command imports a new model weights file into InvokeAI, makes it
|
||||
available for image generation within the script, and writes out the
|
||||
configuration for the model into `config/models.yaml` for use in
|
||||
subsequent sessions.
|
||||
|
||||
Provide `!import_model` with the path to a weights file ending in
|
||||
`.ckpt`. If you type a partial path and press tab, the CLI will
|
||||
autocomplete. Although it will also autocomplete to `.vae` files,
|
||||
these are not currenty supported (but will be soon).
|
||||
|
||||
When you hit return, the CLI will prompt you to fill in additional
|
||||
information about the model, including the short name you wish to use
|
||||
for it with the `!switch` command, a brief description of the model,
|
||||
the default image width and height to use with this model, and the
|
||||
model's configuration file. The latter three fields are automatically
|
||||
filled with reasonable defaults. In the example below, the bold-faced
|
||||
text shows what the user typed in with the exception of the width,
|
||||
height and configuration file paths, which were filled in
|
||||
automatically.
|
||||
|
||||
Example:
|
||||
|
||||
<pre>
|
||||
invoke> <b>!import_model models/ldm/stable-diffusion-v1/ model-epoch08-float16.ckpt</b>
|
||||
>> Model import in process. Please enter the values needed to configure this model:
|
||||
|
||||
Name for this model: <b>waifu-diffusion</b>
|
||||
Description of this model: <b>Waifu Diffusion v1.3</b>
|
||||
Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b>
|
||||
Default image width: <b>512</b>
|
||||
Default image height: <b>512</b>
|
||||
>> New configuration:
|
||||
waifu-diffusion:
|
||||
config: configs/stable-diffusion/v1-inference.yaml
|
||||
description: Waifu Diffusion v1.3
|
||||
height: 512
|
||||
weights: models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
|
||||
width: 512
|
||||
OK to import [n]? <b>y</b>
|
||||
>> Caching model stable-diffusion-1.4 in system RAM
|
||||
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
|
||||
| LatentDiffusion: Running in eps-prediction mode
|
||||
| DiffusionWrapper has 859.52 M params.
|
||||
| Making attention of type 'vanilla' with 512 in_channels
|
||||
| Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
|
||||
| Making attention of type 'vanilla' with 512 in_channels
|
||||
| Using faster float16 precision
|
||||
invoke>
|
||||
</pre>
|
||||
|
||||
##!edit_model <name_of_model>
|
||||
|
||||
The `!edit_model` command can be used to modify a model that is
|
||||
already defined in `config/models.yaml`. Call it with the short
|
||||
name of the model you wish to modify, and it will allow you to
|
||||
modify the model's `description`, `weights` and other fields.
|
||||
|
||||
Example:
|
||||
<pre>
|
||||
invoke> <b>!edit_model waifu-diffusion</b>
|
||||
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
|
||||
description: <b>Waifu diffusion v1.4beta</b>
|
||||
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
|
||||
config: configs/stable-diffusion/v1-inference.yaml
|
||||
width: 512
|
||||
height: 512
|
||||
|
||||
>> New configuration:
|
||||
waifu-diffusion:
|
||||
config: configs/stable-diffusion/v1-inference.yaml
|
||||
description: Waifu diffusion v1.4beta
|
||||
weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
|
||||
height: 512
|
||||
width: 512
|
||||
|
||||
OK to import [n]? y
|
||||
>> Caching model stable-diffusion-1.4 in system RAM
|
||||
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
|
||||
...
|
||||
</pre>
|
||||
=======
|
||||
invoke> !fix 000017.4829112.gfpgan-00.png --embiggen 3
|
||||
...lots of text...
|
||||
Outputs:
|
||||
[2] outputs/img-samples/000018.2273800735.embiggen-00.png: !fix "outputs/img-samples/000017.243781548.gfpgan-00.png" -s 50 -S 2273800735 -W 512 -H 512 -C 7.5 -A k_lms --embiggen 3.0 0.75 0.25
|
||||
```
|
||||
# History processing
|
||||
|
||||
### `!fetch`
|
||||
|
||||
This command retrieves the generation parameters from a previously
|
||||
generated image and either loads them into the command line. You may
|
||||
provide either the name of a file in the current output directory, or
|
||||
a full file path.
|
||||
|
||||
The CLI provides a series of convenient commands for reviewing previous
|
||||
actions, retrieving them, modifying them, and re-running them.
|
||||
```bash
|
||||
invoke> !fetch 0000015.8929913.png
|
||||
# the script returns the next line, ready for editing and running:
|
||||
@ -297,7 +445,23 @@ invoke> !20
|
||||
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
|
||||
```
|
||||
|
||||
### `!search <search string>`
|
||||
## !fetch
|
||||
|
||||
This command retrieves the generation parameters from a previously
|
||||
generated image and either loads them into the command line. You may
|
||||
provide either the name of a file in the current output directory, or
|
||||
a full file path.
|
||||
|
||||
~~~
|
||||
invoke> !fetch 0000015.8929913.png
|
||||
# the script returns the next line, ready for editing and running:
|
||||
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
|
||||
~~~
|
||||
|
||||
Note that this command may behave unexpectedly if given a PNG file that
|
||||
was not generated by InvokeAI.
|
||||
|
||||
### !search <search string>
|
||||
|
||||
This is similar to !history but it only returns lines that contain
|
||||
`search string`. For example:
|
||||
|
@ -58,16 +58,13 @@ information underneath the transparent needs to be preserved, not erased.
|
||||
|
||||
!!! warning
|
||||
|
||||
`img2img` does not work properly on initial images smaller than 512x512. Please scale your
|
||||
image to at least 512x512 before using it. Larger images are not a problem, but may run out of VRAM on your
|
||||
GPU card.
|
||||
|
||||
To fix this, use the `--fit` option, which downscales the initial image to fit within the box specified
|
||||
by width x height:
|
||||
|
||||
```bash
|
||||
invoke> "tree on a hill with a river, national geographic" -I./test-pictures/big-sketch.png -H512 -W512 --fit
|
||||
```
|
||||
**IMPORTANT ISSUE** `img2img` does not work properly on initial images smaller than 512x512. Please scale your
|
||||
image to at least 512x512 before using it. Larger images are not a problem, but may run out of VRAM on your
|
||||
GPU card. To fix this, use the --fit option, which downscales the initial image to fit within the box specified
|
||||
by width x height:
|
||||
~~~
|
||||
tree on a hill with a river, national geographic -I./test-pictures/big-sketch.png -H512 -W512 --fit
|
||||
~~~
|
||||
|
||||
## How does it actually work, though?
|
||||
|
||||
@ -77,7 +74,7 @@ gaussian noise and progressively refines it over the requested number of steps,
|
||||
|
||||
**Let's start** by thinking about vanilla `prompt2img`, just generating an image from a prompt. If the step count is 10, then the "latent space" (Stable Diffusion's internal representation of the image) for the prompt "fire" with seed `1592514025` develops something like this:
|
||||
|
||||
```bash
|
||||
```commandline
|
||||
invoke> "fire" -s10 -W384 -H384 -S1592514025
|
||||
```
|
||||
|
||||
@ -112,9 +109,9 @@ With strength `0.4`, the steps look more like this:
|
||||
Notice how much more fuzzy the starting image is for strength `0.7` compared to `0.4`, and notice also how much longer the sequence is with `0.7`:
|
||||
|
||||
| | strength = 0.7 | strength = 0.4 |
|
||||
| -- | :--: | :--: |
|
||||
| initial image that SD sees | ![step-0-32](../assets/img2img/000032.step-0.png) | ![step-0-30](../assets/img2img/000030.step-0.png) |
|
||||
| steps argument to `dream>` | `-S10` | `-S10` |
|
||||
| -- | -- | -- |
|
||||
| initial image that SD sees | ![](../assets/img2img/000032.step-0.png) | ![](../assets/img2img/000030.step-0.png) |
|
||||
| steps argument to `invoke>` | `-S10` | `-S10` |
|
||||
| steps actually taken | 7 | 4 |
|
||||
| latent space at each step | ![gravity32](../assets/img2img/000032.steps.gravity.png) | ![gravity30](../assets/img2img/000030.steps.gravity.png) |
|
||||
| output | ![000032.1592514025](../assets/img2img/000032.1592514025.png) | ![000030.1592514025](../assets/img2img/000030.1592514025.png) |
|
||||
@ -123,11 +120,13 @@ Both of the outputs look kind of like what I was thinking of. With the strength
|
||||
|
||||
If you want to try this out yourself, all of these are using a seed of `1592514025` with a width/height of `384`, step count `10`, the default sampler (`k_lms`), and the single-word prompt `"fire"`:
|
||||
|
||||
```bash
|
||||
If you want to try this out yourself, all of these are using a seed of `1592514025` with a width/height of `384`, step count `10`, the default sampler (`k_lms`), and the single-word prompt `fire`:
|
||||
|
||||
```commandline
|
||||
invoke> "fire" -s10 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png --strength 0.7
|
||||
```
|
||||
|
||||
The code for rendering intermediates is on my (damian0815's) branch [document-img2img](https://github.com/damian0815/InvokeAI/tree/document-img2img) - run `invoke.py` and check your `outputs/img-samples/intermediates` folder while generating an image.
|
||||
The code for rendering intermediates is on my (damian0815's) branch [document-img2img](https://github.com/damian0815/InvokeAI/tree/document-img2img) - run `invoke.py` and check your `outputs/img-samples/intermediates` folder while generating an image.
|
||||
|
||||
### Compensating for the reduced step count
|
||||
|
||||
@ -135,7 +134,7 @@ After putting this guide together I was curious to see how the difference would
|
||||
|
||||
Here's strength `0.4` (note step count `50`, which is `20 ÷ 0.4` to make sure SD does `20` steps from my image):
|
||||
|
||||
```bash
|
||||
```commandline
|
||||
invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
|
||||
```
|
||||
|
||||
@ -145,7 +144,7 @@ invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
|
||||
|
||||
and here is strength `0.7` (note step count `30`, which is roughly `20 ÷ 0.7` to make sure SD does `20` steps from my image):
|
||||
|
||||
```bash
|
||||
```commandline
|
||||
invoke> "fire" -s30 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.7
|
||||
```
|
||||
|
||||
|
@ -6,21 +6,29 @@ title: Inpainting
|
||||
|
||||
## **Creating Transparent Regions for Inpainting**
|
||||
|
||||
Inpainting is really cool. To do it, you start with an initial image and use a photoeditor to make
|
||||
one or more regions transparent (i.e. they have a "hole" in them). You then provide the path to this
|
||||
image at the invoke> command line using the `-I` switch. Stable Diffusion will only paint within the
|
||||
transparent region.
|
||||
Inpainting is really cool. To do it, you start with an initial image
|
||||
and use a photoeditor to make one or more regions transparent
|
||||
(i.e. they have a "hole" in them). You then provide the path to this
|
||||
image at the dream> command line using the `-I` switch. Stable
|
||||
Diffusion will only paint within the transparent region.
|
||||
|
||||
There's a catch. In the current implementation, you have to prepare the initial image correctly so
|
||||
that the underlying colors are preserved under the transparent area. Many imaging editing
|
||||
applications will by default erase the color information under the transparent pixels and replace
|
||||
them with white or black, which will lead to suboptimal inpainting. You also must take care to
|
||||
export the PNG file in such a way that the color information is preserved.
|
||||
There's a catch. In the current implementation, you have to prepare
|
||||
the initial image correctly so that the underlying colors are
|
||||
preserved under the transparent area. Many imaging editing
|
||||
applications will by default erase the color information under the
|
||||
transparent pixels and replace them with white or black, which will
|
||||
lead to suboptimal inpainting. It often helps to apply incomplete
|
||||
transparency, such as any value between 1 and 99%
|
||||
|
||||
If your photoeditor is erasing the underlying color information, `invoke.py` will give you a big fat
|
||||
warning. If you can't find a way to coax your photoeditor to retain color values under transparent
|
||||
areas, then you can combine the `-I` and `-M` switches to provide both the original unedited image
|
||||
and the masked (partially transparent) image:
|
||||
You also must take care to export the PNG file in such a way that the
|
||||
color information is preserved. There is often an option in the export
|
||||
dialog that lets you specify this.
|
||||
|
||||
If your photoeditor is erasing the underlying color information,
|
||||
`dream.py` will give you a big fat warning. If you can't find a way to
|
||||
coax your photoeditor to retain color values under transparent areas,
|
||||
then you can combine the `-I` and `-M` switches to provide both the
|
||||
original unedited image and the masked (partially transparent) image:
|
||||
|
||||
```bash
|
||||
invoke> "man with cat on shoulder" -I./images/man.png -M./images/man-transparent.png
|
||||
@ -28,6 +36,26 @@ invoke> "man with cat on shoulder" -I./images/man.png -M./images/man-transparent
|
||||
|
||||
We are hoping to get rid of the need for this workaround in an upcoming release.
|
||||
|
||||
### Inpainting is not changing the masked region enough!
|
||||
|
||||
One of the things to understand about how inpainting works is that it
|
||||
is equivalent to running img2img on just the masked (transparent)
|
||||
area. img2img builds on top of the existing image data, and therefore
|
||||
will attempt to preserve colors, shapes and textures to the best of
|
||||
its ability. Unfortunately this means that if you want to make a
|
||||
dramatic change in the inpainted region, for example replacing a red
|
||||
wall with a blue one, the algorithm will fight you.
|
||||
|
||||
You have a couple of options. The first is to increase the values of
|
||||
the requested steps (`-sXXX`), strength (`-f0.XX`), and/or
|
||||
condition-free guidance (`-CXX.X`). If this is not working for you, a
|
||||
more extreme step is to provide the `--inpaint_replace 0.X` (`-r0.X`)
|
||||
option. This value ranges from 0.0 to 1.0. The higher it is the less
|
||||
attention the algorithm will pay to the data underneath the masked
|
||||
region. At high values this will enable you to replace colored regions
|
||||
entirely, but beware that the masked region mayl not blend in with the
|
||||
surrounding unmasked regions as well.
|
||||
|
||||
---
|
||||
|
||||
## Recipe for GIMP
|
||||
@ -35,10 +63,10 @@ We are hoping to get rid of the need for this workaround in an upcoming release.
|
||||
[GIMP](https://www.gimp.org/) is a popular Linux photoediting tool.
|
||||
|
||||
1. Open image in GIMP.
|
||||
2. Layer --> Transparency --> Add Alpha Channel
|
||||
3. Use lasoo tool to select region to mask
|
||||
4. Choose Select --> Float to create a floating selection
|
||||
5. Open the Layers toolbar (++ctrl+l++) and select "Floating Selection"
|
||||
2. Layer->Transparency->Add Alpha Channel
|
||||
3. Use lasso tool to select region to mask
|
||||
4. Choose Select -> Float to create a floating selection
|
||||
5. Open the Layers toolbar (^L) and select "Floating Selection"
|
||||
6. Set opacity to a value between 0% and 99%
|
||||
7. Export as PNG
|
||||
8. In the export dialogue, Make sure the "Save colour values from
|
||||
@ -62,7 +90,7 @@ We are hoping to get rid of the need for this workaround in an upcoming release.
|
||||
|
||||
3. Because we'll be applying a mask over the area we want to preserve, you should now select the inverse by using the ++shift+ctrl+i++ shortcut, or right clicking and using the "Select Inverse" option.
|
||||
|
||||
4. You'll now create a mask by selecting the image layer, and Masking the selection. Make sure that you don't delete any of the undrlying image, or your inpainting results will be dramatically impacted.
|
||||
4. You'll now create a mask by selecting the image layer, and Masking the selection. Make sure that you don't delete any of the underlying image, or your inpainting results will be dramatically impacted.
|
||||
|
||||
<figure markdown>
|
||||
![step4](../assets/step4.png)
|
||||
|
@ -70,7 +70,7 @@ If you do not explicitly specify an upscaling_strength, it will default to 0.75.
|
||||
|
||||
### Face Restoration
|
||||
|
||||
`-G : <gfpgan_strength>`
|
||||
`-G : <facetool_strength>`
|
||||
|
||||
This prompt argument controls the strength of the face restoration that is being
|
||||
applied. Similar to upscaling, values between `0.5 to 0.8` are recommended.
|
||||
|
@ -51,7 +51,15 @@ While that is downloading, open Terminal and run the following commands one at a
|
||||
brew install cmake protobuf rust
|
||||
```
|
||||
|
||||
Then choose the kind of your Mac and install miniconda:
|
||||
Then clone the InvokeAI repository:
|
||||
|
||||
```bash title="Clone the InvokeAI repository:
|
||||
# Clone the Invoke AI repo
|
||||
git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
cd InvokeAI
|
||||
```
|
||||
|
||||
Choose the appropriate architecture for your system and install miniconda:
|
||||
|
||||
=== "M1 arm64"
|
||||
|
||||
@ -81,7 +89,7 @@ While that is downloading, open Terminal and run the following commands one at a
|
||||
|
||||
!!! todo "Clone the Invoke AI repo"
|
||||
|
||||
```bash
|
||||
```bash
|
||||
git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
cd InvokeAI
|
||||
```
|
||||
@ -202,7 +210,7 @@ conda update \
|
||||
|
||||
---
|
||||
|
||||
### "No module named cv2", torch, 'ldm', 'transformers', 'taming', etc
|
||||
### "No module named cv2", torch, 'invokeai', 'transformers', 'taming', etc
|
||||
|
||||
There are several causes of these errors:
|
||||
|
||||
|
483
frontend/dist/assets/index.989a0ca2.js
vendored
483
frontend/dist/assets/index.989a0ca2.js
vendored
File diff suppressed because one or more lines are too long
483
frontend/dist/assets/index.ea68b5f5.js
vendored
Normal file
483
frontend/dist/assets/index.ea68b5f5.js
vendored
Normal file
File diff suppressed because one or more lines are too long
2
frontend/dist/index.html
vendored
2
frontend/dist/index.html
vendored
@ -6,7 +6,7 @@
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||
<title>InvokeAI - A Stable Diffusion Toolkit</title>
|
||||
<link rel="shortcut icon" type="icon" href="/assets/favicon.0d253ced.ico" />
|
||||
<script type="module" crossorigin src="/assets/index.989a0ca2.js"></script>
|
||||
<script type="module" crossorigin src="/assets/index.ea68b5f5.js"></script>
|
||||
<link rel="stylesheet" href="/assets/index.58175ea1.css">
|
||||
</head>
|
||||
|
||||
|
@ -50,6 +50,7 @@ export const PARAMETERS: { [key: string]: string } = {
|
||||
maskPath: 'Initial Image Mask',
|
||||
shouldFitToWidthHeight: 'Fit Initial Image',
|
||||
seamless: 'Seamless Tiling',
|
||||
hiresFix: 'High Resolution Optimizations',
|
||||
};
|
||||
|
||||
export const NUMPY_RAND_MIN = 0;
|
||||
|
@ -14,10 +14,13 @@ export enum Feature {
|
||||
FACE_CORRECTION,
|
||||
IMAGE_TO_IMAGE,
|
||||
}
|
||||
|
||||
/** For each tooltip in the UI, the below feature definitions & props will pull relevant information into the tooltip.
|
||||
*
|
||||
* To-do: href & GuideImages are placeholders, and are not currently utilized, but will be updated (along with the tooltip UI) as feature and UI development and we get a better idea on where things "forever homes" will be .
|
||||
*/
|
||||
export const FEATURES: Record<Feature, FeatureHelpInfo> = {
|
||||
[Feature.PROMPT]: {
|
||||
text: 'This field will take all prompt text, including both content and stylistic terms. CLI Commands will not work in the prompt.',
|
||||
text: 'This field will take all prompt text, including both content and stylistic terms. While weights can be included in the prompt, standard CLI Commands/parameters will not work.',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
@ -27,17 +30,16 @@ export const FEATURES: Record<Feature, FeatureHelpInfo> = {
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.OTHER]: {
|
||||
text: 'Additional Options',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
text: 'These options will enable alternative processing modes for Invoke. Seamless tiling will work to generate repeating patterns in the output. High Resolution Optimization performs a two-step generation cycle, and should be used at higher resolutions when you desire a more coherent image/composition. ', href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.SEED]: {
|
||||
text: 'Seed values provide an initial set of noise which guide the denoising process.',
|
||||
text: 'Seed values provide an initial set of noise which guide the denoising process, and can be randomized or populated with a seed from a previous invocation. The Threshold feature can be used to mitigate undesirable outcomes at higher CFG values (try between 0-10), and Perlin can be used to add Perlin noise into the denoising process - Both serve to add variation to your outputs. ',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.VARIATIONS]: {
|
||||
text: 'Try a variation with an amount of between 0 and 1 to change the output image for the set seed.',
|
||||
text: 'Try a variation with an amount of between 0 and 1 to change the output image for the set seed - Interesting variations on the seed are found between 0.1 and 0.3.',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
@ -47,8 +49,8 @@ export const FEATURES: Record<Feature, FeatureHelpInfo> = {
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.FACE_CORRECTION]: {
|
||||
text: 'Using GFPGAN or CodeFormer, Face Correction will attempt to identify faces in outputs, and correct any defects/abnormalities. Higher values will apply a stronger corrective pressure on outputs.',
|
||||
href: 'link/to/docs/feature2.html',
|
||||
text: 'Using GFPGAN, Face Correction will attempt to identify faces in outputs, and correct any defects/abnormalities. Higher values will apply a stronger corrective pressure on outputs, resulting in more appealing faces (with less respect for accuracy of the original subject).',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.IMAGE_TO_IMAGE]: {
|
||||
|
1
frontend/src/app/invokeai.d.ts
vendored
1
frontend/src/app/invokeai.d.ts
vendored
@ -55,6 +55,7 @@ export declare type CommonGeneratedImageMetadata = {
|
||||
width: number;
|
||||
height: number;
|
||||
seamless: boolean;
|
||||
hires_fix: boolean;
|
||||
extra: null | Record<string, never>; // Pending development of RFC #266
|
||||
};
|
||||
|
||||
|
@ -76,7 +76,7 @@ const makeSocketIOEmitters = (
|
||||
const { gfpganStrength } = getState().options;
|
||||
|
||||
const gfpganParameters = {
|
||||
gfpgan_strength: gfpganStrength,
|
||||
facetool_strength: gfpganStrength,
|
||||
};
|
||||
socketio.emit('runPostprocessing', imageToProcess, {
|
||||
type: 'gfpgan',
|
||||
|
@ -29,6 +29,7 @@ export const frontendToBackendParameters = (
|
||||
sampler,
|
||||
seed,
|
||||
seamless,
|
||||
hiresFix,
|
||||
shouldUseInitImage,
|
||||
img2imgStrength,
|
||||
initialImagePath,
|
||||
@ -59,6 +60,7 @@ export const frontendToBackendParameters = (
|
||||
sampler_name: sampler,
|
||||
seed,
|
||||
seamless,
|
||||
hires_fix: hiresFix,
|
||||
progress_images: shouldDisplayInProgress,
|
||||
};
|
||||
|
||||
@ -123,10 +125,11 @@ export const backendToFrontendParameters = (parameters: {
|
||||
sampler_name,
|
||||
seed,
|
||||
seamless,
|
||||
hires_fix,
|
||||
progress_images,
|
||||
variation_amount,
|
||||
with_variations,
|
||||
gfpgan_strength,
|
||||
facetool_strength,
|
||||
upscale,
|
||||
init_img,
|
||||
init_mask,
|
||||
@ -151,9 +154,9 @@ export const backendToFrontendParameters = (parameters: {
|
||||
}
|
||||
}
|
||||
|
||||
if (gfpgan_strength > 0) {
|
||||
if (facetool_strength > 0) {
|
||||
options.shouldRunGFPGAN = true;
|
||||
options.gfpganStrength = gfpgan_strength;
|
||||
options.gfpganStrength = facetool_strength;
|
||||
}
|
||||
|
||||
if (upscale) {
|
||||
@ -185,6 +188,7 @@ export const backendToFrontendParameters = (parameters: {
|
||||
options.sampler = sampler_name;
|
||||
options.seed = seed;
|
||||
options.seamless = seamless;
|
||||
options.hiresFix = hires_fix;
|
||||
}
|
||||
|
||||
return options;
|
||||
|
@ -16,11 +16,13 @@ import {
|
||||
setCfgScale,
|
||||
setGfpganStrength,
|
||||
setHeight,
|
||||
setHiresFix,
|
||||
setImg2imgStrength,
|
||||
setInitialImagePath,
|
||||
setMaskPath,
|
||||
setPrompt,
|
||||
setSampler,
|
||||
setSeamless,
|
||||
setSeed,
|
||||
setSeedWeights,
|
||||
setShouldFitToWidthHeight,
|
||||
@ -116,6 +118,7 @@ const ImageMetadataViewer = memo(
|
||||
steps,
|
||||
cfg_scale,
|
||||
seamless,
|
||||
hires_fix,
|
||||
width,
|
||||
height,
|
||||
strength,
|
||||
@ -214,7 +217,14 @@ const ImageMetadataViewer = memo(
|
||||
<MetadataItem
|
||||
label="Seamless"
|
||||
value={seamless}
|
||||
onClick={() => dispatch(setWidth(seamless))}
|
||||
onClick={() => dispatch(setSeamless(seamless))}
|
||||
/>
|
||||
)}
|
||||
{hires_fix && (
|
||||
<MetadataItem
|
||||
label="High Resolution Optimization"
|
||||
value={hires_fix}
|
||||
onClick={() => dispatch(setHiresFix(hires_fix))}
|
||||
/>
|
||||
)}
|
||||
{width && (
|
||||
|
32
frontend/src/features/options/HiresOptions.tsx
Normal file
32
frontend/src/features/options/HiresOptions.tsx
Normal file
@ -0,0 +1,32 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { RootState } from '../../app/store';
|
||||
import { useAppDispatch, useAppSelector } from '../../app/store';
|
||||
import { setHiresFix } from './optionsSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
import IAISwitch from '../../common/components/IAISwitch';
|
||||
|
||||
/**
|
||||
* Image output options. Includes width, height, seamless tiling.
|
||||
*/
|
||||
const HiresOptions = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const hiresFix = useAppSelector((state: RootState) => state.options.hiresFix);
|
||||
|
||||
const handleChangeHiresFix = (e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setHiresFix(e.target.checked));
|
||||
|
||||
|
||||
return (
|
||||
<Flex gap={2} direction={'column'}>
|
||||
<IAISwitch
|
||||
label="High Res Optimization"
|
||||
fontSize={'md'}
|
||||
isChecked={hiresFix}
|
||||
onChange={handleChangeHiresFix}
|
||||
/>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default HiresOptions;
|
@ -1,29 +1,14 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { RootState } from '../../app/store';
|
||||
import { useAppDispatch, useAppSelector } from '../../app/store';
|
||||
import { setSeamless } from './optionsSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
import IAISwitch from '../../common/components/IAISwitch';
|
||||
|
||||
/**
|
||||
* Image output options. Includes width, height, seamless tiling.
|
||||
*/
|
||||
import HiresOptions from './HiresOptions';
|
||||
import SeamlessOptions from './SeamlessOptions';
|
||||
|
||||
const OutputOptions = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const seamless = useAppSelector((state: RootState) => state.options.seamless);
|
||||
|
||||
const handleChangeSeamless = (e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setSeamless(e.target.checked));
|
||||
|
||||
return (
|
||||
<Flex gap={2} direction={'column'}>
|
||||
<IAISwitch
|
||||
label="Seamless tiling"
|
||||
fontSize={'md'}
|
||||
isChecked={seamless}
|
||||
onChange={handleChangeSeamless}
|
||||
/>
|
||||
<SeamlessOptions />
|
||||
<HiresOptions />
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
28
frontend/src/features/options/SeamlessOptions.tsx
Normal file
28
frontend/src/features/options/SeamlessOptions.tsx
Normal file
@ -0,0 +1,28 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { RootState } from '../../app/store';
|
||||
import { useAppDispatch, useAppSelector } from '../../app/store';
|
||||
import { setSeamless } from './optionsSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
import IAISwitch from '../../common/components/IAISwitch';
|
||||
|
||||
const SeamlessOptions = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const seamless = useAppSelector((state: RootState) => state.options.seamless);
|
||||
|
||||
const handleChangeSeamless = (e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setSeamless(e.target.checked));
|
||||
|
||||
return (
|
||||
<Flex gap={2} direction={'column'}>
|
||||
<IAISwitch
|
||||
label="Seamless tiling"
|
||||
fontSize={'md'}
|
||||
isChecked={seamless}
|
||||
onChange={handleChangeSeamless}
|
||||
/>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default SeamlessOptions;
|
@ -25,6 +25,7 @@ export interface OptionsState {
|
||||
initialImagePath: string | null;
|
||||
maskPath: string;
|
||||
seamless: boolean;
|
||||
hiresFix: boolean;
|
||||
shouldFitToWidthHeight: boolean;
|
||||
shouldGenerateVariations: boolean;
|
||||
variationAmount: number;
|
||||
@ -50,6 +51,7 @@ const initialOptionsState: OptionsState = {
|
||||
perlin: 0,
|
||||
seed: 0,
|
||||
seamless: false,
|
||||
hiresFix: false,
|
||||
shouldUseInitImage: false,
|
||||
img2imgStrength: 0.75,
|
||||
initialImagePath: null,
|
||||
@ -138,6 +140,9 @@ export const optionsSlice = createSlice({
|
||||
setSeamless: (state, action: PayloadAction<boolean>) => {
|
||||
state.seamless = action.payload;
|
||||
},
|
||||
setHiresFix: (state, action: PayloadAction<boolean>) => {
|
||||
state.hiresFix = action.payload;
|
||||
},
|
||||
setShouldFitToWidthHeight: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldFitToWidthHeight = action.payload;
|
||||
},
|
||||
@ -180,6 +185,7 @@ export const optionsSlice = createSlice({
|
||||
threshold,
|
||||
perlin,
|
||||
seamless,
|
||||
hires_fix,
|
||||
width,
|
||||
height,
|
||||
strength,
|
||||
@ -256,6 +262,7 @@ export const optionsSlice = createSlice({
|
||||
if (perlin) state.perlin = perlin;
|
||||
if (typeof perlin === 'undefined') state.perlin = 0;
|
||||
if (typeof seamless === 'boolean') state.seamless = seamless;
|
||||
if (typeof hires_fix === 'boolean') state.hiresFix = hires_fix;
|
||||
if (width) state.width = width;
|
||||
if (height) state.height = height;
|
||||
},
|
||||
@ -301,6 +308,7 @@ export const {
|
||||
setSampler,
|
||||
setSeed,
|
||||
setSeamless,
|
||||
setHiresFix,
|
||||
setImg2imgStrength,
|
||||
setGfpganStrength,
|
||||
setUpscalingLevel,
|
||||
|
188
ldm/generate.py
188
ldm/generate.py
@ -33,6 +33,25 @@ from ldm.invoke.args import metadata_from_png
|
||||
from ldm.invoke.image_util import InitImageResizer
|
||||
from ldm.invoke.devices import choose_torch_device, choose_precision
|
||||
from ldm.invoke.conditioning import get_uc_and_c
|
||||
from ldm.invoke.model_cache import ModelCache
|
||||
|
||||
def fix_func(orig):
|
||||
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
||||
def new_func(*args, **kw):
|
||||
device = kw.get("device", "mps")
|
||||
kw["device"]="cpu"
|
||||
return orig(*args, **kw).to(device)
|
||||
return new_func
|
||||
return orig
|
||||
|
||||
torch.rand = fix_func(torch.rand)
|
||||
torch.rand_like = fix_func(torch.rand_like)
|
||||
torch.randn = fix_func(torch.randn)
|
||||
torch.randn_like = fix_func(torch.randn_like)
|
||||
torch.randint = fix_func(torch.randint)
|
||||
torch.randint_like = fix_func(torch.randint_like)
|
||||
torch.bernoulli = fix_func(torch.bernoulli)
|
||||
torch.multinomial = fix_func(torch.multinomial)
|
||||
|
||||
def fix_func(orig):
|
||||
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
||||
@ -141,12 +160,11 @@ class Generate:
|
||||
esrgan=None,
|
||||
free_gpu_mem=False,
|
||||
):
|
||||
models = OmegaConf.load(conf)
|
||||
mconfig = models[model]
|
||||
self.weights = mconfig.weights if weights is None else weights
|
||||
self.config = mconfig.config if config is None else config
|
||||
self.height = mconfig.height
|
||||
self.width = mconfig.width
|
||||
mconfig = OmegaConf.load(conf)
|
||||
self.model_name = model
|
||||
self.height = None
|
||||
self.width = None
|
||||
self.model_cache = None
|
||||
self.iterations = 1
|
||||
self.steps = 50
|
||||
self.cfg_scale = 7.5
|
||||
@ -155,8 +173,10 @@ class Generate:
|
||||
self.precision = precision
|
||||
self.strength = 0.75
|
||||
self.seamless = False
|
||||
self.hires_fix = False
|
||||
self.embedding_path = embedding_path
|
||||
self.model = None # empty for now
|
||||
self.model_hash = None
|
||||
self.sampler = None
|
||||
self.device = None
|
||||
self.session_peakmem = None
|
||||
@ -167,11 +187,13 @@ class Generate:
|
||||
self.codeformer = codeformer
|
||||
self.esrgan = esrgan
|
||||
self.free_gpu_mem = free_gpu_mem
|
||||
self.size_matters = True # used to warn once about large image sizes and VRAM
|
||||
|
||||
# Note that in previous versions, there was an option to pass the
|
||||
# device to Generate(). However the device was then ignored, so
|
||||
# it wasn't actually doing anything. This logic could be reinstated.
|
||||
device_type = choose_torch_device()
|
||||
print(f'>> Using device_type {device_type}')
|
||||
self.device = torch.device(device_type)
|
||||
if full_precision:
|
||||
if self.precision != 'auto':
|
||||
@ -182,6 +204,9 @@ class Generate:
|
||||
if self.precision == 'auto':
|
||||
self.precision = choose_precision(self.device)
|
||||
|
||||
# model caching system for fast switching
|
||||
self.model_cache = ModelCache(mconfig,self.device,self.precision)
|
||||
|
||||
# for VRAM usage statistics
|
||||
self.session_peakmem = torch.cuda.max_memory_allocated() if self._has_cuda else None
|
||||
transformers.logging.set_verbosity_error()
|
||||
@ -249,10 +274,12 @@ class Generate:
|
||||
embiggen_tiles = None,
|
||||
# these are specific to GFPGAN/ESRGAN
|
||||
facetool = None,
|
||||
gfpgan_strength = 0,
|
||||
facetool_strength = 0,
|
||||
codeformer_fidelity = None,
|
||||
save_original = False,
|
||||
upscale = None,
|
||||
# this is specific to inpainting and causes more extreme inpainting
|
||||
inpaint_replace = 0.0,
|
||||
# Set this True to handle KeyboardInterrupt internally
|
||||
catch_interrupts = False,
|
||||
hires_fix = False,
|
||||
@ -269,9 +296,10 @@ class Generate:
|
||||
height // height of image, in multiples of 64 (512)
|
||||
cfg_scale // how strongly the prompt influences the image (7.5) (must be >1)
|
||||
seamless // whether the generated image should tile
|
||||
hires_fix // whether the Hires Fix should be applied during generation
|
||||
init_img // path to an initial image
|
||||
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
|
||||
gfpgan_strength // strength for GFPGAN. 0.0 preserves image exactly, 1.0 replaces it completely
|
||||
facetool_strength // strength for GFPGAN/CodeFormer. 0.0 preserves image exactly, 1.0 replaces it completely
|
||||
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
|
||||
step_callback // a function or method that will be called each step
|
||||
image_callback // a function or method that will be called each time an image is generated
|
||||
@ -302,6 +330,7 @@ class Generate:
|
||||
width = width or self.width
|
||||
height = height or self.height
|
||||
seamless = seamless or self.seamless
|
||||
hires_fix = hires_fix or self.hires_fix
|
||||
cfg_scale = cfg_scale or self.cfg_scale
|
||||
ddim_eta = ddim_eta or self.ddim_eta
|
||||
iterations = iterations or self.iterations
|
||||
@ -312,7 +341,12 @@ class Generate:
|
||||
with_variations = [] if with_variations is None else with_variations
|
||||
|
||||
# will instantiate the model or return it from cache
|
||||
model = self.load_model()
|
||||
model = self.set_model(self.model_name)
|
||||
|
||||
# self.width and self.height are set by set_model()
|
||||
# to the width and height of the image training set
|
||||
width = width or self.width
|
||||
height = height or self.height
|
||||
|
||||
for m in model.modules():
|
||||
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
||||
@ -344,6 +378,7 @@ class Generate:
|
||||
f'variation weights must be in [0.0, 1.0]: got {[weight for _, weight in with_variations]}'
|
||||
|
||||
width, height, _ = self._resolution_check(width, height, log=True)
|
||||
assert inpaint_replace >=0.0 and inpaint_replace <= 1.0,'inpaint_replace must be between 0.0 and 1.0'
|
||||
|
||||
if sampler_name and (sampler_name != self.sampler_name):
|
||||
self.sampler_name = sampler_name
|
||||
@ -371,6 +406,8 @@ class Generate:
|
||||
height,
|
||||
fit=fit,
|
||||
)
|
||||
|
||||
# TODO: Hacky selection of operation to perform. Needs to be refactored.
|
||||
if (init_image is not None) and (mask_image is not None):
|
||||
generator = self._make_inpaint()
|
||||
elif (embiggen != None or embiggen_tiles != None):
|
||||
@ -385,6 +422,7 @@ class Generate:
|
||||
generator.set_variation(
|
||||
self.seed, variation_amount, with_variations
|
||||
)
|
||||
|
||||
results = generator.generate(
|
||||
prompt,
|
||||
iterations=iterations,
|
||||
@ -406,6 +444,7 @@ class Generate:
|
||||
perlin=perlin,
|
||||
embiggen=embiggen,
|
||||
embiggen_tiles=embiggen_tiles,
|
||||
inpaint_replace=inpaint_replace,
|
||||
)
|
||||
|
||||
if init_color:
|
||||
@ -413,11 +452,11 @@ class Generate:
|
||||
reference_image_path = init_color,
|
||||
image_callback = image_callback)
|
||||
|
||||
if upscale is not None or gfpgan_strength > 0:
|
||||
if upscale is not None or facetool_strength > 0:
|
||||
self.upscale_and_reconstruct(results,
|
||||
upscale = upscale,
|
||||
facetool = facetool,
|
||||
strength = gfpgan_strength,
|
||||
strength = facetool_strength,
|
||||
codeformer_fidelity = codeformer_fidelity,
|
||||
save_original = save_original,
|
||||
image_callback = image_callback)
|
||||
@ -460,7 +499,7 @@ class Generate:
|
||||
self,
|
||||
image_path,
|
||||
tool = 'gfpgan', # one of 'upscale', 'gfpgan', 'codeformer', 'outpaint', or 'embiggen'
|
||||
gfpgan_strength = 0.0,
|
||||
facetool_strength = 0.0,
|
||||
codeformer_fidelity = 0.75,
|
||||
upscale = None,
|
||||
out_direction = None,
|
||||
@ -507,11 +546,11 @@ class Generate:
|
||||
facetool = 'codeformer'
|
||||
elif tool == 'upscale':
|
||||
facetool = 'gfpgan' # but won't be run
|
||||
gfpgan_strength = 0
|
||||
facetool_strength = 0
|
||||
return self.upscale_and_reconstruct(
|
||||
[[image,seed]],
|
||||
facetool = facetool,
|
||||
strength = gfpgan_strength,
|
||||
strength = facetool_strength,
|
||||
codeformer_fidelity = codeformer_fidelity,
|
||||
save_original = save_original,
|
||||
upscale = upscale,
|
||||
@ -602,8 +641,9 @@ class Generate:
|
||||
# this returns a torch tensor
|
||||
init_mask = self._create_init_mask(image, width, height, fit=fit)
|
||||
|
||||
if (image.width * image.height) > (self.width * self.height):
|
||||
if (image.width * image.height) > (self.width * self.height) and self.size_matters:
|
||||
print(">> This input is larger than your defaults. If you run out of memory, please use a smaller image.")
|
||||
self.size_matters = False
|
||||
|
||||
init_image = self._create_init_image(image,width,height,fit=fit) # this returns a torch tensor
|
||||
|
||||
@ -653,29 +693,40 @@ class Generate:
|
||||
return self.generators['inpaint']
|
||||
|
||||
def load_model(self):
|
||||
"""Load and initialize the model from configuration variables passed at object creation time"""
|
||||
if self.model is None:
|
||||
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
|
||||
try:
|
||||
model = self._load_model_from_config(self.config, self.weights)
|
||||
if self.embedding_path is not None:
|
||||
model.embedding_manager.load(
|
||||
self.embedding_path, self.precision == 'float32' or self.precision == 'autocast'
|
||||
)
|
||||
self.model = model.to(self.device)
|
||||
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
|
||||
self.model.cond_stage_model.device = self.device
|
||||
except AttributeError as e:
|
||||
print(f'>> Error loading model. {str(e)}', file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
raise SystemExit from e
|
||||
'''
|
||||
preload model identified in self.model_name
|
||||
'''
|
||||
self.set_model(self.model_name)
|
||||
|
||||
self._set_sampler()
|
||||
def set_model(self,model_name):
|
||||
"""
|
||||
Given the name of a model defined in models.yaml, will load and initialize it
|
||||
and return the model object. Previously-used models will be cached.
|
||||
"""
|
||||
if self.model_name == model_name and self.model is not None:
|
||||
return self.model
|
||||
|
||||
for m in self.model.modules():
|
||||
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
||||
m._orig_padding_mode = m.padding_mode
|
||||
model_data = self.model_cache.get_model(model_name)
|
||||
if model_data is None or len(model_data) == 0:
|
||||
print(f'** Model switch failed **')
|
||||
return self.model
|
||||
|
||||
self.model = model_data['model']
|
||||
self.width = model_data['width']
|
||||
self.height= model_data['height']
|
||||
self.model_hash = model_data['hash']
|
||||
|
||||
# uncache generators so they pick up new models
|
||||
self.generators = {}
|
||||
|
||||
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
|
||||
if self.embedding_path is not None:
|
||||
model.embedding_manager.load(
|
||||
self.embedding_path, self.precision == 'float32' or self.precision == 'autocast'
|
||||
)
|
||||
|
||||
self._set_sampler()
|
||||
self.model_name = model_name
|
||||
return self.model
|
||||
|
||||
def correct_colors(self,
|
||||
@ -779,53 +830,6 @@ class Generate:
|
||||
|
||||
print(msg)
|
||||
|
||||
# Be warned: config is the path to the model config file, not the invoke conf file!
|
||||
# Also note that we can get config and weights from self, so why do we need to
|
||||
# pass them as args?
|
||||
def _load_model_from_config(self, config, weights):
|
||||
print(f'>> Loading model from {weights}')
|
||||
|
||||
# for usage statistics
|
||||
device_type = choose_torch_device()
|
||||
if device_type == 'cuda':
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
tic = time.time()
|
||||
|
||||
# this does the work
|
||||
c = OmegaConf.load(config)
|
||||
with open(weights,'rb') as f:
|
||||
weight_bytes = f.read()
|
||||
self.model_hash = self._cached_sha256(weights,weight_bytes)
|
||||
pl_sd = torch.load(io.BytesIO(weight_bytes), map_location='cpu')
|
||||
del weight_bytes
|
||||
sd = pl_sd['state_dict']
|
||||
model = instantiate_from_config(c.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
|
||||
if self.precision == 'float16':
|
||||
print('>> Using faster float16 precision')
|
||||
model.to(torch.float16)
|
||||
else:
|
||||
print('>> Using more accurate float32 precision')
|
||||
|
||||
model.to(self.device)
|
||||
model.eval()
|
||||
|
||||
# usage statistics
|
||||
toc = time.time()
|
||||
print(
|
||||
f'>> Model loaded in', '%4.2fs' % (toc - tic)
|
||||
)
|
||||
if self._has_cuda():
|
||||
print(
|
||||
'>> Max VRAM used to load the model:',
|
||||
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
|
||||
'\n>> Current VRAM usage:'
|
||||
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
def _load_img(self, img, width, height)->Image:
|
||||
if isinstance(img, Image.Image):
|
||||
image = img
|
||||
@ -969,26 +973,6 @@ class Generate:
|
||||
def _has_cuda(self):
|
||||
return self.device.type == 'cuda'
|
||||
|
||||
def _cached_sha256(self,path,data):
|
||||
dirname = os.path.dirname(path)
|
||||
basename = os.path.basename(path)
|
||||
base, _ = os.path.splitext(basename)
|
||||
hashpath = os.path.join(dirname,base+'.sha256')
|
||||
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(hashpath):
|
||||
with open(hashpath) as f:
|
||||
hash = f.read()
|
||||
return hash
|
||||
print(f'>> Calculating sha256 hash of weights file')
|
||||
tic = time.time()
|
||||
sha = hashlib.sha256()
|
||||
sha.update(data)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
print(f'>> sha256 = {hash}','(%4.2fs)' % (toc - tic))
|
||||
with open(hashpath,'w') as f:
|
||||
f.write(hash)
|
||||
return hash
|
||||
|
||||
def write_intermediate_images(self,modulus,path):
|
||||
counter = -1
|
||||
if not os.path.exists(path):
|
||||
|
@ -239,12 +239,17 @@ class Args(object):
|
||||
switches.append(f'--init_color {a["init_color"]}')
|
||||
if a['strength'] and a['strength']>0:
|
||||
switches.append(f'-f {a["strength"]}')
|
||||
if a['inpaint_replace']:
|
||||
switches.append(f'--inpaint_replace')
|
||||
else:
|
||||
switches.append(f'-A {a["sampler_name"]}')
|
||||
|
||||
# gfpgan-specific parameters
|
||||
if a['gfpgan_strength']:
|
||||
switches.append(f'-G {a["gfpgan_strength"]}')
|
||||
# facetool-specific parameters, only print if running facetool
|
||||
if a['facetool_strength']:
|
||||
switches.append(f'-G {a["facetool_strength"]}')
|
||||
switches.append(f'-ft {a["facetool"]}')
|
||||
if a["facetool"] == "codeformer":
|
||||
switches.append(f'-cf {a["codeformer_fidelity"]}')
|
||||
|
||||
if a['outcrop']:
|
||||
switches.append(f'-c {" ".join([str(u) for u in a["outcrop"]])}')
|
||||
@ -262,11 +267,12 @@ class Args(object):
|
||||
# outpainting parameters
|
||||
if a['out_direction']:
|
||||
switches.append(f'-D {" ".join([str(u) for u in a["out_direction"]])}')
|
||||
|
||||
# LS: slight semantic drift which needs addressing in the future:
|
||||
# 1. Variations come out of the stored metadata as a packed string with the keyword "variations"
|
||||
# 2. However, they come out of the CLI (and probably web) with the keyword "with_variations" and
|
||||
# in broken-out form. Variation (1) should be changed to comply with (2)
|
||||
if a['with_variations']:
|
||||
if a['with_variations'] and len(a['with_variations'])>0:
|
||||
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in (a["with_variations"]))
|
||||
switches.append(f'-V {formatted_variations}')
|
||||
if 'variations' in a and len(a['variations'])>0:
|
||||
@ -372,6 +378,14 @@ class Args(object):
|
||||
default='stable-diffusion-1.4',
|
||||
help='Indicates which diffusion model to load. (currently "stable-diffusion-1.4" (default) or "laion400m")',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--png_compression','-z',
|
||||
type=int,
|
||||
default=6,
|
||||
choices=range(0,9),
|
||||
dest='png_compression',
|
||||
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--sampler',
|
||||
'-A',
|
||||
@ -643,6 +657,14 @@ class Args(object):
|
||||
dest='save_intermediates',
|
||||
help='Save every nth intermediate image into an "intermediates" directory within the output directory'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--png_compression','-z',
|
||||
type=int,
|
||||
default=6,
|
||||
choices=range(0,10),
|
||||
dest='png_compression',
|
||||
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
|
||||
)
|
||||
img2img_group.add_argument(
|
||||
'-I',
|
||||
'--init_img',
|
||||
@ -690,6 +712,13 @@ class Args(object):
|
||||
metavar=('direction','pixels'),
|
||||
help='Outcrop the image with one or more direction/pixel pairs: -c top 64 bottom 128 left 64 right 64',
|
||||
)
|
||||
img2img_group.add_argument(
|
||||
'-r',
|
||||
'--inpaint_replace',
|
||||
type=float,
|
||||
default=0.0,
|
||||
help='when inpainting, adjust how aggressively to replace the part of the picture under the mask, from 0.0 (a gentle merge) to 1.0 (replace entirely)',
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'-ft',
|
||||
'--facetool',
|
||||
@ -699,6 +728,7 @@ class Args(object):
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'-G',
|
||||
'--facetool_strength',
|
||||
'--gfpgan_strength',
|
||||
type=float,
|
||||
help='The strength at which to apply the face restoration to the result.',
|
||||
@ -795,7 +825,8 @@ def metadata_dumps(opt,
|
||||
|
||||
# remove any image keys not mentioned in RFC #266
|
||||
rfc266_img_fields = ['type','postprocessing','sampler','prompt','seed','variations','steps',
|
||||
'cfg_scale','threshold','perlin','step_number','width','height','extra','strength']
|
||||
'cfg_scale','threshold','perlin','step_number','width','height','extra','strength',
|
||||
'init_img','init_mask']
|
||||
|
||||
rfc_dict ={}
|
||||
|
||||
@ -816,11 +847,15 @@ def metadata_dumps(opt,
|
||||
# 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs
|
||||
rfc_dict['variations'] = [{'seed':x[0],'weight':x[1]} for x in opt.with_variations] if opt.with_variations else []
|
||||
|
||||
# if variations are present then we need to replace 'seed' with 'orig_seed'
|
||||
if hasattr(opt,'first_seed'):
|
||||
rfc_dict['seed'] = opt.first_seed
|
||||
|
||||
if opt.init_img:
|
||||
rfc_dict['type'] = 'img2img'
|
||||
rfc_dict['strength_steps'] = rfc_dict.pop('strength')
|
||||
rfc_dict['orig_hash'] = calculate_init_img_hash(opt.init_img)
|
||||
rfc_dict['sampler'] = 'ddim' # TODO: FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
|
||||
rfc_dict['type'] = 'img2img'
|
||||
rfc_dict['strength_steps'] = rfc_dict.pop('strength')
|
||||
rfc_dict['orig_hash'] = calculate_init_img_hash(opt.init_img)
|
||||
rfc_dict['inpaint_replace'] = opt.inpaint_replace
|
||||
else:
|
||||
rfc_dict['type'] = 'txt2img'
|
||||
rfc_dict.pop('strength')
|
||||
|
@ -5,6 +5,7 @@ including img2img, txt2img, and inpaint
|
||||
import torch
|
||||
import numpy as np
|
||||
import random
|
||||
import os
|
||||
from tqdm import tqdm, trange
|
||||
from PIL import Image
|
||||
from einops import rearrange, repeat
|
||||
@ -168,3 +169,14 @@ class Generator():
|
||||
|
||||
return v2
|
||||
|
||||
# this is a handy routine for debugging use. Given a generated sample,
|
||||
# convert it into a PNG image and store it at the indicated path
|
||||
def save_sample(self, sample, filepath):
|
||||
image = self.sample_to_image(sample)
|
||||
dirname = os.path.dirname(filepath) or '.'
|
||||
if not os.path.exists(dirname):
|
||||
print(f'** creating directory {dirname}')
|
||||
os.makedirs(dirname, exist_ok=True)
|
||||
image.save(filepath,'PNG')
|
||||
|
||||
|
||||
|
@ -18,7 +18,7 @@ class Inpaint(Img2Img):
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,mask_image,strength,
|
||||
step_callback=None,**kwargs):
|
||||
step_callback=None,inpaint_replace=False,**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and
|
||||
the initial image + mask. Return value depends on the seed at
|
||||
@ -58,6 +58,14 @@ class Inpaint(Img2Img):
|
||||
noise=x_T
|
||||
)
|
||||
|
||||
# to replace masked area with latent noise, weighted by inpaint_replace strength
|
||||
if inpaint_replace > 0.0:
|
||||
print(f'>> inpaint will replace what was under the mask with a strength of {inpaint_replace}')
|
||||
l_noise = self.get_noise(kwargs['width'],kwargs['height'])
|
||||
inverted_mask = 1.0-mask_image # there will be 1s where the mask is
|
||||
masked_region = (1.0-inpaint_replace) * inverted_mask * z_enc + inpaint_replace * inverted_mask * l_noise
|
||||
z_enc = z_enc * mask_image + masked_region
|
||||
|
||||
# decode it
|
||||
samples = sampler.decode(
|
||||
z_enc,
|
||||
|
281
ldm/invoke/model_cache.py
Normal file
281
ldm/invoke/model_cache.py
Normal file
@ -0,0 +1,281 @@
|
||||
'''
|
||||
Manage a cache of Stable Diffusion model files for fast switching.
|
||||
They are moved between GPU and CPU as necessary. If CPU memory falls
|
||||
below a preset minimum, the least recently used model will be
|
||||
cleared and loaded from disk when next needed.
|
||||
'''
|
||||
|
||||
import torch
|
||||
import os
|
||||
import io
|
||||
import time
|
||||
import gc
|
||||
import hashlib
|
||||
import psutil
|
||||
import transformers
|
||||
from sys import getrefcount
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf.errors import ConfigAttributeError
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
GIGS=2**30
|
||||
AVG_MODEL_SIZE=2.1*GIGS
|
||||
DEFAULT_MIN_AVAIL=2*GIGS
|
||||
|
||||
class ModelCache(object):
|
||||
def __init__(self, config:OmegaConf, device_type:str, precision:str, min_avail_mem=DEFAULT_MIN_AVAIL):
|
||||
'''
|
||||
Initialize with the path to the models.yaml config file,
|
||||
the torch device type, and precision. The optional
|
||||
min_avail_mem argument specifies how much unused system
|
||||
(CPU) memory to preserve. The cache of models in RAM will
|
||||
grow until this value is approached. Default is 2G.
|
||||
'''
|
||||
# prevent nasty-looking CLIP log message
|
||||
transformers.logging.set_verbosity_error()
|
||||
self.config = config
|
||||
self.precision = precision
|
||||
self.device = torch.device(device_type)
|
||||
self.min_avail_mem = min_avail_mem
|
||||
self.models = {}
|
||||
self.stack = [] # this is an LRU FIFO
|
||||
self.current_model = None
|
||||
|
||||
def get_model(self, model_name:str):
|
||||
'''
|
||||
Given a model named identified in models.yaml, return
|
||||
the model object. If in RAM will load into GPU VRAM.
|
||||
If on disk, will load from there.
|
||||
'''
|
||||
if model_name not in self.config:
|
||||
print(f'** "{model_name}" is not a known model name. Please check your models.yaml file')
|
||||
return None
|
||||
|
||||
if self.current_model != model_name:
|
||||
self.unload_model(self.current_model)
|
||||
|
||||
if model_name in self.models:
|
||||
requested_model = self.models[model_name]['model']
|
||||
print(f'>> Retrieving model {model_name} from system RAM cache')
|
||||
self.models[model_name]['model'] = self._model_from_cpu(requested_model)
|
||||
width = self.models[model_name]['width']
|
||||
height = self.models[model_name]['height']
|
||||
hash = self.models[model_name]['hash']
|
||||
else:
|
||||
self._check_memory()
|
||||
try:
|
||||
requested_model, width, height, hash = self._load_model(model_name)
|
||||
self.models[model_name] = {}
|
||||
self.models[model_name]['model'] = requested_model
|
||||
self.models[model_name]['width'] = width
|
||||
self.models[model_name]['height'] = height
|
||||
self.models[model_name]['hash'] = hash
|
||||
except Exception as e:
|
||||
print(f'** model {model_name} could not be loaded: {str(e)}')
|
||||
print(f'** restoring {self.current_model}')
|
||||
return self.get_model(self.current_model)
|
||||
|
||||
self.current_model = model_name
|
||||
self._push_newest_model(model_name)
|
||||
return {
|
||||
'model':requested_model,
|
||||
'width':width,
|
||||
'height':height,
|
||||
'hash': hash
|
||||
}
|
||||
|
||||
def list_models(self) -> dict:
|
||||
'''
|
||||
Return a dict of models in the format:
|
||||
{ model_name1: {'status': ('active'|'cached'|'not loaded'),
|
||||
'description': description,
|
||||
},
|
||||
model_name2: { etc }
|
||||
'''
|
||||
result = {}
|
||||
for name in self.config:
|
||||
try:
|
||||
description = self.config[name].description
|
||||
except ConfigAttributeError:
|
||||
description = '<no description>'
|
||||
if self.current_model == name:
|
||||
status = 'active'
|
||||
elif name in self.models:
|
||||
status = 'cached'
|
||||
else:
|
||||
status = 'not loaded'
|
||||
result[name]={}
|
||||
result[name]['status']=status
|
||||
result[name]['description']=description
|
||||
return result
|
||||
|
||||
def print_models(self):
|
||||
'''
|
||||
Print a table of models, their descriptions, and load status
|
||||
'''
|
||||
models = self.list_models()
|
||||
for name in models:
|
||||
line = f'{name:25s} {models[name]["status"]:>10s} {models[name]["description"]}'
|
||||
if models[name]['status'] == 'active':
|
||||
print(f'\033[1m{line}\033[0m')
|
||||
else:
|
||||
print(line)
|
||||
|
||||
def add_model(self, model_name:str, model_attributes:dict, clobber=False) ->str:
|
||||
'''
|
||||
Update the named model with a dictionary of attributes. Will fail with an
|
||||
assertion error if the name already exists. Pass clobber=True to overwrite.
|
||||
On a successful update, the config will be changed in memory and a YAML
|
||||
string will be returned.
|
||||
'''
|
||||
omega = self.config
|
||||
# check that all the required fields are present
|
||||
for field in ('description','weights','height','width','config'):
|
||||
assert field in model_attributes, f'required field {field} is missing'
|
||||
|
||||
assert (clobber or model_name not in omega), f'attempt to overwrite existing model definition "{model_name}"'
|
||||
config = omega[model_name] if model_name in omega else {}
|
||||
for field in model_attributes:
|
||||
config[field] = model_attributes[field]
|
||||
|
||||
omega[model_name] = config
|
||||
return OmegaConf.to_yaml(omega)
|
||||
|
||||
def _check_memory(self):
|
||||
avail_memory = psutil.virtual_memory()[1]
|
||||
if AVG_MODEL_SIZE + self.min_avail_mem > avail_memory:
|
||||
least_recent_model = self._pop_oldest_model()
|
||||
if least_recent_model is not None:
|
||||
del self.models[least_recent_model]
|
||||
gc.collect()
|
||||
|
||||
|
||||
def _load_model(self, model_name:str):
|
||||
"""Load and initialize the model from configuration variables passed at object creation time"""
|
||||
if model_name not in self.config:
|
||||
print(f'"{model_name}" is not a known model name. Please check your models.yaml file')
|
||||
return None
|
||||
|
||||
mconfig = self.config[model_name]
|
||||
config = mconfig.config
|
||||
weights = mconfig.weights
|
||||
width = mconfig.width
|
||||
height = mconfig.height
|
||||
|
||||
print(f'>> Loading {model_name} from {weights}')
|
||||
|
||||
# for usage statistics
|
||||
if self._has_cuda():
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
tic = time.time()
|
||||
|
||||
# this does the work
|
||||
c = OmegaConf.load(config)
|
||||
with open(weights,'rb') as f:
|
||||
weight_bytes = f.read()
|
||||
model_hash = self._cached_sha256(weights,weight_bytes)
|
||||
pl_sd = torch.load(io.BytesIO(weight_bytes), map_location='cpu')
|
||||
del weight_bytes
|
||||
sd = pl_sd['state_dict']
|
||||
model = instantiate_from_config(c.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
|
||||
if self.precision == 'float16':
|
||||
print(' | Using faster float16 precision')
|
||||
model.to(torch.float16)
|
||||
else:
|
||||
print(' | Using more accurate float32 precision')
|
||||
|
||||
model.to(self.device)
|
||||
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
|
||||
model.cond_stage_model.device = self.device
|
||||
model.eval()
|
||||
|
||||
for m in model.modules():
|
||||
if isinstance(m, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
|
||||
m._orig_padding_mode = m.padding_mode
|
||||
|
||||
# usage statistics
|
||||
toc = time.time()
|
||||
print(f'>> Model loaded in', '%4.2fs' % (toc - tic))
|
||||
if self._has_cuda():
|
||||
print(
|
||||
'>> Max VRAM used to load the model:',
|
||||
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
|
||||
'\n>> Current VRAM usage:'
|
||||
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
|
||||
)
|
||||
return model, width, height, model_hash
|
||||
|
||||
def unload_model(self, model_name:str):
|
||||
if model_name not in self.models:
|
||||
return
|
||||
print(f'>> Caching model {model_name} in system RAM')
|
||||
model = self.models[model_name]['model']
|
||||
self.models[model_name]['model'] = self._model_to_cpu(model)
|
||||
gc.collect()
|
||||
if self._has_cuda():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def _model_to_cpu(self,model):
|
||||
if self.device != 'cpu':
|
||||
model.cond_stage_model.device = 'cpu'
|
||||
model.first_stage_model.to('cpu')
|
||||
model.cond_stage_model.to('cpu')
|
||||
model.model.to('cpu')
|
||||
return model.to('cpu')
|
||||
else:
|
||||
return model
|
||||
|
||||
def _model_from_cpu(self,model):
|
||||
if self.device != 'cpu':
|
||||
model.to(self.device)
|
||||
model.first_stage_model.to(self.device)
|
||||
model.cond_stage_model.to(self.device)
|
||||
model.cond_stage_model.device = self.device
|
||||
return model
|
||||
|
||||
def _pop_oldest_model(self):
|
||||
'''
|
||||
Remove the first element of the FIFO, which ought
|
||||
to be the least recently accessed model. Do not
|
||||
pop the last one, because it is in active use!
|
||||
'''
|
||||
if len(self.stack) > 1:
|
||||
return self.stack.pop(0)
|
||||
|
||||
def _push_newest_model(self,model_name:str):
|
||||
'''
|
||||
Maintain a simple FIFO. First element is always the
|
||||
least recent, and last element is always the most recent.
|
||||
'''
|
||||
try:
|
||||
self.stack.remove(model_name)
|
||||
except ValueError:
|
||||
pass
|
||||
self.stack.append(model_name)
|
||||
|
||||
def _has_cuda(self):
|
||||
return self.device.type == 'cuda'
|
||||
|
||||
def _cached_sha256(self,path,data):
|
||||
dirname = os.path.dirname(path)
|
||||
basename = os.path.basename(path)
|
||||
base, _ = os.path.splitext(basename)
|
||||
hashpath = os.path.join(dirname,base+'.sha256')
|
||||
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(hashpath):
|
||||
with open(hashpath) as f:
|
||||
hash = f.read()
|
||||
return hash
|
||||
print(f'>> Calculating sha256 hash of weights file')
|
||||
tic = time.time()
|
||||
sha = hashlib.sha256()
|
||||
sha.update(data)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
print(f'>> sha256 = {hash}','(%4.2fs)' % (toc - tic))
|
||||
with open(hashpath,'w') as f:
|
||||
f.write(hash)
|
||||
return hash
|
@ -33,13 +33,13 @@ class PngWriter:
|
||||
|
||||
# saves image named _image_ to outdir/name, writing metadata from prompt
|
||||
# returns full path of output
|
||||
def save_image_and_prompt_to_png(self, image, dream_prompt, name, metadata=None):
|
||||
def save_image_and_prompt_to_png(self, image, dream_prompt, name, metadata=None, compress_level=6):
|
||||
path = os.path.join(self.outdir, name)
|
||||
info = PngImagePlugin.PngInfo()
|
||||
info.add_text('Dream', dream_prompt)
|
||||
if metadata:
|
||||
info.add_text('sd-metadata', json.dumps(metadata))
|
||||
image.save(path, 'PNG', pnginfo=info)
|
||||
image.save(path, 'PNG', pnginfo=info, compress_level=compress_level)
|
||||
return path
|
||||
|
||||
def retrieve_metadata(self,img_basename):
|
||||
|
@ -21,6 +21,8 @@ except (ImportError,ModuleNotFoundError):
|
||||
readline_available = False
|
||||
|
||||
IMG_EXTENSIONS = ('.png','.jpg','.jpeg','.PNG','.JPG','.JPEG','.gif','.GIF')
|
||||
WEIGHT_EXTENSIONS = ('.ckpt','.bae')
|
||||
CONFIG_EXTENSIONS = ('.yaml','.yml')
|
||||
COMMANDS = (
|
||||
'--steps','-s',
|
||||
'--seed','-S',
|
||||
@ -42,13 +44,25 @@ COMMANDS = (
|
||||
'--embedding_path',
|
||||
'--device',
|
||||
'--grid','-g',
|
||||
'--gfpgan_strength','-G',
|
||||
'--facetool','-ft',
|
||||
'--facetool_strength','-G',
|
||||
'--codeformer_fidelity','-cf',
|
||||
'--upscale','-U',
|
||||
'-save_orig','--save_original',
|
||||
'--skip_normalize','-x',
|
||||
'--log_tokenization','-t',
|
||||
'--hires_fix',
|
||||
'--inpaint_replace','-r',
|
||||
'--png_compression','-z',
|
||||
'!fix','!fetch','!history','!search','!clear',
|
||||
'!models','!switch','!import_model','!edit_model'
|
||||
)
|
||||
MODEL_COMMANDS = (
|
||||
'!switch',
|
||||
'!edit_model',
|
||||
)
|
||||
WEIGHT_COMMANDS = (
|
||||
'!import_model',
|
||||
)
|
||||
IMG_PATH_COMMANDS = (
|
||||
'--outdir[=\s]',
|
||||
@ -61,16 +75,19 @@ IMG_FILE_COMMANDS=(
|
||||
'--init_color[=\s]',
|
||||
'--embedding_path[=\s]',
|
||||
)
|
||||
path_regexp = '('+'|'.join(IMG_PATH_COMMANDS+IMG_FILE_COMMANDS) + ')\s*\S*$'
|
||||
path_regexp = '('+'|'.join(IMG_PATH_COMMANDS+IMG_FILE_COMMANDS) + ')\s*\S*$'
|
||||
weight_regexp = '('+'|'.join(WEIGHT_COMMANDS) + ')\s*\S*$'
|
||||
|
||||
class Completer(object):
|
||||
def __init__(self, options):
|
||||
def __init__(self, options, models=[]):
|
||||
self.options = sorted(options)
|
||||
self.models = sorted(models)
|
||||
self.seeds = set()
|
||||
self.matches = list()
|
||||
self.default_dir = None
|
||||
self.linebuffer = None
|
||||
self.auto_history_active = True
|
||||
self.extensions = None
|
||||
return
|
||||
|
||||
def complete(self, text, state):
|
||||
@ -81,7 +98,13 @@ class Completer(object):
|
||||
buffer = readline.get_line_buffer()
|
||||
|
||||
if state == 0:
|
||||
if re.search(path_regexp,buffer):
|
||||
|
||||
# extensions defined, so go directly into path completion mode
|
||||
if self.extensions is not None:
|
||||
self.matches = self._path_completions(text, state, self.extensions)
|
||||
|
||||
# looking for an image file
|
||||
elif re.search(path_regexp,buffer):
|
||||
do_shortcut = re.search('^'+'|'.join(IMG_FILE_COMMANDS),buffer)
|
||||
self.matches = self._path_completions(text, state, IMG_EXTENSIONS,shortcut_ok=do_shortcut)
|
||||
|
||||
@ -89,6 +112,13 @@ class Completer(object):
|
||||
elif re.search('(-S\s*|--seed[=\s])\d*$',buffer):
|
||||
self.matches= self._seed_completions(text,state)
|
||||
|
||||
# looking for a model
|
||||
elif re.match('^'+'|'.join(MODEL_COMMANDS),buffer):
|
||||
self.matches= self._model_completions(text, state)
|
||||
|
||||
elif re.search(weight_regexp,buffer):
|
||||
self.matches = self._path_completions(text, state, WEIGHT_EXTENSIONS)
|
||||
|
||||
# This is the first time for this text, so build a match list.
|
||||
elif text:
|
||||
self.matches = [
|
||||
@ -105,6 +135,13 @@ class Completer(object):
|
||||
response = None
|
||||
return response
|
||||
|
||||
def complete_extensions(self, extensions:list):
|
||||
'''
|
||||
If called with a list of extensions, will force completer
|
||||
to do file path completions.
|
||||
'''
|
||||
self.extensions=extensions
|
||||
|
||||
def add_history(self,line):
|
||||
'''
|
||||
Pass thru to readline
|
||||
@ -189,6 +226,21 @@ class Completer(object):
|
||||
matches.sort()
|
||||
return matches
|
||||
|
||||
def _model_completions(self, text, state):
|
||||
m = re.search('(!switch\s+)(\w*)',text)
|
||||
if m:
|
||||
switch = m.groups()[0]
|
||||
partial = m.groups()[1]
|
||||
else:
|
||||
switch = ''
|
||||
partial = text
|
||||
matches = list()
|
||||
for s in self.models:
|
||||
if s.startswith(partial):
|
||||
matches.append(switch+s)
|
||||
matches.sort()
|
||||
return matches
|
||||
|
||||
def _pre_input_hook(self):
|
||||
if self.linebuffer:
|
||||
readline.insert_text(self.linebuffer)
|
||||
@ -267,9 +319,9 @@ class DummyCompleter(Completer):
|
||||
def set_line(self,line):
|
||||
print(f'# {line}')
|
||||
|
||||
def get_completer(opt:Args)->Completer:
|
||||
def get_completer(opt:Args, models=[])->Completer:
|
||||
if readline_available:
|
||||
completer = Completer(COMMANDS)
|
||||
completer = Completer(COMMANDS,models)
|
||||
|
||||
readline.set_completer(
|
||||
completer.complete
|
||||
|
@ -31,12 +31,13 @@ def build_opt(post_data, seed, gfpgan_model_exists):
|
||||
setattr(opt, 'embiggen', None)
|
||||
setattr(opt, 'embiggen_tiles', None)
|
||||
|
||||
setattr(opt, 'gfpgan_strength', float(post_data['gfpgan_strength']) if gfpgan_model_exists else 0)
|
||||
setattr(opt, 'facetool_strength', float(post_data['facetool_strength']) if gfpgan_model_exists else 0)
|
||||
setattr(opt, 'upscale', [int(post_data['upscale_level']), float(post_data['upscale_strength'])] if post_data['upscale_level'] != '' else None)
|
||||
setattr(opt, 'progress_images', 'progress_images' in post_data)
|
||||
setattr(opt, 'seed', None if int(post_data['seed']) == -1 else int(post_data['seed']))
|
||||
setattr(opt, 'threshold', float(post_data['threshold']))
|
||||
setattr(opt, 'perlin', float(post_data['perlin']))
|
||||
setattr(opt, 'hires_fix', 'hires_fix' in post_data)
|
||||
setattr(opt, 'variation_amount', float(post_data['variation_amount']) if int(post_data['seed']) != -1 else 0)
|
||||
setattr(opt, 'with_variations', [])
|
||||
setattr(opt, 'embiggen', None)
|
||||
@ -196,7 +197,7 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
) + '\n',"utf-8"))
|
||||
|
||||
# control state of the "postprocessing..." message
|
||||
upscaling_requested = opt.upscale or opt.gfpgan_strength > 0
|
||||
upscaling_requested = opt.upscale or opt.facetool_strength > 0
|
||||
nonlocal images_generated # NB: Is this bad python style? It is typical usage in a perl closure.
|
||||
nonlocal images_upscaled # NB: Is this bad python style? It is typical usage in a perl closure.
|
||||
if upscaled:
|
||||
|
@ -106,7 +106,7 @@ class DDPM(pl.LightningModule):
|
||||
], 'currently only supporting "eps" and "x0"'
|
||||
self.parameterization = parameterization
|
||||
print(
|
||||
f'{self.__class__.__name__}: Running in {self.parameterization}-prediction mode'
|
||||
f' | {self.__class__.__name__}: Running in {self.parameterization}-prediction mode'
|
||||
)
|
||||
self.cond_stage_model = None
|
||||
self.clip_denoised = clip_denoised
|
||||
@ -1353,7 +1353,7 @@ class LatentDiffusion(DDPM):
|
||||
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
||||
rescale_latent = 2 ** (num_downs)
|
||||
|
||||
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
||||
# get top left positions of patches as conforming for the bbbox tokenizer, therefore we
|
||||
# need to rescale the tl patch coordinates to be in between (0,1)
|
||||
tl_patch_coordinates = [
|
||||
(
|
||||
|
@ -49,9 +49,15 @@ class Upsample(nn.Module):
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
cpu_m1_cond = True if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available() and \
|
||||
x.size()[0] * x.size()[1] * x.size()[2] * x.size()[3] % 2**27 == 0 else False
|
||||
if cpu_m1_cond:
|
||||
x = x.to('cpu') # send to cpu
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
if cpu_m1_cond:
|
||||
x = x.to('mps') # return to mps
|
||||
return x
|
||||
|
||||
|
||||
@ -117,6 +123,14 @@ class ResnetBlock(nn.Module):
|
||||
padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
||||
x_size = x.size()
|
||||
if (x_size[0] * x_size[1] * x_size[2] * x_size[3]) % 2**29 == 0:
|
||||
self.to('cpu')
|
||||
x = x.to('cpu')
|
||||
else:
|
||||
self.to('mps')
|
||||
x = x.to('mps')
|
||||
h = self.norm1(x)
|
||||
h = silu(h)
|
||||
h = self.conv1(h)
|
||||
@ -245,7 +259,7 @@ class AttnBlock(nn.Module):
|
||||
|
||||
def make_attn(in_channels, attn_type="vanilla"):
|
||||
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
||||
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
||||
print(f" | Making attention of type '{attn_type}' with {in_channels} in_channels")
|
||||
if attn_type == "vanilla":
|
||||
return AttnBlock(in_channels)
|
||||
elif attn_type == "none":
|
||||
@ -521,7 +535,7 @@ class Decoder(nn.Module):
|
||||
block_in = ch*ch_mult[self.num_resolutions-1]
|
||||
curr_res = resolution // 2**(self.num_resolutions-1)
|
||||
self.z_shape = (1,z_channels,curr_res,curr_res)
|
||||
print("Working with z of shape {} = {} dimensions.".format(
|
||||
print(" | Working with z of shape {} = {} dimensions.".format(
|
||||
self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
|
@ -64,7 +64,8 @@ def make_ddim_timesteps(
|
||||
):
|
||||
if ddim_discr_method == 'uniform':
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||
# ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||
ddim_timesteps = (np.arange(0, num_ddim_timesteps) * c).astype(int)
|
||||
elif ddim_discr_method == 'quad':
|
||||
ddim_timesteps = (
|
||||
(
|
||||
@ -81,8 +82,8 @@ def make_ddim_timesteps(
|
||||
|
||||
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
# steps_out = ddim_timesteps + 1
|
||||
steps_out = ddim_timesteps
|
||||
steps_out = ddim_timesteps + 1
|
||||
# steps_out = ddim_timesteps
|
||||
|
||||
if verbose:
|
||||
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||||
|
@ -75,7 +75,7 @@ def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(
|
||||
f'{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
|
||||
f' | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
|
||||
)
|
||||
return total_params
|
||||
|
||||
|
@ -6,7 +6,7 @@
|
||||
"id": "ycYWcsEKc6w7"
|
||||
},
|
||||
"source": [
|
||||
"# Stable Diffusion AI Notebook (Release 1.14)\n",
|
||||
"# Stable Diffusion AI Notebook (Release 2.0.0)\n",
|
||||
"\n",
|
||||
"<img src=\"https://user-images.githubusercontent.com/60411196/186547976-d9de378a-9de8-4201-9c25-c057a9c59bad.jpeg\" alt=\"stable-diffusion-ai\" width=\"170px\"/> <br>\n",
|
||||
"#### Instructions:\n",
|
||||
@ -58,8 +58,8 @@
|
||||
"from os.path import exists\n",
|
||||
"\n",
|
||||
"!git clone --quiet https://github.com/invoke-ai/InvokeAI.git # Original repo\n",
|
||||
"%cd /content/stable-diffusion/\n",
|
||||
"!git checkout --quiet tags/release-1.14.1"
|
||||
"%cd /content/InvokeAI/\n",
|
||||
"!git checkout --quiet tags/v2.0.0"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -79,6 +79,7 @@
|
||||
"!pip install colab-xterm\n",
|
||||
"!pip install -r requirements-lin-win-colab-CUDA.txt\n",
|
||||
"!pip install clean-fid torchtext\n",
|
||||
"!pip install transformers\n",
|
||||
"gc.collect()"
|
||||
]
|
||||
},
|
||||
@ -106,7 +107,7 @@
|
||||
"source": [
|
||||
"#@title 5. Load small ML models required\n",
|
||||
"import gc\n",
|
||||
"%cd /content/stable-diffusion/\n",
|
||||
"%cd /content/InvokeAI/\n",
|
||||
"!python scripts/preload_models.py\n",
|
||||
"gc.collect()"
|
||||
]
|
||||
@ -171,18 +172,18 @@
|
||||
"import os \n",
|
||||
"\n",
|
||||
"# Folder creation if it doesn't exist\n",
|
||||
"if exists(\"/content/stable-diffusion/models/ldm/stable-diffusion-v1\"):\n",
|
||||
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1\"):\n",
|
||||
" print(\"❗ Dir stable-diffusion-v1 already exists\")\n",
|
||||
"else:\n",
|
||||
" %mkdir /content/stable-diffusion/models/ldm/stable-diffusion-v1\n",
|
||||
" %mkdir /content/InvokeAI/models/ldm/stable-diffusion-v1\n",
|
||||
" print(\"✅ Dir stable-diffusion-v1 created\")\n",
|
||||
"\n",
|
||||
"# Symbolic link if it doesn't exist\n",
|
||||
"if exists(\"/content/stable-diffusion/models/ldm/stable-diffusion-v1/model.ckpt\"):\n",
|
||||
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt\"):\n",
|
||||
" print(\"❗ Symlink already created\")\n",
|
||||
"else: \n",
|
||||
" src = model_path\n",
|
||||
" dst = '/content/stable-diffusion/models/ldm/stable-diffusion-v1/model.ckpt'\n",
|
||||
" dst = '/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt'\n",
|
||||
" os.symlink(src, dst) \n",
|
||||
" print(\"✅ Symbolic link created successfully\")"
|
||||
]
|
||||
@ -207,7 +208,7 @@
|
||||
"source": [
|
||||
"#@title 9. Run Terminal and Execute Dream bot\n",
|
||||
"#@markdown <font color=\"blue\">Steps:</font> <br>\n",
|
||||
"#@markdown 1. Execute command `python scripts/dream.py` to run dream bot.<br>\n",
|
||||
"#@markdown 1. Execute command `python scripts/invoke.py` to run InvokeAI.<br>\n",
|
||||
"#@markdown 2. After initialized you'll see `Dream>` line.<br>\n",
|
||||
"#@markdown 3. Example text: `Astronaut floating in a distant galaxy` <br>\n",
|
||||
"#@markdown 4. To quit Dream bot use: `q` command.<br>\n",
|
||||
@ -233,7 +234,7 @@
|
||||
"%matplotlib inline\n",
|
||||
"\n",
|
||||
"images = []\n",
|
||||
"for img_path in sorted(glob.glob('/content/stable-diffusion/outputs/img-samples/*.png'), reverse=True):\n",
|
||||
"for img_path in sorted(glob.glob('/content/InvokeAI/outputs/img-samples/*.png'), reverse=True):\n",
|
||||
" images.append(mpimg.imread(img_path))\n",
|
||||
"\n",
|
||||
"images = images[:15] \n",
|
||||
|
@ -9,6 +9,7 @@ import copy
|
||||
import warnings
|
||||
import time
|
||||
import traceback
|
||||
import yaml
|
||||
sys.path.append('.') # corrects a weird problem on Macs
|
||||
from ldm.invoke.readline import get_completer
|
||||
from ldm.invoke.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png
|
||||
@ -16,8 +17,6 @@ from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata
|
||||
from ldm.invoke.image_util import make_grid
|
||||
from ldm.invoke.log import write_log
|
||||
from omegaconf import OmegaConf
|
||||
from backend.invoke_ai_web_server import InvokeAIWebServer
|
||||
|
||||
|
||||
def main():
|
||||
"""Initialize command-line parsers and the diffusion model"""
|
||||
@ -33,7 +32,7 @@ def main():
|
||||
print('--weights argument has been deprecated. Please edit ./configs/models.yaml, and select the weights using --model instead.')
|
||||
sys.exit(-1)
|
||||
|
||||
print('* Initializing, be patient...\n')
|
||||
print('* Initializing, be patient...')
|
||||
from ldm.generate import Generate
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
@ -42,45 +41,7 @@ def main():
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
# Loading Face Restoration and ESRGAN Modules
|
||||
try:
|
||||
gfpgan, codeformer, esrgan = None, None, None
|
||||
if opt.restore or opt.esrgan:
|
||||
from ldm.invoke.restoration import Restoration
|
||||
restoration = Restoration()
|
||||
if opt.restore:
|
||||
gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_dir, opt.gfpgan_model_path)
|
||||
else:
|
||||
print('>> Face restoration disabled')
|
||||
if opt.esrgan:
|
||||
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
|
||||
else:
|
||||
print('>> Upscaling disabled')
|
||||
else:
|
||||
print('>> Face restoration and upscaling disabled')
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
|
||||
|
||||
# creating a simple text2image object with a handful of
|
||||
# defaults passed on the command line.
|
||||
# additional parameters will be added (or overriden) during
|
||||
# the user input loop
|
||||
try:
|
||||
gen = Generate(
|
||||
conf = opt.conf,
|
||||
model = opt.model,
|
||||
sampler_name = opt.sampler_name,
|
||||
embedding_path = opt.embedding_path,
|
||||
full_precision = opt.full_precision,
|
||||
precision = opt.precision,
|
||||
gfpgan=gfpgan,
|
||||
codeformer=codeformer,
|
||||
esrgan=esrgan,
|
||||
free_gpu_mem=opt.free_gpu_mem,
|
||||
)
|
||||
except (FileNotFoundError, IOError, KeyError) as e:
|
||||
print(f'{e}. Aborting.')
|
||||
sys.exit(-1)
|
||||
gfpgan,codeformer,esrgan = load_face_restoration(opt)
|
||||
|
||||
# make sure the output directory exists
|
||||
if not os.path.exists(opt.outdir):
|
||||
@ -100,6 +61,24 @@ def main():
|
||||
print(f'{e}. Aborting.')
|
||||
sys.exit(-1)
|
||||
|
||||
# creating a Generate object:
|
||||
try:
|
||||
gen = Generate(
|
||||
conf = opt.conf,
|
||||
model = opt.model,
|
||||
sampler_name = opt.sampler_name,
|
||||
embedding_path = opt.embedding_path,
|
||||
full_precision = opt.full_precision,
|
||||
precision = opt.precision,
|
||||
gfpgan=gfpgan,
|
||||
codeformer=codeformer,
|
||||
esrgan=esrgan,
|
||||
free_gpu_mem=opt.free_gpu_mem,
|
||||
)
|
||||
except (FileNotFoundError, IOError, KeyError) as e:
|
||||
print(f'{e}. Aborting.')
|
||||
sys.exit(-1)
|
||||
|
||||
if opt.seamless:
|
||||
print(">> changed to seamless tiling mode")
|
||||
|
||||
@ -116,7 +95,10 @@ def main():
|
||||
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)"
|
||||
)
|
||||
|
||||
main_loop(gen, opt, infile)
|
||||
try:
|
||||
main_loop(gen, opt, infile)
|
||||
except KeyboardInterrupt:
|
||||
print("\ngoodbye!")
|
||||
|
||||
# TODO: main_loop() has gotten busy. Needs to be refactored.
|
||||
def main_loop(gen, opt, infile):
|
||||
@ -124,12 +106,13 @@ def main_loop(gen, opt, infile):
|
||||
done = False
|
||||
path_filter = re.compile(r'[<>:"/\\|?*]')
|
||||
last_results = list()
|
||||
model_config = OmegaConf.load(opt.conf)[opt.model]
|
||||
model_config = OmegaConf.load(opt.conf)
|
||||
|
||||
# The readline completer reads history from the .dream_history file located in the
|
||||
# output directory specified at the time of script launch. We do not currently support
|
||||
# changing the history file midstream when the output directory is changed.
|
||||
completer = get_completer(opt)
|
||||
completer = get_completer(opt, models=list(model_config.keys()))
|
||||
completer.set_default_dir(opt.outdir)
|
||||
output_cntr = completer.get_current_history_length()+1
|
||||
|
||||
# os.pathconf is not available on Windows
|
||||
@ -141,11 +124,9 @@ def main_loop(gen, opt, infile):
|
||||
name_max = 255
|
||||
|
||||
while not done:
|
||||
operation = 'generate' # default operation, alternative is 'postprocess'
|
||||
|
||||
if completer:
|
||||
completer.set_default_dir(opt.outdir)
|
||||
|
||||
operation = 'generate'
|
||||
|
||||
try:
|
||||
command = get_next_command(infile)
|
||||
except EOFError:
|
||||
@ -164,41 +145,10 @@ def main_loop(gen, opt, infile):
|
||||
break
|
||||
|
||||
if command.startswith('!'):
|
||||
subcommand = command[1:]
|
||||
command, operation = do_command(command, gen, opt, completer)
|
||||
|
||||
if subcommand.startswith('dream'): # in case a stored prompt still contains the !dream command
|
||||
command = command.replace('!dream ','',1)
|
||||
|
||||
elif subcommand.startswith('fix'):
|
||||
command = command.replace('!fix ','',1)
|
||||
operation = 'postprocess'
|
||||
|
||||
elif subcommand.startswith('fetch'):
|
||||
file_path = command.replace('!fetch ','',1)
|
||||
retrieve_dream_command(opt,file_path,completer)
|
||||
continue
|
||||
|
||||
elif subcommand.startswith('history'):
|
||||
completer.show_history()
|
||||
continue
|
||||
|
||||
elif subcommand.startswith('search'):
|
||||
search_str = command.replace('!search ','',1)
|
||||
completer.show_history(search_str)
|
||||
continue
|
||||
|
||||
elif subcommand.startswith('clear'):
|
||||
completer.clear_history()
|
||||
continue
|
||||
|
||||
elif re.match('^(\d+)',subcommand):
|
||||
command_no = re.match('^(\d+)',subcommand).groups()[0]
|
||||
command = completer.get_line(int(command_no))
|
||||
completer.set_line(command)
|
||||
continue
|
||||
|
||||
else: # not a recognized subcommand, so give the --help text
|
||||
command = '-h'
|
||||
if operation is None:
|
||||
continue
|
||||
|
||||
if opt.parse_cmd(command) is None:
|
||||
continue
|
||||
@ -218,9 +168,9 @@ def main_loop(gen, opt, infile):
|
||||
|
||||
# width and height are set by model if not specified
|
||||
if not opt.width:
|
||||
opt.width = model_config.width
|
||||
opt.width = gen.width
|
||||
if not opt.height:
|
||||
opt.height = model_config.height
|
||||
opt.height = gen.height
|
||||
|
||||
# retrieve previous value of init image if requested
|
||||
if opt.init_img is not None and re.match('^-\\d+$', opt.init_img):
|
||||
@ -323,6 +273,7 @@ def main_loop(gen, opt, infile):
|
||||
model_hash = gen.model_hash,
|
||||
),
|
||||
name = filename,
|
||||
compress_level = opt.png_compression,
|
||||
)
|
||||
|
||||
# update rfc metadata
|
||||
@ -394,13 +345,162 @@ def main_loop(gen, opt, infile):
|
||||
|
||||
print('goodbye!')
|
||||
|
||||
def do_command(command:str, gen, opt:Args, completer) -> tuple:
|
||||
operation = 'generate' # default operation, alternative is 'postprocess'
|
||||
|
||||
if command.startswith('!dream'): # in case a stored prompt still contains the !dream command
|
||||
command = command.replace('!dream ','',1)
|
||||
|
||||
elif command.startswith('!fix'):
|
||||
command = command.replace('!fix ','',1)
|
||||
operation = 'postprocess'
|
||||
|
||||
elif command.startswith('!switch'):
|
||||
model_name = command.replace('!switch ','',1)
|
||||
gen.set_model(model_name)
|
||||
completer.add_history(command)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!models'):
|
||||
gen.model_cache.print_models()
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!import'):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print('** please provide a path to a .ckpt or .vae model file')
|
||||
elif not os.path.exists(path[1]):
|
||||
print(f'** {path[1]}: file not found')
|
||||
else:
|
||||
add_weights_to_config(path[1], gen, opt, completer)
|
||||
completer.add_history(command)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!edit'):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print('** please provide the name of a model')
|
||||
else:
|
||||
edit_config(path[1], gen, opt, completer)
|
||||
completer.add_history(command)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!fetch'):
|
||||
file_path = command.replace('!fetch ','',1)
|
||||
retrieve_dream_command(opt,file_path,completer)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!history'):
|
||||
completer.show_history()
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!search'):
|
||||
search_str = command.replace('!search ','',1)
|
||||
completer.show_history(search_str)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!clear'):
|
||||
completer.clear_history()
|
||||
operation = None
|
||||
|
||||
elif re.match('^!(\d+)',command):
|
||||
command_no = re.match('^!(\d+)',command).groups()[0]
|
||||
command = completer.get_line(int(command_no))
|
||||
completer.set_line(command)
|
||||
operation = None
|
||||
|
||||
else: # not a recognized command, so give the --help text
|
||||
command = '-h'
|
||||
return command, operation
|
||||
|
||||
def add_weights_to_config(model_path:str, gen, opt, completer):
|
||||
print(f'>> Model import in process. Please enter the values needed to configure this model:')
|
||||
print()
|
||||
|
||||
new_config = {}
|
||||
new_config['weights'] = model_path
|
||||
|
||||
done = False
|
||||
while not done:
|
||||
model_name = input('Short name for this model: ')
|
||||
if not re.match('^[\w._-]+$',model_name):
|
||||
print('** model name must contain only words, digits and the characters [._-] **')
|
||||
else:
|
||||
done = True
|
||||
new_config['description'] = input('Description of this model: ')
|
||||
|
||||
completer.complete_extensions(('.yaml','.yml'))
|
||||
completer.linebuffer = 'configs/stable-diffusion/v1-inference.yaml'
|
||||
|
||||
done = False
|
||||
while not done:
|
||||
new_config['config'] = input('Configuration file for this model: ')
|
||||
done = os.path.exists(new_config['config'])
|
||||
|
||||
completer.complete_extensions(None)
|
||||
|
||||
for field in ('width','height'):
|
||||
done = False
|
||||
while not done:
|
||||
try:
|
||||
completer.linebuffer = '512'
|
||||
value = int(input(f'Default image {field}: '))
|
||||
assert value >= 64 and value <= 2048
|
||||
new_config[field] = value
|
||||
done = True
|
||||
except:
|
||||
print('** Please enter a valid integer between 64 and 2048')
|
||||
|
||||
if write_config_file(opt.conf, gen, model_name, new_config):
|
||||
gen.set_model(model_name)
|
||||
|
||||
def edit_config(model_name:str, gen, opt, completer):
|
||||
config = gen.model_cache.config
|
||||
|
||||
if model_name not in config:
|
||||
print(f'** Unknown model {model_name}')
|
||||
return
|
||||
|
||||
print(f'\n>> Editing model {model_name} from configuration file {opt.conf}')
|
||||
|
||||
conf = config[model_name]
|
||||
new_config = {}
|
||||
completer.complete_extensions(('.yaml','.yml','.ckpt','.vae'))
|
||||
for field in ('description', 'weights', 'config', 'width','height'):
|
||||
completer.linebuffer = str(conf[field]) if field in conf else ''
|
||||
new_value = input(f'{field}: ')
|
||||
new_config[field] = int(new_value) if field in ('width','height') else new_value
|
||||
completer.complete_extensions(None)
|
||||
|
||||
if write_config_file(opt.conf, gen, model_name, new_config, clobber=True):
|
||||
gen.set_model(model_name)
|
||||
|
||||
def write_config_file(conf_path, gen, model_name, new_config, clobber=False):
|
||||
op = 'modify' if clobber else 'import'
|
||||
print('\n>> New configuration:')
|
||||
print(yaml.dump({model_name:new_config}))
|
||||
if input(f'OK to {op} [n]? ') not in ('y','Y'):
|
||||
return False
|
||||
|
||||
try:
|
||||
yaml_str = gen.model_cache.add_model(model_name, new_config, clobber)
|
||||
except AssertionError as e:
|
||||
print(f'** configuration failed: {str(e)}')
|
||||
return False
|
||||
|
||||
tmpfile = os.path.join(os.path.dirname(conf_path),'new_config.tmp')
|
||||
with open(tmpfile, 'w') as outfile:
|
||||
outfile.write(yaml_str)
|
||||
os.rename(tmpfile,conf_path)
|
||||
return True
|
||||
|
||||
def do_postprocess (gen, opt, callback):
|
||||
file_path = opt.prompt # treat the prompt as the file pathname
|
||||
if os.path.dirname(file_path) == '': #basename given
|
||||
file_path = os.path.join(opt.outdir,file_path)
|
||||
|
||||
tool=None
|
||||
if opt.gfpgan_strength > 0:
|
||||
if opt.facetool_strength > 0:
|
||||
tool = opt.facetool
|
||||
elif opt.embiggen:
|
||||
tool = 'embiggen'
|
||||
@ -416,7 +516,7 @@ def do_postprocess (gen, opt, callback):
|
||||
gen.apply_postprocessor(
|
||||
image_path = file_path,
|
||||
tool = tool,
|
||||
gfpgan_strength = opt.gfpgan_strength,
|
||||
facetool_strength = opt.facetool_strength,
|
||||
codeformer_fidelity = opt.codeformer_fidelity,
|
||||
save_original = opt.save_original,
|
||||
upscale = opt.upscale,
|
||||
@ -511,6 +611,7 @@ def get_next_command(infile=None) -> str: # command string
|
||||
|
||||
def invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan):
|
||||
print('\n* --web was specified, starting web server...')
|
||||
from backend.invoke_ai_web_server import InvokeAIWebServer
|
||||
# Change working directory to the stable-diffusion directory
|
||||
os.chdir(
|
||||
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
||||
@ -549,6 +650,27 @@ def split_variations(variations_string) -> list:
|
||||
else:
|
||||
return parts
|
||||
|
||||
def load_face_restoration(opt):
|
||||
try:
|
||||
gfpgan, codeformer, esrgan = None, None, None
|
||||
if opt.restore or opt.esrgan:
|
||||
from ldm.invoke.restoration import Restoration
|
||||
restoration = Restoration()
|
||||
if opt.restore:
|
||||
gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_dir, opt.gfpgan_model_path)
|
||||
else:
|
||||
print('>> Face restoration disabled')
|
||||
if opt.esrgan:
|
||||
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
|
||||
else:
|
||||
print('>> Upscaling disabled')
|
||||
else:
|
||||
print('>> Face restoration and upscaling disabled')
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
|
||||
return gfpgan,codeformer,esrgan
|
||||
|
||||
def make_step_callback(gen, opt, prefix):
|
||||
destination = os.path.join(opt.outdir,'intermediates',prefix)
|
||||
os.makedirs(destination,exist_ok=True)
|
||||
|
@ -35,13 +35,14 @@ class DreamBase():
|
||||
perlin: float = 0.0
|
||||
sampler_name: string = 'klms'
|
||||
seamless: bool = False
|
||||
hires_fix: bool = False
|
||||
model: str = None # The model to use (currently unused)
|
||||
embeddings = None # The embeddings to use (currently unused)
|
||||
progress_images: bool = False
|
||||
|
||||
# GFPGAN
|
||||
enable_gfpgan: bool
|
||||
gfpgan_strength: float = 0
|
||||
facetool_strength: float = 0
|
||||
|
||||
# Upscale
|
||||
enable_upscale: bool
|
||||
@ -91,12 +92,13 @@ class DreamBase():
|
||||
# model: str = None # The model to use (currently unused)
|
||||
# embeddings = None # The embeddings to use (currently unused)
|
||||
self.seamless = 'seamless' in j
|
||||
self.hires_fix = 'hires_fix' in j
|
||||
self.progress_images = 'progress_images' in j
|
||||
|
||||
# GFPGAN
|
||||
self.enable_gfpgan = 'enable_gfpgan' in j and bool(j.get('enable_gfpgan'))
|
||||
if self.enable_gfpgan:
|
||||
self.gfpgan_strength = float(j.get('gfpgan_strength'))
|
||||
self.facetool_strength = float(j.get('facetool_strength'))
|
||||
|
||||
# Upscale
|
||||
self.enable_upscale = 'enable_upscale' in j and bool(j.get('enable_upscale'))
|
||||
|
@ -334,11 +334,11 @@ class GeneratorService:
|
||||
# TODO: Support no generation (just upscaling/gfpgan)
|
||||
|
||||
upscale = None if not jobRequest.enable_upscale else jobRequest.upscale
|
||||
gfpgan_strength = 0 if not jobRequest.enable_gfpgan else jobRequest.gfpgan_strength
|
||||
facetool_strength = 0 if not jobRequest.enable_gfpgan else jobRequest.facetool_strength
|
||||
|
||||
if not jobRequest.enable_generate:
|
||||
# If not generating, check if we're upscaling or running gfpgan
|
||||
if not upscale and not gfpgan_strength:
|
||||
if not upscale and not facetool_strength:
|
||||
# Invalid settings (TODO: Add message to help user)
|
||||
raise CanceledException()
|
||||
|
||||
@ -347,7 +347,7 @@ class GeneratorService:
|
||||
self.__model.upscale_and_reconstruct(
|
||||
image_list = [[image,0]],
|
||||
upscale = upscale,
|
||||
strength = gfpgan_strength,
|
||||
strength = facetool_strength,
|
||||
save_original = False,
|
||||
image_callback = lambda image, seed, upscaled=False: self.__on_image_result(jobRequest, image, seed, upscaled))
|
||||
|
||||
@ -371,10 +371,11 @@ class GeneratorService:
|
||||
steps = jobRequest.steps,
|
||||
variation_amount = jobRequest.variation_amount,
|
||||
with_variations = jobRequest.with_variations,
|
||||
gfpgan_strength = gfpgan_strength,
|
||||
facetool_strength = facetool_strength,
|
||||
upscale = upscale,
|
||||
sampler_name = jobRequest.sampler_name,
|
||||
seamless = jobRequest.seamless,
|
||||
hires_fix = jobRequest.hires_fix,
|
||||
embiggen = jobRequest.embiggen,
|
||||
embiggen_tiles = jobRequest.embiggen_tiles,
|
||||
step_callback = lambda sample, step: self.__on_progress(jobRequest, sample, step),
|
||||
|
@ -144,8 +144,8 @@
|
||||
<input type="checkbox" name="enable_gfpgan" id="enable_gfpgan">
|
||||
<label for="enable_gfpgan">Enable gfpgan</label>
|
||||
</legend>
|
||||
<label title="Strength of the gfpgan (face fixing) algorithm." for="gfpgan_strength">GPFGAN Strength:</label>
|
||||
<input value="0.8" min="0" max="1" type="number" id="gfpgan_strength" name="gfpgan_strength" step="0.05">
|
||||
<label title="Strength of the gfpgan (face fixing) algorithm." for="facetool_strength">GPFGAN Strength:</label>
|
||||
<input value="0.8" min="0" max="1" type="number" id="facetool_strength" name="facetool_strength" step="0.05">
|
||||
</fieldset>
|
||||
<fieldset id="upscale">
|
||||
<legend>
|
||||
|
@ -100,8 +100,8 @@
|
||||
</fieldset>
|
||||
<fieldset id="gfpgan">
|
||||
<div class="section-header">Post-processing options</div>
|
||||
<label title="Strength of the gfpgan (face fixing) algorithm." for="gfpgan_strength">GPFGAN Strength (0 to disable):</label>
|
||||
<input value="0.0" min="0" max="1" type="number" id="gfpgan_strength" name="gfpgan_strength" step="0.1">
|
||||
<label title="Strength of the gfpgan (face fixing) algorithm." for="facetool_strength">GPFGAN Strength (0 to disable):</label>
|
||||
<input value="0.0" min="0" max="1" type="number" id="facetool_strength" name="facetool_strength" step="0.1">
|
||||
<label title="Upscaling to perform using ESRGAN." for="upscale_level">Upscaling Level</label>
|
||||
<select id="upscale_level" name="upscale_level" value="">
|
||||
<option value="" selected>None</option>
|
||||
|
Loading…
Reference in New Issue
Block a user