mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
WIP TiledMultiDiffusionDenoiseLatents. Updated parameter list and first half of the logic.
This commit is contained in:
parent
7e94350351
commit
230e205541
@ -2,37 +2,36 @@ from contextlib import ExitStack
|
|||||||
from typing import Iterator, Tuple
|
from typing import Iterator, Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import numpy.typing as npt
|
|
||||||
import torch
|
import torch
|
||||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from pydantic import field_validator
|
from pydantic import field_validator
|
||||||
|
|
||||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
||||||
|
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||||
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
|
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
|
||||||
from invokeai.app.invocations.fields import (
|
from invokeai.app.invocations.fields import (
|
||||||
ConditioningField,
|
ConditioningField,
|
||||||
FieldDescriptions,
|
FieldDescriptions,
|
||||||
ImageField,
|
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
|
LatentsField,
|
||||||
UIType,
|
UIType,
|
||||||
)
|
)
|
||||||
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
|
||||||
from invokeai.app.invocations.latents_to_image import LatentsToImageInvocation
|
from invokeai.app.invocations.latents_to_image import LatentsToImageInvocation
|
||||||
from invokeai.app.invocations.model import ModelIdentifierField, UNetField, VAEField
|
from invokeai.app.invocations.model import UNetField
|
||||||
from invokeai.app.invocations.noise import get_noise
|
from invokeai.app.invocations.noise import get_noise
|
||||||
from invokeai.app.invocations.primitives import ImageOutput
|
from invokeai.app.invocations.primitives import ImageOutput
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, prepare_control_image
|
|
||||||
from invokeai.backend.lora import LoRAModelRaw
|
from invokeai.backend.lora import LoRAModelRaw
|
||||||
from invokeai.backend.model_patcher import ModelPatcher
|
from invokeai.backend.model_patcher import ModelPatcher
|
||||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, image_resized_to_grid_as_tensor
|
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData
|
||||||
from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending
|
from invokeai.backend.tiles.tiles import (
|
||||||
from invokeai.backend.tiles.utils import Tile
|
calc_tiles_min_overlap,
|
||||||
|
merge_tiles_with_linear_blending,
|
||||||
|
)
|
||||||
from invokeai.backend.util.devices import TorchDevice
|
from invokeai.backend.util.devices import TorchDevice
|
||||||
from invokeai.backend.util.hotfixes import ControlNetModel
|
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
@ -40,14 +39,19 @@ from invokeai.backend.util.hotfixes import ControlNetModel
|
|||||||
title="Tiled Stable Diffusion Refine",
|
title="Tiled Stable Diffusion Refine",
|
||||||
tags=["upscale", "denoise"],
|
tags=["upscale", "denoise"],
|
||||||
category="latents",
|
category="latents",
|
||||||
|
# TODO(ryand): Reset to 1.0.0 right before release.
|
||||||
version="1.0.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class TiledStableDiffusionRefineInvocation(BaseInvocation):
|
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
|
||||||
"""A tiled Stable Diffusion pipeline for refining high resolution images. This invocation is intended to be used to
|
"""Tiled Multi-Diffusion denoising.
|
||||||
refine an image after upscaling i.e. it is the second step in a typical "tiled upscaling" workflow.
|
|
||||||
"""
|
|
||||||
|
|
||||||
image: ImageField = InputField(description="Image to be refined.")
|
This node handles automatically tiling the input image. Future iterations of
|
||||||
|
this node should allow the user to specify custom regions with different parameters for each region to harness the
|
||||||
|
full power of Multi-Diffusion.
|
||||||
|
|
||||||
|
This node has a similar interface to the `DenoiseLatents` node, but it has a reduced feature set (no IP-Adapter,
|
||||||
|
T2I-Adapter, masking, etc.).
|
||||||
|
"""
|
||||||
|
|
||||||
positive_conditioning: ConditioningField = InputField(
|
positive_conditioning: ConditioningField = InputField(
|
||||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||||
@ -55,16 +59,29 @@ class TiledStableDiffusionRefineInvocation(BaseInvocation):
|
|||||||
negative_conditioning: ConditioningField = InputField(
|
negative_conditioning: ConditioningField = InputField(
|
||||||
description=FieldDescriptions.negative_cond, input=Input.Connection
|
description=FieldDescriptions.negative_cond, input=Input.Connection
|
||||||
)
|
)
|
||||||
|
noise: LatentsField | None = InputField(
|
||||||
|
default=None,
|
||||||
|
description=FieldDescriptions.noise,
|
||||||
|
input=Input.Connection,
|
||||||
|
)
|
||||||
|
latents: LatentsField | None = InputField(
|
||||||
|
default=None,
|
||||||
|
description=FieldDescriptions.latents,
|
||||||
|
input=Input.Connection,
|
||||||
|
)
|
||||||
# TODO(ryand): Add multiple-of validation.
|
# TODO(ryand): Add multiple-of validation.
|
||||||
tile_height: int = InputField(default=512, gt=0, description="Height of the tiles.")
|
# TODO(ryand): Smaller defaults might make more sense.
|
||||||
tile_width: int = InputField(default=512, gt=0, description="Width of the tiles.")
|
tile_height: int = InputField(default=112, gt=0, description="Height of the tiles in latent space.")
|
||||||
tile_overlap: int = InputField(
|
tile_width: int = InputField(default=112, gt=0, description="Width of the tiles in latent space.")
|
||||||
|
tile_min_overlap: int = InputField(
|
||||||
default=16,
|
default=16,
|
||||||
gt=0,
|
gt=0,
|
||||||
description="Target overlap between adjacent tiles (the last row/column may overlap more than this).",
|
description="The minimum overlap between adjacent tiles in latent space. The actual overlap may be larger than "
|
||||||
|
"this to evenly cover the entire image.",
|
||||||
)
|
)
|
||||||
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
|
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
|
||||||
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
|
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
|
||||||
|
# TODO(ryand): The default here should probably be 0.0.
|
||||||
denoising_start: float = InputField(
|
denoising_start: float = InputField(
|
||||||
default=0.65,
|
default=0.65,
|
||||||
ge=0,
|
ge=0,
|
||||||
@ -85,23 +102,10 @@ class TiledStableDiffusionRefineInvocation(BaseInvocation):
|
|||||||
cfg_rescale_multiplier: float = InputField(
|
cfg_rescale_multiplier: float = InputField(
|
||||||
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
||||||
)
|
)
|
||||||
vae: VAEField = InputField(
|
control: ControlField | list[ControlField] | None = InputField(
|
||||||
description=FieldDescriptions.vae,
|
default=None,
|
||||||
input=Input.Connection,
|
input=Input.Connection,
|
||||||
)
|
)
|
||||||
vae_fp32: bool = InputField(
|
|
||||||
default=DEFAULT_PRECISION == torch.float32, description="Whether to use float32 precision when running the VAE."
|
|
||||||
)
|
|
||||||
# HACK(ryand): We probably want to allow the user to control all of the parameters in ControlField. But, we akwardly
|
|
||||||
# don't want to use the image field. Figure out how best to handle this.
|
|
||||||
# TODO(ryand): Currently, there is no ControlNet preprocessor applied to the tile images. In other words, we pretty
|
|
||||||
# much assume that it is a tile ControlNet. We need to decide how we want to handle this. E.g. find a way to support
|
|
||||||
# CN preprocessors, raise a clear warning when a non-tile CN model is selected, hardcode the supported CN models,
|
|
||||||
# etc.
|
|
||||||
control_model: ModelIdentifierField = InputField(
|
|
||||||
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
|
|
||||||
)
|
|
||||||
control_weight: float = InputField(default=0.6)
|
|
||||||
|
|
||||||
@field_validator("cfg_scale")
|
@field_validator("cfg_scale")
|
||||||
def ge_one(cls, v: list[float] | float) -> list[float] | float:
|
def ge_one(cls, v: list[float] | float) -> list[float] | float:
|
||||||
@ -115,140 +119,44 @@ class TiledStableDiffusionRefineInvocation(BaseInvocation):
|
|||||||
raise ValueError("cfg_scale must be greater than 1")
|
raise ValueError("cfg_scale must be greater than 1")
|
||||||
return v
|
return v
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def crop_latents_to_tile(latents: torch.Tensor, image_tile: Tile) -> torch.Tensor:
|
|
||||||
"""Crop the latent-space tensor to the area corresponding to the image-space tile.
|
|
||||||
The tile coordinates must be divisible by the LATENT_SCALE_FACTOR.
|
|
||||||
"""
|
|
||||||
for coord in [image_tile.coords.top, image_tile.coords.left, image_tile.coords.right, image_tile.coords.bottom]:
|
|
||||||
if coord % LATENT_SCALE_FACTOR != 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"The tile coordinates must all be divisible by the latent scale factor"
|
|
||||||
f" ({LATENT_SCALE_FACTOR}). {image_tile.coords=}."
|
|
||||||
)
|
|
||||||
assert latents.dim() == 4 # We expect: (batch_size, channels, height, width).
|
|
||||||
|
|
||||||
top = image_tile.coords.top // LATENT_SCALE_FACTOR
|
|
||||||
left = image_tile.coords.left // LATENT_SCALE_FACTOR
|
|
||||||
bottom = image_tile.coords.bottom // LATENT_SCALE_FACTOR
|
|
||||||
right = image_tile.coords.right // LATENT_SCALE_FACTOR
|
|
||||||
return latents[..., top:bottom, left:right]
|
|
||||||
|
|
||||||
def run_controlnet(
|
|
||||||
self,
|
|
||||||
image: Image.Image,
|
|
||||||
controlnet_model: ControlNetModel,
|
|
||||||
weight: float,
|
|
||||||
do_classifier_free_guidance: bool,
|
|
||||||
width: int,
|
|
||||||
height: int,
|
|
||||||
device: torch.device,
|
|
||||||
dtype: torch.dtype,
|
|
||||||
control_mode: CONTROLNET_MODE_VALUES = "balanced",
|
|
||||||
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
|
|
||||||
) -> ControlNetData:
|
|
||||||
control_image = prepare_control_image(
|
|
||||||
image=image,
|
|
||||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
||||||
width=width,
|
|
||||||
height=height,
|
|
||||||
device=device,
|
|
||||||
dtype=dtype,
|
|
||||||
control_mode=control_mode,
|
|
||||||
resize_mode=resize_mode,
|
|
||||||
)
|
|
||||||
return ControlNetData(
|
|
||||||
model=controlnet_model,
|
|
||||||
image_tensor=control_image,
|
|
||||||
weight=weight,
|
|
||||||
begin_step_percent=0.0,
|
|
||||||
end_step_percent=1.0,
|
|
||||||
control_mode=control_mode,
|
|
||||||
# Any resizing needed should currently be happening in prepare_control_image(), but adding resize_mode to
|
|
||||||
# ControlNetData in case needed in the future.
|
|
||||||
resize_mode=resize_mode,
|
|
||||||
)
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
# TODO(ryand): Expose the seed parameter.
|
seed, noise, latents = DenoiseLatentsInvocation.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||||
seed = 0
|
_, _, latent_height, latent_width = latents.shape
|
||||||
|
|
||||||
# Load the input image.
|
# If noise is None, populate it here.
|
||||||
input_image = context.images.get_pil(self.image.image_name)
|
# TODO(ryand): Currently there is logic to generate noise deeper in the stack if it is None. We should just move
|
||||||
|
# that logic up the stack in all places that it's relied upon (i.e. do it in prepare_noise_and_latents). In this
|
||||||
# Calculate the tile locations to cover the image.
|
# particular case, we want to make sure that the noise is generated globally rather than per-tile so that
|
||||||
# We have selected this tiling strategy to make it easy to achieve tile coords that are multiples of 8. This
|
# overlapping tile regions use the same noise.
|
||||||
# facilitates conversions between image space and latent space.
|
if noise is None:
|
||||||
# TODO(ryand): Expose these tiling parameters. (Keep in mind the multiple-of constraints on these params.)
|
noise = get_noise(
|
||||||
tiles = calc_tiles_with_overlap(
|
width=latent_width * LATENT_SCALE_FACTOR,
|
||||||
image_height=input_image.height,
|
height=latent_height * LATENT_SCALE_FACTOR,
|
||||||
image_width=input_image.width,
|
|
||||||
tile_height=self.tile_height,
|
|
||||||
tile_width=self.tile_width,
|
|
||||||
overlap=self.tile_overlap,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Convert the input image to a torch.Tensor.
|
|
||||||
input_image_torch = image_resized_to_grid_as_tensor(input_image.convert("RGB"), multiple_of=LATENT_SCALE_FACTOR)
|
|
||||||
input_image_torch = input_image_torch.unsqueeze(0) # Add a batch dimension.
|
|
||||||
# Validate our assumptions about the shape of input_image_torch.
|
|
||||||
assert input_image_torch.dim() == 4 # We expect: (batch_size, channels, height, width).
|
|
||||||
assert input_image_torch.shape[:2] == (1, 3)
|
|
||||||
|
|
||||||
# Split the input image into tiles in torch.Tensor format.
|
|
||||||
image_tiles_torch: list[torch.Tensor] = []
|
|
||||||
for tile in tiles:
|
|
||||||
image_tile = input_image_torch[
|
|
||||||
:,
|
|
||||||
:,
|
|
||||||
tile.coords.top : tile.coords.bottom,
|
|
||||||
tile.coords.left : tile.coords.right,
|
|
||||||
]
|
|
||||||
image_tiles_torch.append(image_tile)
|
|
||||||
|
|
||||||
# Split the input image into tiles in numpy format.
|
|
||||||
# TODO(ryand): We currently maintain both np.ndarray and torch.Tensor tiles. Ideally, all operations should work
|
|
||||||
# with torch.Tensor tiles.
|
|
||||||
input_image_np = np.array(input_image)
|
|
||||||
image_tiles_np: list[npt.NDArray[np.uint8]] = []
|
|
||||||
for tile in tiles:
|
|
||||||
image_tile_np = input_image_np[
|
|
||||||
tile.coords.top : tile.coords.bottom,
|
|
||||||
tile.coords.left : tile.coords.right,
|
|
||||||
:,
|
|
||||||
]
|
|
||||||
image_tiles_np.append(image_tile_np)
|
|
||||||
|
|
||||||
# VAE-encode each image tile independently.
|
|
||||||
# TODO(ryand): Is there any advantage to VAE-encoding the entire image before splitting it into tiles? What
|
|
||||||
# about for decoding?
|
|
||||||
vae_info = context.models.load(self.vae.vae)
|
|
||||||
latent_tiles: list[torch.Tensor] = []
|
|
||||||
for image_tile_torch in image_tiles_torch:
|
|
||||||
latent_tiles.append(
|
|
||||||
ImageToLatentsInvocation.vae_encode(
|
|
||||||
vae_info=vae_info, upcast=self.vae_fp32, tiled=False, image_tensor=image_tile_torch
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Generate noise with dimensions corresponding to the full image in latent space.
|
|
||||||
# It is important that the noise tensor is generated at the full image dimension and then tiled, rather than
|
|
||||||
# generating for each tile independently. This ensures that overlapping regions between tiles use the same
|
|
||||||
# noise.
|
|
||||||
assert input_image_torch.shape[2] % LATENT_SCALE_FACTOR == 0
|
|
||||||
assert input_image_torch.shape[3] % LATENT_SCALE_FACTOR == 0
|
|
||||||
global_noise = get_noise(
|
|
||||||
width=input_image_torch.shape[3],
|
|
||||||
height=input_image_torch.shape[2],
|
|
||||||
device=TorchDevice.choose_torch_device(),
|
device=TorchDevice.choose_torch_device(),
|
||||||
seed=seed,
|
seed=seed,
|
||||||
downsampling_factor=LATENT_SCALE_FACTOR,
|
downsampling_factor=LATENT_SCALE_FACTOR,
|
||||||
use_cpu=True,
|
use_cpu=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Crop the global noise into tiles.
|
# Calculate the tile locations to cover the latent-space image.
|
||||||
noise_tiles = [self.crop_latents_to_tile(latents=global_noise, image_tile=t) for t in tiles]
|
# TODO(ryand): Add constraints on the tile params. Is there a multiple-of constraint?
|
||||||
|
tiles = calc_tiles_min_overlap(
|
||||||
|
image_height=latent_height,
|
||||||
|
image_width=latent_width,
|
||||||
|
tile_height=self.tile_height,
|
||||||
|
tile_width=self.tile_width,
|
||||||
|
min_overlap=self.tile_min_overlap,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Split the noise and latents into tiles.
|
||||||
|
noise_tiles: list[torch.Tensor] = []
|
||||||
|
latent_tiles: list[torch.Tensor] = []
|
||||||
|
for tile in tiles:
|
||||||
|
noise_tile = noise[..., tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right]
|
||||||
|
latent_tile = latents[..., tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right]
|
||||||
|
noise_tiles.append(noise_tile)
|
||||||
|
latent_tiles.append(latent_tile)
|
||||||
|
|
||||||
# Prepare an iterator that yields the UNet's LoRA models and their weights.
|
# Prepare an iterator that yields the UNet's LoRA models and their weights.
|
||||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||||
@ -273,25 +181,54 @@ class TiledStableDiffusionRefineInvocation(BaseInvocation):
|
|||||||
pipeline = DenoiseLatentsInvocation.create_pipeline(unet=unet, scheduler=scheduler)
|
pipeline = DenoiseLatentsInvocation.create_pipeline(unet=unet, scheduler=scheduler)
|
||||||
|
|
||||||
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
|
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
|
||||||
# Assume that all tiles have the same shape.
|
|
||||||
_, _, latent_height, latent_width = latent_tiles[0].shape
|
|
||||||
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
|
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
|
||||||
context=context,
|
context=context,
|
||||||
positive_conditioning_field=self.positive_conditioning,
|
positive_conditioning_field=self.positive_conditioning,
|
||||||
negative_conditioning_field=self.negative_conditioning,
|
negative_conditioning_field=self.negative_conditioning,
|
||||||
unet=unet,
|
unet=unet,
|
||||||
latent_height=latent_height,
|
latent_height=self.tile_height,
|
||||||
latent_width=latent_width,
|
latent_width=self.tile_width,
|
||||||
cfg_scale=self.cfg_scale,
|
cfg_scale=self.cfg_scale,
|
||||||
steps=self.steps,
|
steps=self.steps,
|
||||||
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Load the ControlNet model.
|
controlnet_data = DenoiseLatentsInvocation.prep_control_data(
|
||||||
# TODO(ryand): Support multiple ControlNet models.
|
context=context,
|
||||||
controlnet_model = exit_stack.enter_context(context.models.load(self.control_model))
|
control_input=self.control,
|
||||||
assert isinstance(controlnet_model, ControlNetModel)
|
latents_shape=list(latents.shape),
|
||||||
|
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
||||||
|
do_classifier_free_guidance=True,
|
||||||
|
exit_stack=exit_stack,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Split the controlnet_data into tiles.
|
||||||
|
if controlnet_data is not None:
|
||||||
|
# controlnet_data_tiles[t][c] is the c'th control data for the t'th tile.
|
||||||
|
controlnet_data_tiles: list[list[ControlNetData]] = []
|
||||||
|
for tile in tiles:
|
||||||
|
# To split the controlnet_data into tiles, we simply need to crop each image_tensor. All other
|
||||||
|
# params can be copied unmodified.
|
||||||
|
tile_controlnet_data = [
|
||||||
|
ControlNetData(
|
||||||
|
model=cn.model,
|
||||||
|
image_tensor=cn.image_tensor[
|
||||||
|
:,
|
||||||
|
:,
|
||||||
|
tile.coords.top * LATENT_SCALE_FACTOR : tile.coords.bottom * LATENT_SCALE_FACTOR,
|
||||||
|
tile.coords.left * LATENT_SCALE_FACTOR : tile.coords.right * LATENT_SCALE_FACTOR,
|
||||||
|
],
|
||||||
|
weight=cn.weight,
|
||||||
|
begin_step_percent=cn.begin_step_percent,
|
||||||
|
end_step_percent=cn.end_step_percent,
|
||||||
|
control_mode=cn.control_mode,
|
||||||
|
resize_mode=cn.resize_mode,
|
||||||
|
)
|
||||||
|
for cn in controlnet_data
|
||||||
|
]
|
||||||
|
controlnet_data_tiles.append(tile_controlnet_data)
|
||||||
|
|
||||||
|
# TODO(ryand): Logic from here down needs updating --------------------
|
||||||
# Denoise (i.e. "refine") each tile independently.
|
# Denoise (i.e. "refine") each tile independently.
|
||||||
for image_tile_np, latent_tile, noise_tile in zip(image_tiles_np, latent_tiles, noise_tiles, strict=True):
|
for image_tile_np, latent_tile, noise_tile in zip(image_tiles_np, latent_tiles, noise_tiles, strict=True):
|
||||||
assert latent_tile.shape == noise_tile.shape
|
assert latent_tile.shape == noise_tile.shape
|
||||||
|
Loading…
Reference in New Issue
Block a user